1 1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linu 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it 11 * things wanted, and it should be easy to imp 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a 16 * pages started 02.12.91, seems to work. - Li 17 * 18 * Tested sharing by executing about 30 /bin/s 19 * would have taken more than the 6M I have fr 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I was 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I g 29 * Found it. Everything seems to 30 * 20.12.91 - Ok, making the swap-device cha 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management a 35 * Idea by Alex Bligh (alex@cconc 36 * 37 * 16.07.99 - Support of BIGMEM added by Ger 38 * (Gerhard.Wichert@pdb.siemens.d 39 * 40 * Aug/Sep 2004 Changed to four level page tab 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && 96 #warning Unfortunate NUMA and NUMA Balancing c 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vm 108 static vm_fault_t do_anonymous_page(struct vm_ 109 static bool vmf_pte_changed(struct vm_fault *v 110 111 /* 112 * Return true if the original pte was a uffd- 113 * wr-protected). 114 */ 115 static __always_inline bool vmf_orig_pte_uffd_ 116 { 117 if (!userfaultfd_wp(vmf->vma)) 118 return false; 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE 120 return false; 121 122 return pte_marker_uffd_wp(vmf->orig_pt 123 } 124 125 /* 126 * A number of key systems in x86 including io 127 * that high_memory defines the upper bound on 128 * of ZONE_NORMAL. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk f 137 * as ancient (libc5 based) binaries can seg 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_p 148 { 149 /* 150 * Transitioning a PTE from 'old' to ' 151 * some architectures, even if it's pe 152 * default, "false" means prefaulted e 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE i 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, i 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages th 187 * has been handled earlier when unmapping all 188 */ 189 static void free_pte_range(struct mmu_gather * 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_g 199 unsigned long 200 unsigned long 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end) 210 if (pmd_none_or_clear_bad(pmd) 211 continue; 212 free_pte_range(tlb, pmd, addr) 213 } while (pmd++, addr = next, addr != e 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_g 233 unsigned long 234 unsigned long 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end) 244 if (pud_none_or_clear_bad(pud) 245 continue; 246 free_pmd_range(tlb, pud, addr, 247 } while (pud++, addr = next, addr != e 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_g 267 unsigned long 268 unsigned long 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end) 278 if (p4d_none_or_clear_bad(p4d) 279 continue; 280 free_pud_range(tlb, p4d, addr, 281 } while (p4d++, addr = next, addr != e 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, un 304 unsigned long floor, u 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lo 311 * 312 * Why are we testing PMD* at this top 313 * there will be no work to do at all, 314 * go all the way down to the bottom j 315 * 316 * Why all these "- 1"s? Because 0 re 317 * of the address space and the top of 318 * top wouldn't help much: the masks w 319 * The rule is that addr 0 and floor 0 320 * the address space, but end 0 and ce 321 * Comparisons need to use "end - 1" a 322 * that end 0 case should be mythical) 323 * 324 * Wherever addr is brought up or ceil 325 * be careful to reject "the opposite 326 * subsequent tests. But what about w 327 * by PMD_SIZE below? no, end can't go 328 * 329 * Whereas we round start (addr) and c 330 * masks at different levels, in order 331 * now has no other vmas using it, so 332 * bother to round floor or end up - t 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with 352 * (see pte_free_tlb()), flush the tlb 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end) 358 if (pgd_none_or_clear_bad(pgd) 359 continue; 360 free_p4d_range(tlb, pgd, addr, 361 } while (pgd++, addr = next, addr != e 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, str 365 struct vm_area_struct *vma, 366 unsigned long ceiling, bool 367 { 368 struct unlink_vma_file_batch vb; 369 370 do { 371 unsigned long addr = vma->vm_s 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING 376 * be 0. This will underflow 377 */ 378 next = mas_find(mas, ceiling - 379 if (unlikely(xa_is_zero(next)) 380 next = NULL; 381 382 /* 383 * Hide vma from rmap and trun 384 * pgtables 385 */ 386 if (mm_wr_locked) 387 vma_start_write(vma); 388 unlink_anon_vmas(vma); 389 390 if (is_vm_hugetlb_page(vma)) { 391 unlink_file_vma(vma); 392 hugetlb_free_pgd_range 393 floor, next ? 394 } else { 395 unlink_file_vma_batch_ 396 unlink_file_vma_batch_ 397 398 /* 399 * Optimization: gathe 400 */ 401 while (next && next->v 402 && !is_vm_huget 403 vma = next; 404 next = mas_fin 405 if (unlikely(x 406 next = 407 if (mm_wr_lock 408 vma_st 409 unlink_anon_vm 410 unlink_file_vm 411 } 412 unlink_file_vma_batch_ 413 free_pgd_range(tlb, ad 414 floor, next ? 415 } 416 vma = next; 417 } while (vma); 418 } 419 420 void pmd_install(struct mm_struct *mm, pmd_t * 421 { 422 spinlock_t *ptl = pmd_lock(mm, pmd); 423 424 if (likely(pmd_none(*pmd))) { /* Has 425 mm_inc_nr_ptes(mm); 426 /* 427 * Ensure all pte setup (eg. p 428 * visible before the pte is m 429 * put into page tables. 430 * 431 * The other side of the story 432 * table walking code (when wa 433 * ie. most of the time). Fort 434 * of a chain of data-dependen 435 * being the notable exception 436 * seen in-order. See the alph 437 * smp_rmb() barriers in page 438 */ 439 smp_wmb(); /* Could be smp_wmb 440 pmd_populate(mm, pmd, *pte); 441 *pte = NULL; 442 } 443 spin_unlock(ptl); 444 } 445 446 int __pte_alloc(struct mm_struct *mm, pmd_t *p 447 { 448 pgtable_t new = pte_alloc_one(mm); 449 if (!new) 450 return -ENOMEM; 451 452 pmd_install(mm, pmd, &new); 453 if (new) 454 pte_free(mm, new); 455 return 0; 456 } 457 458 int __pte_alloc_kernel(pmd_t *pmd) 459 { 460 pte_t *new = pte_alloc_one_kernel(&ini 461 if (!new) 462 return -ENOMEM; 463 464 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has 466 smp_wmb(); /* See comment in p 467 pmd_populate_kernel(&init_mm, 468 new = NULL; 469 } 470 spin_unlock(&init_mm.page_table_lock); 471 if (new) 472 pte_free_kernel(&init_mm, new) 473 return 0; 474 } 475 476 static inline void init_rss_vec(int *rss) 477 { 478 memset(rss, 0, sizeof(int) * NR_MM_COU 479 } 480 481 static inline void add_mm_rss_vec(struct mm_st 482 { 483 int i; 484 485 for (i = 0; i < NR_MM_COUNTERS; i++) 486 if (rss[i]) 487 add_mm_counter(mm, i, 488 } 489 490 /* 491 * This function is called to print an error w 492 * is found. For example, we might have a PFN- 493 * a region that doesn't allow it. 494 * 495 * The calling function must still handle the 496 */ 497 static void print_bad_pte(struct vm_area_struc 498 pte_t pte, struct pa 499 { 500 pgd_t *pgd = pgd_offset(vma->vm_mm, ad 501 p4d_t *p4d = p4d_offset(pgd, addr); 502 pud_t *pud = pud_offset(p4d, addr); 503 pmd_t *pmd = pmd_offset(pud, addr); 504 struct address_space *mapping; 505 pgoff_t index; 506 static unsigned long resume; 507 static unsigned long nr_shown; 508 static unsigned long nr_unshown; 509 510 /* 511 * Allow a burst of 60 reports, then k 512 * or allow a steady drip of one repor 513 */ 514 if (nr_shown == 60) { 515 if (time_before(jiffies, resum 516 nr_unshown++; 517 return; 518 } 519 if (nr_unshown) { 520 pr_alert("BUG: Bad pag 521 nr_unshown); 522 nr_unshown = 0; 523 } 524 nr_shown = 0; 525 } 526 if (nr_shown++ == 0) 527 resume = jiffies + 60 * HZ; 528 529 mapping = vma->vm_file ? vma->vm_file- 530 index = linear_page_index(vma, addr); 531 532 pr_alert("BUG: Bad page map in process 533 current->comm, 534 (long long)pte_val(pte), (lon 535 if (page) 536 dump_page(page, "bad pte"); 537 pr_alert("addr:%px vm_flags:%08lx anon 538 (void *)addr, vma->vm_flags, 539 pr_alert("file:%pD fault:%ps mmap:%ps 540 vma->vm_file, 541 vma->vm_ops ? vma->vm_ops->fa 542 vma->vm_file ? vma->vm_file-> 543 mapping ? mapping->a_ops->rea 544 dump_stack(); 545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_ 546 } 547 548 /* 549 * vm_normal_page -- This function gets the "s 550 * 551 * "Special" mappings do not wish to be associ 552 * it doesn't exist, or it exists but they don 553 * case, NULL is returned here. "Normal" mappi 554 * 555 * There are 2 broad cases. Firstly, an archit 556 * pte bit, in which case this function is tri 557 * may not have a spare pte bit, which require 558 * described below. 559 * 560 * A raw VM_PFNMAP mapping (ie. one that is no 561 * special mapping (even if there are underlyi 562 * COWed pages of a VM_PFNMAP are always norma 563 * 564 * The way we recognize COWed pages within VM_ 565 * rules set up by "remap_pfn_range()": the vm 566 * set, and the vm_pgoff will point to the fir 567 * mapping will always honor the rule 568 * 569 * pfn_of_page == vma->vm_pgoff + ((addr 570 * 571 * And for normal mappings this is false. 572 * 573 * This restricts such mappings to be a linear 574 * to pfn. To get around this restriction, we 575 * as the vma is not a COW mapping; in that ca 576 * special (because none can have been COWed). 577 * 578 * 579 * In order to support COW of arbitrary specia 580 * 581 * VM_MIXEDMAP mappings can likewise contain m 582 * page" backing, however the difference is th 583 * page (that is, those where pfn_valid is tru 584 * normal pages by the VM. The only exception 585 * *never* refcounted. 586 * 587 * The disadvantage is that pages are refcount 588 * simply not an option for some PFNMAP users) 589 * don't have to follow the strict linearity r 590 * order to support COWable mappings. 591 * 592 */ 593 struct page *vm_normal_page(struct vm_area_str 594 pte_t pte) 595 { 596 unsigned long pfn = pte_pfn(pte); 597 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPE 599 if (likely(!pte_special(pte))) 600 goto check_pfn; 601 if (vma->vm_ops && vma->vm_ops 602 return vma->vm_ops->fi 603 if (vma->vm_flags & (VM_PFNMAP 604 return NULL; 605 if (is_zero_pfn(pfn)) 606 return NULL; 607 if (pte_devmap(pte)) 608 /* 609 * NOTE: New users of ZONE_DEV 610 * and will have refcounts inc 611 * when they are inserted into 612 * return here. Legacy ZONE_DE 613 * do not have refcounts. Exam 614 * MEMORY_DEVICE_FS_DAX type i 615 */ 616 return NULL; 617 618 print_bad_pte(vma, addr, pte, 619 return NULL; 620 } 621 622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case f 623 624 if (unlikely(vma->vm_flags & (VM_PFNMA 625 if (vma->vm_flags & VM_MIXEDMA 626 if (!pfn_valid(pfn)) 627 return NULL; 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 goto out; 631 } else { 632 unsigned long off; 633 off = (addr - vma->vm_ 634 if (pfn == vma->vm_pgo 635 return NULL; 636 if (!is_cow_mapping(vm 637 return NULL; 638 } 639 } 640 641 if (is_zero_pfn(pfn)) 642 return NULL; 643 644 check_pfn: 645 if (unlikely(pfn > highest_memmap_pfn) 646 print_bad_pte(vma, addr, pte, 647 return NULL; 648 } 649 650 /* 651 * NOTE! We still have PageReserved() 652 * eg. VDSO mappings can cause them to 653 */ 654 out: 655 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 656 return pfn_to_page(pfn); 657 } 658 659 struct folio *vm_normal_folio(struct vm_area_s 660 pte_t pte) 661 { 662 struct page *page = vm_normal_page(vma 663 664 if (page) 665 return page_folio(page); 666 return NULL; 667 } 668 669 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 670 struct page *vm_normal_page_pmd(struct vm_area 671 pmd_t pmd) 672 { 673 unsigned long pfn = pmd_pfn(pmd); 674 675 /* Currently it's only used for huge p 676 if (unlikely(pmd_special(pmd))) 677 return NULL; 678 679 if (unlikely(vma->vm_flags & (VM_PFNMA 680 if (vma->vm_flags & VM_MIXEDMA 681 if (!pfn_valid(pfn)) 682 return NULL; 683 goto out; 684 } else { 685 unsigned long off; 686 off = (addr - vma->vm_ 687 if (pfn == vma->vm_pgo 688 return NULL; 689 if (!is_cow_mapping(vm 690 return NULL; 691 } 692 } 693 694 if (pmd_devmap(pmd)) 695 return NULL; 696 if (is_huge_zero_pmd(pmd)) 697 return NULL; 698 if (unlikely(pfn > highest_memmap_pfn) 699 return NULL; 700 701 /* 702 * NOTE! We still have PageReserved() 703 * eg. VDSO mappings can cause them to 704 */ 705 out: 706 return pfn_to_page(pfn); 707 } 708 709 struct folio *vm_normal_folio_pmd(struct vm_ar 710 unsigned lon 711 { 712 struct page *page = vm_normal_page_pmd 713 714 if (page) 715 return page_folio(page); 716 return NULL; 717 } 718 #endif 719 720 static void restore_exclusive_pte(struct vm_ar 721 struct page 722 pte_t *ptep) 723 { 724 struct folio *folio = page_folio(page) 725 pte_t orig_pte; 726 pte_t pte; 727 swp_entry_t entry; 728 729 orig_pte = ptep_get(ptep); 730 pte = pte_mkold(mk_pte(page, READ_ONCE 731 if (pte_swp_soft_dirty(orig_pte)) 732 pte = pte_mksoft_dirty(pte); 733 734 entry = pte_to_swp_entry(orig_pte); 735 if (pte_swp_uffd_wp(orig_pte)) 736 pte = pte_mkuffd_wp(pte); 737 else if (is_writable_device_exclusive_ 738 pte = maybe_mkwrite(pte_mkdirt 739 740 VM_BUG_ON_FOLIO(pte_write(pte) && (!fo 741 Pag 742 743 /* 744 * No need to take a page reference as 745 * created when the swap entry was mad 746 */ 747 if (folio_test_anon(folio)) 748 folio_add_anon_rmap_pte(folio, 749 else 750 /* 751 * Currently device exclusive 752 * memory so the entry shouldn 753 */ 754 WARN_ON_ONCE(1); 755 756 set_pte_at(vma->vm_mm, address, ptep, 757 758 /* 759 * No need to invalidate - it was non- 760 * secondary CPUs may have mappings th 761 */ 762 update_mmu_cache(vma, address, ptep); 763 } 764 765 /* 766 * Tries to restore an exclusive pte if the pa 767 * sleeping. 768 */ 769 static int 770 try_restore_exclusive_pte(pte_t *src_pte, stru 771 unsigned long addr) 772 { 773 swp_entry_t entry = pte_to_swp_entry(p 774 struct page *page = pfn_swap_entry_to_ 775 776 if (trylock_page(page)) { 777 restore_exclusive_pte(vma, pag 778 unlock_page(page); 779 return 0; 780 } 781 782 return -EBUSY; 783 } 784 785 /* 786 * copy one vm_area from one task to the other 787 * already present in the new task to be clear 788 * covered by this vma. 789 */ 790 791 static unsigned long 792 copy_nonpresent_pte(struct mm_struct *dst_mm, 793 pte_t *dst_pte, pte_t *src_pte 794 struct vm_area_struct *src_vma 795 { 796 unsigned long vm_flags = dst_vma->vm_f 797 pte_t orig_pte = ptep_get(src_pte); 798 pte_t pte = orig_pte; 799 struct folio *folio; 800 struct page *page; 801 swp_entry_t entry = pte_to_swp_entry(o 802 803 if (likely(!non_swap_entry(entry))) { 804 if (swap_duplicate(entry) < 0) 805 return -EIO; 806 807 /* make sure dst_mm is on swap 808 if (unlikely(list_empty(&dst_m 809 spin_lock(&mmlist_lock 810 if (list_empty(&dst_mm 811 list_add(&dst_ 812 813 spin_unlock(&mmlist_lo 814 } 815 /* Mark the swap entry as shar 816 if (pte_swp_exclusive(orig_pte 817 pte = pte_swp_clear_ex 818 set_pte_at(src_mm, add 819 } 820 rss[MM_SWAPENTS]++; 821 } else if (is_migration_entry(entry)) 822 folio = pfn_swap_entry_folio(e 823 824 rss[mm_counter(folio)]++; 825 826 if (!is_readable_migration_ent 827 is_cow_mapping 828 /* 829 * COW mappings requir 830 * to be set to read. 831 * now shared. 832 */ 833 entry = make_readable_ 834 835 pte = swp_entry_to_pte 836 if (pte_swp_soft_dirty 837 pte = pte_swp_ 838 if (pte_swp_uffd_wp(or 839 pte = pte_swp_ 840 set_pte_at(src_mm, add 841 } 842 } else if (is_device_private_entry(ent 843 page = pfn_swap_entry_to_page( 844 folio = page_folio(page); 845 846 /* 847 * Update rss count even for u 848 * they should treated just li 849 * respect. 850 * 851 * We will likely want to have 852 * for unaddressable pages, at 853 * keep things as they are. 854 */ 855 folio_get(folio); 856 rss[mm_counter(folio)]++; 857 /* Cannot fail as these pages 858 folio_try_dup_anon_rmap_pte(fo 859 860 /* 861 * We do not preserve soft-dir 862 * far, checkpoint/restore is 863 * requires that. And checkpoi 864 * when a device driver is inv 865 * save and restore device dri 866 */ 867 if (is_writable_device_private 868 is_cow_mapping(vm_flags)) 869 entry = make_readable_ 870 871 pte = swp_entry_to_pte 872 if (pte_swp_uffd_wp(or 873 pte = pte_swp_ 874 set_pte_at(src_mm, add 875 } 876 } else if (is_device_exclusive_entry(e 877 /* 878 * Make device exclusive entri 879 * original entry then copying 880 * exclusive entries currently 881 * (ie. COW) mappings. 882 */ 883 VM_BUG_ON(!is_cow_mapping(src_ 884 if (try_restore_exclusive_pte( 885 return -EBUSY; 886 return -ENOENT; 887 } else if (is_pte_marker_entry(entry)) 888 pte_marker marker = copy_pte_m 889 890 if (marker) 891 set_pte_at(dst_mm, add 892 make_pte_ma 893 return 0; 894 } 895 if (!userfaultfd_wp(dst_vma)) 896 pte = pte_swp_clear_uffd_wp(pt 897 set_pte_at(dst_mm, addr, dst_pte, pte) 898 return 0; 899 } 900 901 /* 902 * Copy a present and normal page. 903 * 904 * NOTE! The usual case is that this isn't req 905 * instead, the caller can just increase the p 906 * and re-use the pte the traditional way. 907 * 908 * And if we need a pre-allocated page but don 909 * one, return a negative error to let the pre 910 * code know so that it can do so outside the 911 * lock. 912 */ 913 static inline int 914 copy_present_page(struct vm_area_struct *dst_v 915 pte_t *dst_pte, pte_t *src_p 916 struct folio **prealloc, str 917 { 918 struct folio *new_folio; 919 pte_t pte; 920 921 new_folio = *prealloc; 922 if (!new_folio) 923 return -EAGAIN; 924 925 /* 926 * We have a prealloc page, all good! 927 * over and copy the page & arm it. 928 */ 929 930 if (copy_mc_user_highpage(&new_folio-> 931 return -EHWPOISON; 932 933 *prealloc = NULL; 934 __folio_mark_uptodate(new_folio); 935 folio_add_new_anon_rmap(new_folio, dst 936 folio_add_lru_vma(new_folio, dst_vma); 937 rss[MM_ANONPAGES]++; 938 939 /* All done, just insert the new page 940 pte = mk_pte(&new_folio->page, dst_vma 941 pte = maybe_mkwrite(pte_mkdirty(pte), 942 if (userfaultfd_pte_wp(dst_vma, ptep_g 943 /* Uffd-wp needs to be deliver 944 pte = pte_mkuffd_wp(pte); 945 set_pte_at(dst_vma->vm_mm, addr, dst_p 946 return 0; 947 } 948 949 static __always_inline void __copy_present_pte 950 struct vm_area_struct *src_vma 951 pte_t pte, unsigned long addr, 952 { 953 struct mm_struct *src_mm = src_vma->vm 954 955 /* If it's a COW mapping, write protec 956 if (is_cow_mapping(src_vma->vm_flags) 957 wrprotect_ptes(src_mm, addr, s 958 pte = pte_wrprotect(pte); 959 } 960 961 /* If it's a shared mapping, mark it c 962 if (src_vma->vm_flags & VM_SHARED) 963 pte = pte_mkclean(pte); 964 pte = pte_mkold(pte); 965 966 if (!userfaultfd_wp(dst_vma)) 967 pte = pte_clear_uffd_wp(pte); 968 969 set_ptes(dst_vma->vm_mm, addr, dst_pte 970 } 971 972 /* 973 * Copy one present PTE, trying to batch-proce 974 * consecutive pages of the same folio by copy 975 * 976 * Returns -EAGAIN if one preallocated page is 977 * Otherwise, returns the number of copied PTE 978 */ 979 static inline int 980 copy_present_ptes(struct vm_area_struct *dst_v 981 pte_t *dst_pte, pte_t *src_pt 982 int max_nr, int *rss, struct 983 { 984 struct page *page; 985 struct folio *folio; 986 bool any_writable; 987 fpb_t flags = 0; 988 int err, nr; 989 990 page = vm_normal_page(src_vma, addr, p 991 if (unlikely(!page)) 992 goto copy_pte; 993 994 folio = page_folio(page); 995 996 /* 997 * If we likely have to copy, just don 998 * sure that the common "small folio" 999 * by keeping the batching logic separ 1000 */ 1001 if (unlikely(!*prealloc && folio_test 1002 if (src_vma->vm_flags & VM_SH 1003 flags |= FPB_IGNORE_D 1004 if (!vma_soft_dirty_enabled(s 1005 flags |= FPB_IGNORE_S 1006 1007 nr = folio_pte_batch(folio, a 1008 &any_wri 1009 folio_ref_add(folio, nr); 1010 if (folio_test_anon(folio)) { 1011 if (unlikely(folio_tr 1012 1013 folio_ref_sub 1014 return -EAGAI 1015 } 1016 rss[MM_ANONPAGES] += 1017 VM_WARN_ON_FOLIO(Page 1018 } else { 1019 folio_dup_file_rmap_p 1020 rss[mm_counter_file(f 1021 } 1022 if (any_writable) 1023 pte = pte_mkwrite(pte 1024 __copy_present_ptes(dst_vma, 1025 addr, nr) 1026 return nr; 1027 } 1028 1029 folio_get(folio); 1030 if (folio_test_anon(folio)) { 1031 /* 1032 * If this page may have been 1033 * copy the page immediately 1034 * guarantee the pinned page 1035 * future. 1036 */ 1037 if (unlikely(folio_try_dup_an 1038 /* Page may be pinned 1039 folio_put(folio); 1040 err = copy_present_pa 1041 1042 return err ? err : 1; 1043 } 1044 rss[MM_ANONPAGES]++; 1045 VM_WARN_ON_FOLIO(PageAnonExcl 1046 } else { 1047 folio_dup_file_rmap_pte(folio 1048 rss[mm_counter_file(folio)]++ 1049 } 1050 1051 copy_pte: 1052 __copy_present_ptes(dst_vma, src_vma, 1053 return 1; 1054 } 1055 1056 static inline struct folio *folio_prealloc(st 1057 struct vm_area_struct *vma, u 1058 { 1059 struct folio *new_folio; 1060 1061 if (need_zero) 1062 new_folio = vma_alloc_zeroed_ 1063 else 1064 new_folio = vma_alloc_folio(G 1065 a 1066 1067 if (!new_folio) 1068 return NULL; 1069 1070 if (mem_cgroup_charge(new_folio, src_ 1071 folio_put(new_folio); 1072 return NULL; 1073 } 1074 folio_throttle_swaprate(new_folio, GF 1075 1076 return new_folio; 1077 } 1078 1079 static int 1080 copy_pte_range(struct vm_area_struct *dst_vma 1081 pmd_t *dst_pmd, pmd_t *src_pmd 1082 unsigned long end) 1083 { 1084 struct mm_struct *dst_mm = dst_vma->v 1085 struct mm_struct *src_mm = src_vma->v 1086 pte_t *orig_src_pte, *orig_dst_pte; 1087 pte_t *src_pte, *dst_pte; 1088 pte_t ptent; 1089 spinlock_t *src_ptl, *dst_ptl; 1090 int progress, max_nr, ret = 0; 1091 int rss[NR_MM_COUNTERS]; 1092 swp_entry_t entry = (swp_entry_t){0}; 1093 struct folio *prealloc = NULL; 1094 int nr; 1095 1096 again: 1097 progress = 0; 1098 init_rss_vec(rss); 1099 1100 /* 1101 * copy_pmd_range()'s prior pmd_none_ 1102 * error handling here, assume that e 1103 * protects anon from unexpected THP 1104 * protected by mmap_lock-less collap 1105 * (whereas vma_needs_copy() skips ar 1106 * can remove such assumptions later, 1107 */ 1108 dst_pte = pte_alloc_map_lock(dst_mm, 1109 if (!dst_pte) { 1110 ret = -ENOMEM; 1111 goto out; 1112 } 1113 src_pte = pte_offset_map_nolock(src_m 1114 if (!src_pte) { 1115 pte_unmap_unlock(dst_pte, dst 1116 /* ret == 0 */ 1117 goto out; 1118 } 1119 spin_lock_nested(src_ptl, SINGLE_DEPT 1120 orig_src_pte = src_pte; 1121 orig_dst_pte = dst_pte; 1122 arch_enter_lazy_mmu_mode(); 1123 1124 do { 1125 nr = 1; 1126 1127 /* 1128 * We are holding two locks a 1129 * could generate latencies i 1130 */ 1131 if (progress >= 32) { 1132 progress = 0; 1133 if (need_resched() || 1134 spin_needbreak(sr 1135 break; 1136 } 1137 ptent = ptep_get(src_pte); 1138 if (pte_none(ptent)) { 1139 progress++; 1140 continue; 1141 } 1142 if (unlikely(!pte_present(pte 1143 ret = copy_nonpresent 1144 1145 1146 1147 if (ret == -EIO) { 1148 entry = pte_t 1149 break; 1150 } else if (ret == -EB 1151 break; 1152 } else if (!ret) { 1153 progress += 8 1154 continue; 1155 } 1156 ptent = ptep_get(src_ 1157 VM_WARN_ON_ONCE(!pte_ 1158 1159 /* 1160 * Device exclusive e 1161 * the now present pt 1162 */ 1163 WARN_ON_ONCE(ret != - 1164 } 1165 /* copy_present_ptes() will c 1166 max_nr = (end - addr) / PAGE_ 1167 ret = copy_present_ptes(dst_v 1168 ptent 1169 /* 1170 * If we need a pre-allocated 1171 * locks, allocate, and try a 1172 * If copy failed due to hwpo 1173 */ 1174 if (unlikely(ret == -EAGAIN | 1175 break; 1176 if (unlikely(prealloc)) { 1177 /* 1178 * pre-alloc page can 1179 * to strictly follow 1180 * will allocate page 1181 * could only happen 1182 */ 1183 folio_put(prealloc); 1184 prealloc = NULL; 1185 } 1186 nr = ret; 1187 progress += 8 * nr; 1188 } while (dst_pte += nr, src_pte += nr 1189 addr != end); 1190 1191 arch_leave_lazy_mmu_mode(); 1192 pte_unmap_unlock(orig_src_pte, src_pt 1193 add_mm_rss_vec(dst_mm, rss); 1194 pte_unmap_unlock(orig_dst_pte, dst_pt 1195 cond_resched(); 1196 1197 if (ret == -EIO) { 1198 VM_WARN_ON_ONCE(!entry.val); 1199 if (add_swap_count_continuati 1200 ret = -ENOMEM; 1201 goto out; 1202 } 1203 entry.val = 0; 1204 } else if (ret == -EBUSY || unlikely( 1205 goto out; 1206 } else if (ret == -EAGAIN) { 1207 prealloc = folio_prealloc(src 1208 if (!prealloc) 1209 return -ENOMEM; 1210 } else if (ret < 0) { 1211 VM_WARN_ON_ONCE(1); 1212 } 1213 1214 /* We've captured and resolved the er 1215 ret = 0; 1216 1217 if (addr != end) 1218 goto again; 1219 out: 1220 if (unlikely(prealloc)) 1221 folio_put(prealloc); 1222 return ret; 1223 } 1224 1225 static inline int 1226 copy_pmd_range(struct vm_area_struct *dst_vma 1227 pud_t *dst_pud, pud_t *src_pud 1228 unsigned long end) 1229 { 1230 struct mm_struct *dst_mm = dst_vma->v 1231 struct mm_struct *src_mm = src_vma->v 1232 pmd_t *src_pmd, *dst_pmd; 1233 unsigned long next; 1234 1235 dst_pmd = pmd_alloc(dst_mm, dst_pud, 1236 if (!dst_pmd) 1237 return -ENOMEM; 1238 src_pmd = pmd_offset(src_pud, addr); 1239 do { 1240 next = pmd_addr_end(addr, end 1241 if (is_swap_pmd(*src_pmd) || 1242 || pmd_devmap(*src_pm 1243 int err; 1244 VM_BUG_ON_VMA(next-ad 1245 err = copy_huge_pmd(d 1246 a 1247 if (err == -ENOMEM) 1248 return -ENOME 1249 if (!err) 1250 continue; 1251 /* fall through */ 1252 } 1253 if (pmd_none_or_clear_bad(src 1254 continue; 1255 if (copy_pte_range(dst_vma, s 1256 addr, next 1257 return -ENOMEM; 1258 } while (dst_pmd++, src_pmd++, addr = 1259 return 0; 1260 } 1261 1262 static inline int 1263 copy_pud_range(struct vm_area_struct *dst_vma 1264 p4d_t *dst_p4d, p4d_t *src_p4d 1265 unsigned long end) 1266 { 1267 struct mm_struct *dst_mm = dst_vma->v 1268 struct mm_struct *src_mm = src_vma->v 1269 pud_t *src_pud, *dst_pud; 1270 unsigned long next; 1271 1272 dst_pud = pud_alloc(dst_mm, dst_p4d, 1273 if (!dst_pud) 1274 return -ENOMEM; 1275 src_pud = pud_offset(src_p4d, addr); 1276 do { 1277 next = pud_addr_end(addr, end 1278 if (pud_trans_huge(*src_pud) 1279 int err; 1280 1281 VM_BUG_ON_VMA(next-ad 1282 err = copy_huge_pud(d 1283 d 1284 if (err == -ENOMEM) 1285 return -ENOME 1286 if (!err) 1287 continue; 1288 /* fall through */ 1289 } 1290 if (pud_none_or_clear_bad(src 1291 continue; 1292 if (copy_pmd_range(dst_vma, s 1293 addr, next 1294 return -ENOMEM; 1295 } while (dst_pud++, src_pud++, addr = 1296 return 0; 1297 } 1298 1299 static inline int 1300 copy_p4d_range(struct vm_area_struct *dst_vma 1301 pgd_t *dst_pgd, pgd_t *src_pgd 1302 unsigned long end) 1303 { 1304 struct mm_struct *dst_mm = dst_vma->v 1305 p4d_t *src_p4d, *dst_p4d; 1306 unsigned long next; 1307 1308 dst_p4d = p4d_alloc(dst_mm, dst_pgd, 1309 if (!dst_p4d) 1310 return -ENOMEM; 1311 src_p4d = p4d_offset(src_pgd, addr); 1312 do { 1313 next = p4d_addr_end(addr, end 1314 if (p4d_none_or_clear_bad(src 1315 continue; 1316 if (copy_pud_range(dst_vma, s 1317 addr, next 1318 return -ENOMEM; 1319 } while (dst_p4d++, src_p4d++, addr = 1320 return 0; 1321 } 1322 1323 /* 1324 * Return true if the vma needs to copy the p 1325 * false when we can speed up fork() by allow 1326 * when the child accesses the memory range. 1327 */ 1328 static bool 1329 vma_needs_copy(struct vm_area_struct *dst_vma 1330 { 1331 /* 1332 * Always copy pgtables when dst_vma 1333 * file-backed (e.g. shmem). Because 1334 * contains uffd-wp protection inform 1335 * retrieve from page cache, and skip 1336 */ 1337 if (userfaultfd_wp(dst_vma)) 1338 return true; 1339 1340 if (src_vma->vm_flags & (VM_PFNMAP | 1341 return true; 1342 1343 if (src_vma->anon_vma) 1344 return true; 1345 1346 /* 1347 * Don't copy ptes where a page fault 1348 * becomes much lighter when there ar 1349 * mappings. The tradeoff is that cop 1350 * than faulting. 1351 */ 1352 return false; 1353 } 1354 1355 int 1356 copy_page_range(struct vm_area_struct *dst_vm 1357 { 1358 pgd_t *src_pgd, *dst_pgd; 1359 unsigned long next; 1360 unsigned long addr = src_vma->vm_star 1361 unsigned long end = src_vma->vm_end; 1362 struct mm_struct *dst_mm = dst_vma->v 1363 struct mm_struct *src_mm = src_vma->v 1364 struct mmu_notifier_range range; 1365 bool is_cow; 1366 int ret; 1367 1368 if (!vma_needs_copy(dst_vma, src_vma) 1369 return 0; 1370 1371 if (is_vm_hugetlb_page(src_vma)) 1372 return copy_hugetlb_page_rang 1373 1374 if (unlikely(src_vma->vm_flags & VM_P 1375 /* 1376 * We do not free on error ca 1377 * gets called on error from 1378 */ 1379 ret = track_pfn_copy(src_vma) 1380 if (ret) 1381 return ret; 1382 } 1383 1384 /* 1385 * We need to invalidate the secondar 1386 * there could be a permission downgr 1387 * parent mm. And a permission downgr 1388 * is_cow_mapping() returns true. 1389 */ 1390 is_cow = is_cow_mapping(src_vma->vm_f 1391 1392 if (is_cow) { 1393 mmu_notifier_range_init(&rang 1394 0, sr 1395 mmu_notifier_invalidate_range 1396 /* 1397 * Disabling preemption is no 1398 * the read side doesn't spin 1399 * 1400 * Use the raw variant of the 1401 * lockdep complaining about 1402 */ 1403 vma_assert_write_locked(src_v 1404 raw_write_seqcount_begin(&src 1405 } 1406 1407 ret = 0; 1408 dst_pgd = pgd_offset(dst_mm, addr); 1409 src_pgd = pgd_offset(src_mm, addr); 1410 do { 1411 next = pgd_addr_end(addr, end 1412 if (pgd_none_or_clear_bad(src 1413 continue; 1414 if (unlikely(copy_p4d_range(d 1415 a 1416 untrack_pfn_clear(dst 1417 ret = -ENOMEM; 1418 break; 1419 } 1420 } while (dst_pgd++, src_pgd++, addr = 1421 1422 if (is_cow) { 1423 raw_write_seqcount_end(&src_m 1424 mmu_notifier_invalidate_range 1425 } 1426 return ret; 1427 } 1428 1429 /* Whether we should zap all COWed (private) 1430 static inline bool should_zap_cows(struct zap 1431 { 1432 /* By default, zap all pages */ 1433 if (!details) 1434 return true; 1435 1436 /* Or, we zap COWed pages only if the 1437 return details->even_cows; 1438 } 1439 1440 /* Decides whether we should zap this folio w 1441 static inline bool should_zap_folio(struct za 1442 struct fo 1443 { 1444 /* If we can make a decision without 1445 if (should_zap_cows(details)) 1446 return true; 1447 1448 /* Otherwise we should only zap non-a 1449 return !folio_test_anon(folio); 1450 } 1451 1452 static inline bool zap_drop_file_uffd_wp(stru 1453 { 1454 if (!details) 1455 return false; 1456 1457 return details->zap_flags & ZAP_FLAG_ 1458 } 1459 1460 /* 1461 * This function makes sure that we'll replac 1462 * swap special pte marker when necessary. Mu 1463 */ 1464 static inline void 1465 zap_install_uffd_wp_if_needed(struct vm_area_ 1466 unsigned long a 1467 struct zap_deta 1468 { 1469 /* Zap on anonymous always means drop 1470 if (vma_is_anonymous(vma)) 1471 return; 1472 1473 if (zap_drop_file_uffd_wp(details)) 1474 return; 1475 1476 for (;;) { 1477 /* the PFN in the PTE is irre 1478 pte_install_uffd_wp_if_needed 1479 if (--nr == 0) 1480 break; 1481 pte++; 1482 addr += PAGE_SIZE; 1483 } 1484 } 1485 1486 static __always_inline void zap_present_folio 1487 struct vm_area_struct *vma, s 1488 struct page *page, pte_t *pte 1489 unsigned long addr, struct za 1490 bool *force_flush, bool *forc 1491 { 1492 struct mm_struct *mm = tlb->mm; 1493 bool delay_rmap = false; 1494 1495 if (!folio_test_anon(folio)) { 1496 ptent = get_and_clear_full_pt 1497 if (pte_dirty(ptent)) { 1498 folio_mark_dirty(foli 1499 if (tlb_delay_rmap(tl 1500 delay_rmap = 1501 *force_flush 1502 } 1503 } 1504 if (pte_young(ptent) && likel 1505 folio_mark_accessed(f 1506 rss[mm_counter(folio)] -= nr; 1507 } else { 1508 /* We don't need up-to-date a 1509 clear_full_ptes(mm, addr, pte 1510 rss[MM_ANONPAGES] -= nr; 1511 } 1512 /* Checking a single PTE in a batch i 1513 arch_check_zapped_pte(vma, ptent); 1514 tlb_remove_tlb_entries(tlb, pte, nr, 1515 if (unlikely(userfaultfd_pte_wp(vma, 1516 zap_install_uffd_wp_if_needed 1517 1518 1519 if (!delay_rmap) { 1520 folio_remove_rmap_ptes(folio, 1521 1522 if (unlikely(folio_mapcount(f 1523 print_bad_pte(vma, ad 1524 } 1525 if (unlikely(__tlb_remove_folio_pages 1526 *force_flush = true; 1527 *force_break = true; 1528 } 1529 } 1530 1531 /* 1532 * Zap or skip at least one present PTE, tryi 1533 * PTEs that map consecutive pages of the sam 1534 * 1535 * Returns the number of processed (skipped o 1536 */ 1537 static inline int zap_present_ptes(struct mmu 1538 struct vm_area_struct *vma, p 1539 unsigned int max_nr, unsigned 1540 struct zap_details *details, 1541 bool *force_break) 1542 { 1543 const fpb_t fpb_flags = FPB_IGNORE_DI 1544 struct mm_struct *mm = tlb->mm; 1545 struct folio *folio; 1546 struct page *page; 1547 int nr; 1548 1549 page = vm_normal_page(vma, addr, pten 1550 if (!page) { 1551 /* We don't need up-to-date a 1552 ptep_get_and_clear_full(mm, a 1553 arch_check_zapped_pte(vma, pt 1554 tlb_remove_tlb_entry(tlb, pte 1555 if (userfaultfd_pte_wp(vma, p 1556 zap_install_uffd_wp_i 1557 1558 ksm_might_unmap_zero_page(mm, 1559 return 1; 1560 } 1561 1562 folio = page_folio(page); 1563 if (unlikely(!should_zap_folio(detail 1564 return 1; 1565 1566 /* 1567 * Make sure that the common "small f 1568 * by keeping the batching logic sepa 1569 */ 1570 if (unlikely(folio_test_large(folio) 1571 nr = folio_pte_batch(folio, a 1572 NULL, NU 1573 1574 zap_present_folio_ptes(tlb, v 1575 addr, 1576 force_ 1577 return nr; 1578 } 1579 zap_present_folio_ptes(tlb, vma, foli 1580 details, rss, 1581 return 1; 1582 } 1583 1584 static unsigned long zap_pte_range(struct mmu 1585 struct vm_are 1586 unsigned long 1587 struct zap_de 1588 { 1589 bool force_flush = false, force_break 1590 struct mm_struct *mm = tlb->mm; 1591 int rss[NR_MM_COUNTERS]; 1592 spinlock_t *ptl; 1593 pte_t *start_pte; 1594 pte_t *pte; 1595 swp_entry_t entry; 1596 int nr; 1597 1598 tlb_change_page_size(tlb, PAGE_SIZE); 1599 init_rss_vec(rss); 1600 start_pte = pte = pte_offset_map_lock 1601 if (!pte) 1602 return addr; 1603 1604 flush_tlb_batched_pending(mm); 1605 arch_enter_lazy_mmu_mode(); 1606 do { 1607 pte_t ptent = ptep_get(pte); 1608 struct folio *folio; 1609 struct page *page; 1610 int max_nr; 1611 1612 nr = 1; 1613 if (pte_none(ptent)) 1614 continue; 1615 1616 if (need_resched()) 1617 break; 1618 1619 if (pte_present(ptent)) { 1620 max_nr = (end - addr) 1621 nr = zap_present_ptes 1622 1623 1624 if (unlikely(force_br 1625 addr += nr * 1626 break; 1627 } 1628 continue; 1629 } 1630 1631 entry = pte_to_swp_entry(pten 1632 if (is_device_private_entry(e 1633 is_device_exclusive_entry 1634 page = pfn_swap_entry 1635 folio = page_folio(pa 1636 if (unlikely(!should_ 1637 continue; 1638 /* 1639 * Both device privat 1640 * work with anonymou 1641 * consider uffd-wp b 1642 * see zap_install_uf 1643 */ 1644 WARN_ON_ONCE(!vma_is_ 1645 rss[mm_counter(folio) 1646 if (is_device_private 1647 folio_remove_ 1648 folio_put(folio); 1649 } else if (!non_swap_entry(en 1650 max_nr = (end - addr) 1651 nr = swap_pte_batch(p 1652 /* Genuine swap entri 1653 if (!should_zap_cows( 1654 continue; 1655 rss[MM_SWAPENTS] -= n 1656 free_swap_and_cache_n 1657 } else if (is_migration_entry 1658 folio = pfn_swap_entr 1659 if (!should_zap_folio 1660 continue; 1661 rss[mm_counter(folio) 1662 } else if (pte_marker_entry_u 1663 /* 1664 * For anon: always d 1665 * drop the marker if 1666 */ 1667 if (!vma_is_anonymous 1668 !zap_drop_file_uf 1669 continue; 1670 } else if (is_hwpoison_entry( 1671 is_poisoned_swp_en 1672 if (!should_zap_cows( 1673 continue; 1674 } else { 1675 /* We should have cov 1676 pr_alert("unrecognize 1677 WARN_ON_ONCE(1); 1678 } 1679 clear_not_present_full_ptes(m 1680 zap_install_uffd_wp_if_needed 1681 } while (pte += nr, addr += PAGE_SIZE 1682 1683 add_mm_rss_vec(mm, rss); 1684 arch_leave_lazy_mmu_mode(); 1685 1686 /* Do the actual TLB flush before dro 1687 if (force_flush) { 1688 tlb_flush_mmu_tlbonly(tlb); 1689 tlb_flush_rmaps(tlb, vma); 1690 } 1691 pte_unmap_unlock(start_pte, ptl); 1692 1693 /* 1694 * If we forced a TLB flush (either d 1695 * batch buffers or because we needed 1696 * entries before releasing the ptl), 1697 * memory too. Come back again if we 1698 */ 1699 if (force_flush) 1700 tlb_flush_mmu(tlb); 1701 1702 return addr; 1703 } 1704 1705 static inline unsigned long zap_pmd_range(str 1706 struct vm_are 1707 unsigned long 1708 struct zap_de 1709 { 1710 pmd_t *pmd; 1711 unsigned long next; 1712 1713 pmd = pmd_offset(pud, addr); 1714 do { 1715 next = pmd_addr_end(addr, end 1716 if (is_swap_pmd(*pmd) || pmd_ 1717 if (next - addr != HP 1718 __split_huge_ 1719 else if (zap_huge_pmd 1720 addr = next; 1721 continue; 1722 } 1723 /* fall through */ 1724 } else if (details && details 1725 folio_test_pmd_map 1726 next - addr == HPA 1727 spinlock_t *ptl = pmd 1728 /* 1729 * Take and drop THP 1730 * prematurely, while 1731 * but not yet decrem 1732 */ 1733 spin_unlock(ptl); 1734 } 1735 if (pmd_none(*pmd)) { 1736 addr = next; 1737 continue; 1738 } 1739 addr = zap_pte_range(tlb, vma 1740 if (addr != next) 1741 pmd--; 1742 } while (pmd++, cond_resched(), addr 1743 1744 return addr; 1745 } 1746 1747 static inline unsigned long zap_pud_range(str 1748 struct vm_are 1749 unsigned long 1750 struct zap_de 1751 { 1752 pud_t *pud; 1753 unsigned long next; 1754 1755 pud = pud_offset(p4d, addr); 1756 do { 1757 next = pud_addr_end(addr, end 1758 if (pud_trans_huge(*pud) || p 1759 if (next - addr != HP 1760 mmap_assert_l 1761 split_huge_pu 1762 } else if (zap_huge_p 1763 goto next; 1764 /* fall through */ 1765 } 1766 if (pud_none_or_clear_bad(pud 1767 continue; 1768 next = zap_pmd_range(tlb, vma 1769 next: 1770 cond_resched(); 1771 } while (pud++, addr = next, addr != 1772 1773 return addr; 1774 } 1775 1776 static inline unsigned long zap_p4d_range(str 1777 struct vm_are 1778 unsigned long 1779 struct zap_de 1780 { 1781 p4d_t *p4d; 1782 unsigned long next; 1783 1784 p4d = p4d_offset(pgd, addr); 1785 do { 1786 next = p4d_addr_end(addr, end 1787 if (p4d_none_or_clear_bad(p4d 1788 continue; 1789 next = zap_pud_range(tlb, vma 1790 } while (p4d++, addr = next, addr != 1791 1792 return addr; 1793 } 1794 1795 void unmap_page_range(struct mmu_gather *tlb, 1796 struct vm_area_s 1797 unsigned long ad 1798 struct zap_detai 1799 { 1800 pgd_t *pgd; 1801 unsigned long next; 1802 1803 BUG_ON(addr >= end); 1804 tlb_start_vma(tlb, vma); 1805 pgd = pgd_offset(vma->vm_mm, addr); 1806 do { 1807 next = pgd_addr_end(addr, end 1808 if (pgd_none_or_clear_bad(pgd 1809 continue; 1810 next = zap_p4d_range(tlb, vma 1811 } while (pgd++, addr = next, addr != 1812 tlb_end_vma(tlb, vma); 1813 } 1814 1815 1816 static void unmap_single_vma(struct mmu_gathe 1817 struct vm_area_struct *vma, u 1818 unsigned long end_addr, 1819 struct zap_details *details, 1820 { 1821 unsigned long start = max(vma->vm_sta 1822 unsigned long end; 1823 1824 if (start >= vma->vm_end) 1825 return; 1826 end = min(vma->vm_end, end_addr); 1827 if (end <= vma->vm_start) 1828 return; 1829 1830 if (vma->vm_file) 1831 uprobe_munmap(vma, start, end 1832 1833 if (unlikely(vma->vm_flags & VM_PFNMA 1834 untrack_pfn(vma, 0, 0, mm_wr_ 1835 1836 if (start != end) { 1837 if (unlikely(is_vm_hugetlb_pa 1838 /* 1839 * It is undesirable 1840 * should be non-null 1841 * However, vm_file w 1842 * cleanup path of mm 1843 * hugetlbfs ->mmap m 1844 * mmap_region() null 1845 * before calling thi 1846 * Since no pte has a 1847 * safe to do nothing 1848 */ 1849 if (vma->vm_file) { 1850 zap_flags_t z 1851 details-> 1852 __unmap_hugep 1853 1854 } 1855 } else 1856 unmap_page_range(tlb, 1857 } 1858 } 1859 1860 /** 1861 * unmap_vmas - unmap a range of memory cover 1862 * @tlb: address of the caller's struct mmu_g 1863 * @mas: the maple state 1864 * @vma: the starting vma 1865 * @start_addr: virtual address at which to s 1866 * @end_addr: virtual address at which to end 1867 * @tree_end: The maximum index to check 1868 * @mm_wr_locked: lock flag 1869 * 1870 * Unmap all pages in the vma list. 1871 * 1872 * Only addresses between `start' and `end' w 1873 * 1874 * The VMA list must be sorted in ascending v 1875 * 1876 * unmap_vmas() assumes that the caller will 1877 * range after unmap_vmas() returns. So the 1878 * ensure that any thus-far unmapped pages ar 1879 * drops the lock and schedules. 1880 */ 1881 void unmap_vmas(struct mmu_gather *tlb, struc 1882 struct vm_area_struct *vma, u 1883 unsigned long end_addr, unsig 1884 bool mm_wr_locked) 1885 { 1886 struct mmu_notifier_range range; 1887 struct zap_details details = { 1888 .zap_flags = ZAP_FLAG_DROP_MA 1889 /* Careful - we need to zap p 1890 .even_cows = true, 1891 }; 1892 1893 mmu_notifier_range_init(&range, MMU_N 1894 start_addr, e 1895 mmu_notifier_invalidate_range_start(& 1896 do { 1897 unsigned long start = start_a 1898 unsigned long end = end_addr; 1899 hugetlb_zap_begin(vma, &start 1900 unmap_single_vma(tlb, vma, st 1901 mm_wr_locked 1902 hugetlb_zap_end(vma, &details 1903 vma = mas_find(mas, tree_end 1904 } while (vma && likely(!xa_is_zero(vm 1905 mmu_notifier_invalidate_range_end(&ra 1906 } 1907 1908 /** 1909 * zap_page_range_single - remove user pages 1910 * @vma: vm_area_struct holding the applicabl 1911 * @address: starting address of pages to zap 1912 * @size: number of bytes to zap 1913 * @details: details of shared cache invalida 1914 * 1915 * The range must fit into one VMA. 1916 */ 1917 void zap_page_range_single(struct vm_area_str 1918 unsigned long size, struct za 1919 { 1920 const unsigned long end = address + s 1921 struct mmu_notifier_range range; 1922 struct mmu_gather tlb; 1923 1924 lru_add_drain(); 1925 mmu_notifier_range_init(&range, MMU_N 1926 address, end) 1927 hugetlb_zap_begin(vma, &range.start, 1928 tlb_gather_mmu(&tlb, vma->vm_mm); 1929 update_hiwater_rss(vma->vm_mm); 1930 mmu_notifier_invalidate_range_start(& 1931 /* 1932 * unmap 'address-end' not 'range.sta 1933 * could have been expanded for huget 1934 */ 1935 unmap_single_vma(&tlb, vma, address, 1936 mmu_notifier_invalidate_range_end(&ra 1937 tlb_finish_mmu(&tlb); 1938 hugetlb_zap_end(vma, details); 1939 } 1940 1941 /** 1942 * zap_vma_ptes - remove ptes mapping the vma 1943 * @vma: vm_area_struct holding ptes to be za 1944 * @address: starting address of pages to zap 1945 * @size: number of bytes to zap 1946 * 1947 * This function only unmaps ptes assigned to 1948 * 1949 * The entire address range must be fully con 1950 * 1951 */ 1952 void zap_vma_ptes(struct vm_area_struct *vma, 1953 unsigned long size) 1954 { 1955 if (!range_in_vma(vma, address, addre 1956 !(vma->vm_flags & VM_ 1957 return; 1958 1959 zap_page_range_single(vma, address, s 1960 } 1961 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1962 1963 static pmd_t *walk_to_pmd(struct mm_struct *m 1964 { 1965 pgd_t *pgd; 1966 p4d_t *p4d; 1967 pud_t *pud; 1968 pmd_t *pmd; 1969 1970 pgd = pgd_offset(mm, addr); 1971 p4d = p4d_alloc(mm, pgd, addr); 1972 if (!p4d) 1973 return NULL; 1974 pud = pud_alloc(mm, p4d, addr); 1975 if (!pud) 1976 return NULL; 1977 pmd = pmd_alloc(mm, pud, addr); 1978 if (!pmd) 1979 return NULL; 1980 1981 VM_BUG_ON(pmd_trans_huge(*pmd)); 1982 return pmd; 1983 } 1984 1985 pte_t *__get_locked_pte(struct mm_struct *mm, 1986 spinlock_t **ptl) 1987 { 1988 pmd_t *pmd = walk_to_pmd(mm, addr); 1989 1990 if (!pmd) 1991 return NULL; 1992 return pte_alloc_map_lock(mm, pmd, ad 1993 } 1994 1995 static bool vm_mixed_zeropage_allowed(struct 1996 { 1997 VM_WARN_ON_ONCE(vma->vm_flags & VM_PF 1998 /* 1999 * Whoever wants to forbid the zeropa 2000 * might already have been mapped has 2001 * bail out on any zeropages. Zeropag 2002 * be unshared using FAULT_FLAG_UNSHA 2003 */ 2004 if (mm_forbids_zeropage(vma->vm_mm)) 2005 return false; 2006 /* zeropages in COW mappings are comm 2007 if (is_cow_mapping(vma->vm_flags)) 2008 return true; 2009 /* Mappings that do not allow for wri 2010 if (!(vma->vm_flags & (VM_WRITE | VM_ 2011 return true; 2012 /* 2013 * Why not allow any VMA that has vm_ 2014 * find the shared zeropage and longt 2015 * be problematic as soon as the zero 2016 * page due to vma->vm_ops->pfn_mkwri 2017 * now differ to what GUP looked up. 2018 * FOLL_LONGTERM and VM_IO is incompa 2019 * check_vma_flags). 2020 */ 2021 return vma->vm_ops && vma->vm_ops->pf 2022 (vma_is_fsdax(vma) || vma->vm_ 2023 } 2024 2025 static int validate_page_before_insert(struct 2026 struct 2027 { 2028 struct folio *folio = page_folio(page 2029 2030 if (!folio_ref_count(folio)) 2031 return -EINVAL; 2032 if (unlikely(is_zero_folio(folio))) { 2033 if (!vm_mixed_zeropage_allowe 2034 return -EINVAL; 2035 return 0; 2036 } 2037 if (folio_test_anon(folio) || folio_t 2038 page_has_type(page)) 2039 return -EINVAL; 2040 flush_dcache_folio(folio); 2041 return 0; 2042 } 2043 2044 static int insert_page_into_pte_locked(struct 2045 unsigned long addr, s 2046 { 2047 struct folio *folio = page_folio(page 2048 pte_t pteval; 2049 2050 if (!pte_none(ptep_get(pte))) 2051 return -EBUSY; 2052 /* Ok, finally just insert the thing. 2053 pteval = mk_pte(page, prot); 2054 if (unlikely(is_zero_folio(folio))) { 2055 pteval = pte_mkspecial(pteval 2056 } else { 2057 folio_get(folio); 2058 inc_mm_counter(vma->vm_mm, mm 2059 folio_add_file_rmap_pte(folio 2060 } 2061 set_pte_at(vma->vm_mm, addr, pte, pte 2062 return 0; 2063 } 2064 2065 static int insert_page(struct vm_area_struct 2066 struct page *page, pg 2067 { 2068 int retval; 2069 pte_t *pte; 2070 spinlock_t *ptl; 2071 2072 retval = validate_page_before_insert( 2073 if (retval) 2074 goto out; 2075 retval = -ENOMEM; 2076 pte = get_locked_pte(vma->vm_mm, addr 2077 if (!pte) 2078 goto out; 2079 retval = insert_page_into_pte_locked( 2080 pte_unmap_unlock(pte, ptl); 2081 out: 2082 return retval; 2083 } 2084 2085 static int insert_page_in_batch_locked(struct 2086 unsigned long addr, s 2087 { 2088 int err; 2089 2090 err = validate_page_before_insert(vma 2091 if (err) 2092 return err; 2093 return insert_page_into_pte_locked(vm 2094 } 2095 2096 /* insert_pages() amortizes the cost of spinl 2097 * when inserting pages in a loop. 2098 */ 2099 static int insert_pages(struct vm_area_struct 2100 struct page **pages, 2101 { 2102 pmd_t *pmd = NULL; 2103 pte_t *start_pte, *pte; 2104 spinlock_t *pte_lock; 2105 struct mm_struct *const mm = vma->vm_ 2106 unsigned long curr_page_idx = 0; 2107 unsigned long remaining_pages_total = 2108 unsigned long pages_to_write_in_pmd; 2109 int ret; 2110 more: 2111 ret = -EFAULT; 2112 pmd = walk_to_pmd(mm, addr); 2113 if (!pmd) 2114 goto out; 2115 2116 pages_to_write_in_pmd = min_t(unsigne 2117 remaining_pages_total, PTRS_P 2118 2119 /* Allocate the PTE if necessary; tak 2120 ret = -ENOMEM; 2121 if (pte_alloc(mm, pmd)) 2122 goto out; 2123 2124 while (pages_to_write_in_pmd) { 2125 int pte_idx = 0; 2126 const int batch_size = min_t( 2127 2128 start_pte = pte_offset_map_lo 2129 if (!start_pte) { 2130 ret = -EFAULT; 2131 goto out; 2132 } 2133 for (pte = start_pte; pte_idx 2134 int err = insert_page 2135 addr, pages[c 2136 if (unlikely(err)) { 2137 pte_unmap_unl 2138 ret = err; 2139 remaining_pag 2140 goto out; 2141 } 2142 addr += PAGE_SIZE; 2143 ++curr_page_idx; 2144 } 2145 pte_unmap_unlock(start_pte, p 2146 pages_to_write_in_pmd -= batc 2147 remaining_pages_total -= batc 2148 } 2149 if (remaining_pages_total) 2150 goto more; 2151 ret = 0; 2152 out: 2153 *num = remaining_pages_total; 2154 return ret; 2155 } 2156 2157 /** 2158 * vm_insert_pages - insert multiple pages in 2159 * @vma: user vma to map to 2160 * @addr: target start user address of these 2161 * @pages: source kernel pages 2162 * @num: in: number of pages to map. out: num 2163 * mapped. (0 means all pages were successful 2164 * 2165 * Preferred over vm_insert_page() when inser 2166 * 2167 * In case of error, we may have mapped a sub 2168 * pages. It is the caller's responsibility t 2169 * 2170 * The same restrictions apply as in vm_inser 2171 */ 2172 int vm_insert_pages(struct vm_area_struct *vm 2173 struct page **pages, 2174 { 2175 const unsigned long end_addr = addr + 2176 2177 if (addr < vma->vm_start || end_addr 2178 return -EFAULT; 2179 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2180 BUG_ON(mmap_read_trylock(vma- 2181 BUG_ON(vma->vm_flags & VM_PFN 2182 vm_flags_set(vma, VM_MIXEDMAP 2183 } 2184 /* Defer page refcount checking till 2185 return insert_pages(vma, addr, pages, 2186 } 2187 EXPORT_SYMBOL(vm_insert_pages); 2188 2189 /** 2190 * vm_insert_page - insert single page into u 2191 * @vma: user vma to map to 2192 * @addr: target user address of this page 2193 * @page: source kernel page 2194 * 2195 * This allows drivers to insert individual p 2196 * into a user vma. The zeropage is supported 2197 * see vm_mixed_zeropage_allowed(). 2198 * 2199 * The page has to be a nice clean _individua 2200 * If you allocate a compound page, you need 2201 * such (__GFP_COMP), or manually just split 2202 * (see split_page()). 2203 * 2204 * NOTE! Traditionally this was done with "re 2205 * took an arbitrary page protection paramete 2206 * that. Your vma protection will have to be 2207 * means that if you want a shared writable m 2208 * ask for a shared writable mapping! 2209 * 2210 * The page does not need to be reserved. 2211 * 2212 * Usually this function is called from f_op- 2213 * under mm->mmap_lock write-lock, so it can 2214 * Caller must set VM_MIXEDMAP on vma if it w 2215 * function from other places, for example fr 2216 * 2217 * Return: %0 on success, negative error code 2218 */ 2219 int vm_insert_page(struct vm_area_struct *vma 2220 struct page *page) 2221 { 2222 if (addr < vma->vm_start || addr >= v 2223 return -EFAULT; 2224 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2225 BUG_ON(mmap_read_trylock(vma- 2226 BUG_ON(vma->vm_flags & VM_PFN 2227 vm_flags_set(vma, VM_MIXEDMAP 2228 } 2229 return insert_page(vma, addr, page, v 2230 } 2231 EXPORT_SYMBOL(vm_insert_page); 2232 2233 /* 2234 * __vm_map_pages - maps range of kernel page 2235 * @vma: user vma to map to 2236 * @pages: pointer to array of source kernel 2237 * @num: number of pages in page array 2238 * @offset: user's requested vm_pgoff 2239 * 2240 * This allows drivers to map range of kernel 2241 * The zeropage is supported in some VMAs, se 2242 * vm_mixed_zeropage_allowed(). 2243 * 2244 * Return: 0 on success and error code otherw 2245 */ 2246 static int __vm_map_pages(struct vm_area_stru 2247 unsigned long 2248 { 2249 unsigned long count = vma_pages(vma); 2250 unsigned long uaddr = vma->vm_start; 2251 int ret, i; 2252 2253 /* Fail if the user requested offset 2254 if (offset >= num) 2255 return -ENXIO; 2256 2257 /* Fail if the user requested size ex 2258 if (count > num - offset) 2259 return -ENXIO; 2260 2261 for (i = 0; i < count; i++) { 2262 ret = vm_insert_page(vma, uad 2263 if (ret < 0) 2264 return ret; 2265 uaddr += PAGE_SIZE; 2266 } 2267 2268 return 0; 2269 } 2270 2271 /** 2272 * vm_map_pages - maps range of kernel pages 2273 * @vma: user vma to map to 2274 * @pages: pointer to array of source kernel 2275 * @num: number of pages in page array 2276 * 2277 * Maps an object consisting of @num pages, c 2278 * requested vm_pgoff 2279 * 2280 * If we fail to insert any page into the vma 2281 * immediately leaving any previously inserte 2282 * from the mmap handler may immediately retu 2283 * will destroy the vma, removing any success 2284 * callers should make their own arrangements 2285 * 2286 * Context: Process context. Called by mmap h 2287 * Return: 0 on success and error code otherw 2288 */ 2289 int vm_map_pages(struct vm_area_struct *vma, 2290 unsigned long 2291 { 2292 return __vm_map_pages(vma, pages, num 2293 } 2294 EXPORT_SYMBOL(vm_map_pages); 2295 2296 /** 2297 * vm_map_pages_zero - map range of kernel pa 2298 * @vma: user vma to map to 2299 * @pages: pointer to array of source kernel 2300 * @num: number of pages in page array 2301 * 2302 * Similar to vm_map_pages(), except that it 2303 * to 0. This function is intended for the dr 2304 * vm_pgoff. 2305 * 2306 * Context: Process context. Called by mmap h 2307 * Return: 0 on success and error code otherw 2308 */ 2309 int vm_map_pages_zero(struct vm_area_struct * 2310 unsigned long 2311 { 2312 return __vm_map_pages(vma, pages, num 2313 } 2314 EXPORT_SYMBOL(vm_map_pages_zero); 2315 2316 static vm_fault_t insert_pfn(struct vm_area_s 2317 pfn_t pfn, pgprot_t p 2318 { 2319 struct mm_struct *mm = vma->vm_mm; 2320 pte_t *pte, entry; 2321 spinlock_t *ptl; 2322 2323 pte = get_locked_pte(mm, addr, &ptl); 2324 if (!pte) 2325 return VM_FAULT_OOM; 2326 entry = ptep_get(pte); 2327 if (!pte_none(entry)) { 2328 if (mkwrite) { 2329 /* 2330 * For read faults on 2331 * in may not match t 2332 * mapped PFN is a wr 2333 * case we are creati 2334 * mapping and we exp 2335 * don't match, we ar 2336 * allocation and map 2337 * update. 2338 */ 2339 if (pte_pfn(entry) != 2340 WARN_ON_ONCE( 2341 goto out_unlo 2342 } 2343 entry = pte_mkyoung(e 2344 entry = maybe_mkwrite 2345 if (ptep_set_access_f 2346 update_mmu_ca 2347 } 2348 goto out_unlock; 2349 } 2350 2351 /* Ok, finally just insert the thing. 2352 if (pfn_t_devmap(pfn)) 2353 entry = pte_mkdevmap(pfn_t_pt 2354 else 2355 entry = pte_mkspecial(pfn_t_p 2356 2357 if (mkwrite) { 2358 entry = pte_mkyoung(entry); 2359 entry = maybe_mkwrite(pte_mkd 2360 } 2361 2362 set_pte_at(mm, addr, pte, entry); 2363 update_mmu_cache(vma, addr, pte); /* 2364 2365 out_unlock: 2366 pte_unmap_unlock(pte, ptl); 2367 return VM_FAULT_NOPAGE; 2368 } 2369 2370 /** 2371 * vmf_insert_pfn_prot - insert single pfn in 2372 * @vma: user vma to map to 2373 * @addr: target user address of this page 2374 * @pfn: source kernel pfn 2375 * @pgprot: pgprot flags for the inserted pag 2376 * 2377 * This is exactly like vmf_insert_pfn(), exc 2378 * to override pgprot on a per-page basis. 2379 * 2380 * This only makes sense for IO mappings, and 2381 * COW mappings. In general, using multiple 2382 * vmf_insert_pfn_prot should only be used if 2383 * impractical. 2384 * 2385 * pgprot typically only differs from @vma->v 2386 * caching- and encryption bits different tha 2387 * because the caching- or encryption mode ma 2388 * 2389 * This is ok as long as @vma->vm_page_prot i 2390 * to set caching and encryption bits for tho 2391 * This is ensured by core vm only modifying 2392 * functions that don't touch caching- or enc 2393 * if needed. (See for example mprotect()). 2394 * 2395 * Also when new page-table entries are creat 2396 * fault() callback, and never using the valu 2397 * except for page-table entries that point t 2398 * of COW. 2399 * 2400 * Context: Process context. May allocate us 2401 * Return: vm_fault_t value. 2402 */ 2403 vm_fault_t vmf_insert_pfn_prot(struct vm_area 2404 unsigned long pfn, pg 2405 { 2406 /* 2407 * Technically, architectures with pt 2408 * restrictions (same for remap_pfn_r 2409 * consistency in testing and feature 2410 * try to keep these invariants in pl 2411 */ 2412 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|V 2413 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM 2414 2415 BUG_ON((vma->vm_flags & VM_PFNMAP) && 2416 BUG_ON((vma->vm_flags & VM_MIXEDMAP) 2417 2418 if (addr < vma->vm_start || addr >= v 2419 return VM_FAULT_SIGBUS; 2420 2421 if (!pfn_modify_allowed(pfn, pgprot)) 2422 return VM_FAULT_SIGBUS; 2423 2424 track_pfn_insert(vma, &pgprot, __pfn_ 2425 2426 return insert_pfn(vma, addr, __pfn_to 2427 false); 2428 } 2429 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2430 2431 /** 2432 * vmf_insert_pfn - insert single pfn into us 2433 * @vma: user vma to map to 2434 * @addr: target user address of this page 2435 * @pfn: source kernel pfn 2436 * 2437 * Similar to vm_insert_page, this allows dri 2438 * they've allocated into a user vma. Same co 2439 * 2440 * This function should only be called from a 2441 * in that case the handler should return the 2442 * 2443 * vma cannot be a COW mapping. 2444 * 2445 * As this is called only for pages that do n 2446 * do not need to flush old virtual caches or 2447 * 2448 * Context: Process context. May allocate us 2449 * Return: vm_fault_t value. 2450 */ 2451 vm_fault_t vmf_insert_pfn(struct vm_area_stru 2452 unsigned long pfn) 2453 { 2454 return vmf_insert_pfn_prot(vma, addr, 2455 } 2456 EXPORT_SYMBOL(vmf_insert_pfn); 2457 2458 static bool vm_mixed_ok(struct vm_area_struct 2459 { 2460 if (unlikely(is_zero_pfn(pfn_t_to_pfn 2461 (mkwrite || !vm_mixed_zeropage_al 2462 return false; 2463 /* these checks mirror the abort cond 2464 if (vma->vm_flags & VM_MIXEDMAP) 2465 return true; 2466 if (pfn_t_devmap(pfn)) 2467 return true; 2468 if (pfn_t_special(pfn)) 2469 return true; 2470 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2471 return true; 2472 return false; 2473 } 2474 2475 static vm_fault_t __vm_insert_mixed(struct vm 2476 unsigned long addr, pfn_t pfn 2477 { 2478 pgprot_t pgprot = vma->vm_page_prot; 2479 int err; 2480 2481 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2482 return VM_FAULT_SIGBUS; 2483 2484 if (addr < vma->vm_start || addr >= v 2485 return VM_FAULT_SIGBUS; 2486 2487 track_pfn_insert(vma, &pgprot, pfn); 2488 2489 if (!pfn_modify_allowed(pfn_t_to_pfn( 2490 return VM_FAULT_SIGBUS; 2491 2492 /* 2493 * If we don't have pte special, then 2494 * based VM_MIXEDMAP scheme (see vm_n 2495 * refcount the page if pfn_valid is 2496 * than insert_pfn). If a zero_pfn w 2497 * without pte special, it would ther 2498 */ 2499 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_S 2500 !pfn_t_devmap(pfn) && pfn_t_valid 2501 struct page *page; 2502 2503 /* 2504 * At this point we are commi 2505 * regardless of whether the 2506 * result in pfn_t_has_page() 2507 */ 2508 page = pfn_to_page(pfn_t_to_p 2509 err = insert_page(vma, addr, 2510 } else { 2511 return insert_pfn(vma, addr, 2512 } 2513 2514 if (err == -ENOMEM) 2515 return VM_FAULT_OOM; 2516 if (err < 0 && err != -EBUSY) 2517 return VM_FAULT_SIGBUS; 2518 2519 return VM_FAULT_NOPAGE; 2520 } 2521 2522 vm_fault_t vmf_insert_mixed(struct vm_area_st 2523 pfn_t pfn) 2524 { 2525 return __vm_insert_mixed(vma, addr, p 2526 } 2527 EXPORT_SYMBOL(vmf_insert_mixed); 2528 2529 /* 2530 * If the insertion of PTE failed because so 2531 * different entry in the mean time, we trea 2532 * the same entry was actually inserted. 2533 */ 2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm 2535 unsigned long addr, pfn_t pfn 2536 { 2537 return __vm_insert_mixed(vma, addr, p 2538 } 2539 2540 /* 2541 * maps a range of physical memory into the r 2542 * mappings are removed. any references to no 2543 * in null mappings (currently treated as "co 2544 */ 2545 static int remap_pte_range(struct mm_struct * 2546 unsigned long addr, u 2547 unsigned long pfn, pg 2548 { 2549 pte_t *pte, *mapped_pte; 2550 spinlock_t *ptl; 2551 int err = 0; 2552 2553 mapped_pte = pte = pte_alloc_map_lock 2554 if (!pte) 2555 return -ENOMEM; 2556 arch_enter_lazy_mmu_mode(); 2557 do { 2558 BUG_ON(!pte_none(ptep_get(pte 2559 if (!pfn_modify_allowed(pfn, 2560 err = -EACCES; 2561 break; 2562 } 2563 set_pte_at(mm, addr, pte, pte 2564 pfn++; 2565 } while (pte++, addr += PAGE_SIZE, ad 2566 arch_leave_lazy_mmu_mode(); 2567 pte_unmap_unlock(mapped_pte, ptl); 2568 return err; 2569 } 2570 2571 static inline int remap_pmd_range(struct mm_s 2572 unsigned long addr, u 2573 unsigned long pfn, pg 2574 { 2575 pmd_t *pmd; 2576 unsigned long next; 2577 int err; 2578 2579 pfn -= addr >> PAGE_SHIFT; 2580 pmd = pmd_alloc(mm, pud, addr); 2581 if (!pmd) 2582 return -ENOMEM; 2583 VM_BUG_ON(pmd_trans_huge(*pmd)); 2584 do { 2585 next = pmd_addr_end(addr, end 2586 err = remap_pte_range(mm, pmd 2587 pfn + (addr > 2588 if (err) 2589 return err; 2590 } while (pmd++, addr = next, addr != 2591 return 0; 2592 } 2593 2594 static inline int remap_pud_range(struct mm_s 2595 unsigned long addr, u 2596 unsigned long pfn, pg 2597 { 2598 pud_t *pud; 2599 unsigned long next; 2600 int err; 2601 2602 pfn -= addr >> PAGE_SHIFT; 2603 pud = pud_alloc(mm, p4d, addr); 2604 if (!pud) 2605 return -ENOMEM; 2606 do { 2607 next = pud_addr_end(addr, end 2608 err = remap_pmd_range(mm, pud 2609 pfn + (addr > 2610 if (err) 2611 return err; 2612 } while (pud++, addr = next, addr != 2613 return 0; 2614 } 2615 2616 static inline int remap_p4d_range(struct mm_s 2617 unsigned long addr, u 2618 unsigned long pfn, pg 2619 { 2620 p4d_t *p4d; 2621 unsigned long next; 2622 int err; 2623 2624 pfn -= addr >> PAGE_SHIFT; 2625 p4d = p4d_alloc(mm, pgd, addr); 2626 if (!p4d) 2627 return -ENOMEM; 2628 do { 2629 next = p4d_addr_end(addr, end 2630 err = remap_pud_range(mm, p4d 2631 pfn + (addr > 2632 if (err) 2633 return err; 2634 } while (p4d++, addr = next, addr != 2635 return 0; 2636 } 2637 2638 static int remap_pfn_range_internal(struct vm 2639 unsigned long pfn, unsigned l 2640 { 2641 pgd_t *pgd; 2642 unsigned long next; 2643 unsigned long end = addr + PAGE_ALIGN 2644 struct mm_struct *mm = vma->vm_mm; 2645 int err; 2646 2647 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)) 2648 return -EINVAL; 2649 2650 /* 2651 * Physically remapped pages are spec 2652 * rest of the world about it: 2653 * VM_IO tells people not to look a 2654 * (accesses can have side effec 2655 * VM_PFNMAP tells the core MM that 2656 * raw PFN mappings, and do not 2657 * with them. 2658 * VM_DONTEXPAND 2659 * Disable vma merging and expan 2660 * VM_DONTDUMP 2661 * Omit vma from core dump, even 2662 * 2663 * There's a horrible special case to 2664 * behaviour that some programs depen 2665 * un-COW'ed pages by matching them u 2666 * See vm_normal_page() for details. 2667 */ 2668 if (is_cow_mapping(vma->vm_flags)) { 2669 if (addr != vma->vm_start || 2670 return -EINVAL; 2671 vma->vm_pgoff = pfn; 2672 } 2673 2674 vm_flags_set(vma, VM_IO | VM_PFNMAP | 2675 2676 BUG_ON(addr >= end); 2677 pfn -= addr >> PAGE_SHIFT; 2678 pgd = pgd_offset(mm, addr); 2679 flush_cache_range(vma, addr, end); 2680 do { 2681 next = pgd_addr_end(addr, end 2682 err = remap_p4d_range(mm, pgd 2683 pfn + (addr > 2684 if (err) 2685 return err; 2686 } while (pgd++, addr = next, addr != 2687 2688 return 0; 2689 } 2690 2691 /* 2692 * Variant of remap_pfn_range that does not c 2693 * must have pre-validated the caching bits o 2694 */ 2695 int remap_pfn_range_notrack(struct vm_area_st 2696 unsigned long pfn, unsigned l 2697 { 2698 int error = remap_pfn_range_internal( 2699 2700 if (!error) 2701 return 0; 2702 2703 /* 2704 * A partial pfn range mapping is dan 2705 * maintain page reference counts, an 2706 * pages due to the error. So zap it 2707 */ 2708 zap_page_range_single(vma, addr, size 2709 return error; 2710 } 2711 2712 /** 2713 * remap_pfn_range - remap kernel memory to u 2714 * @vma: user vma to map to 2715 * @addr: target page aligned user address to 2716 * @pfn: page frame number of kernel physical 2717 * @size: size of mapping area 2718 * @prot: page protection flags for this mapp 2719 * 2720 * Note: this is only safe if the mm semaphor 2721 * 2722 * Return: %0 on success, negative error code 2723 */ 2724 int remap_pfn_range(struct vm_area_struct *vm 2725 unsigned long pfn, unsign 2726 { 2727 int err; 2728 2729 err = track_pfn_remap(vma, &prot, pfn 2730 if (err) 2731 return -EINVAL; 2732 2733 err = remap_pfn_range_notrack(vma, ad 2734 if (err) 2735 untrack_pfn(vma, pfn, PAGE_AL 2736 return err; 2737 } 2738 EXPORT_SYMBOL(remap_pfn_range); 2739 2740 /** 2741 * vm_iomap_memory - remap memory to userspac 2742 * @vma: user vma to map to 2743 * @start: start of the physical memory to be 2744 * @len: size of area 2745 * 2746 * This is a simplified io_remap_pfn_range() 2747 * driver just needs to give us the physical 2748 * we'll figure out the rest from the vma inf 2749 * 2750 * NOTE! Some drivers might want to tweak vma 2751 * whatever write-combining details or simila 2752 * 2753 * Return: %0 on success, negative error code 2754 */ 2755 int vm_iomap_memory(struct vm_area_struct *vm 2756 { 2757 unsigned long vm_len, pfn, pages; 2758 2759 /* Check that the physical memory are 2760 if (start + len < start) 2761 return -EINVAL; 2762 /* 2763 * You *really* shouldn't map things 2764 * but we've historically allowed it 2765 * just have smaller alignment. 2766 */ 2767 len += start & ~PAGE_MASK; 2768 pfn = start >> PAGE_SHIFT; 2769 pages = (len + ~PAGE_MASK) >> PAGE_SH 2770 if (pfn + pages < pfn) 2771 return -EINVAL; 2772 2773 /* We start the mapping 'vm_pgoff' pa 2774 if (vma->vm_pgoff > pages) 2775 return -EINVAL; 2776 pfn += vma->vm_pgoff; 2777 pages -= vma->vm_pgoff; 2778 2779 /* Can we fit all of the mapping? */ 2780 vm_len = vma->vm_end - vma->vm_start; 2781 if (vm_len >> PAGE_SHIFT > pages) 2782 return -EINVAL; 2783 2784 /* Ok, let it rip */ 2785 return io_remap_pfn_range(vma, vma->v 2786 } 2787 EXPORT_SYMBOL(vm_iomap_memory); 2788 2789 static int apply_to_pte_range(struct mm_struc 2790 unsigned 2791 pte_fn_t 2792 pgtbl_mo 2793 { 2794 pte_t *pte, *mapped_pte; 2795 int err = 0; 2796 spinlock_t *ptl; 2797 2798 if (create) { 2799 mapped_pte = pte = (mm == &in 2800 pte_alloc_kernel_trac 2801 pte_alloc_map_lock(mm 2802 if (!pte) 2803 return -ENOMEM; 2804 } else { 2805 mapped_pte = pte = (mm == &in 2806 pte_offset_kernel(pmd 2807 pte_offset_map_lock(m 2808 if (!pte) 2809 return -EINVAL; 2810 } 2811 2812 arch_enter_lazy_mmu_mode(); 2813 2814 if (fn) { 2815 do { 2816 if (create || !pte_no 2817 err = fn(pte+ 2818 if (err) 2819 break 2820 } 2821 } while (addr += PAGE_SIZE, a 2822 } 2823 *mask |= PGTBL_PTE_MODIFIED; 2824 2825 arch_leave_lazy_mmu_mode(); 2826 2827 if (mm != &init_mm) 2828 pte_unmap_unlock(mapped_pte, 2829 return err; 2830 } 2831 2832 static int apply_to_pmd_range(struct mm_struc 2833 unsigned 2834 pte_fn_t 2835 pgtbl_mo 2836 { 2837 pmd_t *pmd; 2838 unsigned long next; 2839 int err = 0; 2840 2841 BUG_ON(pud_leaf(*pud)); 2842 2843 if (create) { 2844 pmd = pmd_alloc_track(mm, pud 2845 if (!pmd) 2846 return -ENOMEM; 2847 } else { 2848 pmd = pmd_offset(pud, addr); 2849 } 2850 do { 2851 next = pmd_addr_end(addr, end 2852 if (pmd_none(*pmd) && !create 2853 continue; 2854 if (WARN_ON_ONCE(pmd_leaf(*pm 2855 return -EINVAL; 2856 if (!pmd_none(*pmd) && WARN_O 2857 if (!create) 2858 continue; 2859 pmd_clear_bad(pmd); 2860 } 2861 err = apply_to_pte_range(mm, 2862 fn, 2863 if (err) 2864 break; 2865 } while (pmd++, addr = next, addr != 2866 2867 return err; 2868 } 2869 2870 static int apply_to_pud_range(struct mm_struc 2871 unsigned 2872 pte_fn_t 2873 pgtbl_mo 2874 { 2875 pud_t *pud; 2876 unsigned long next; 2877 int err = 0; 2878 2879 if (create) { 2880 pud = pud_alloc_track(mm, p4d 2881 if (!pud) 2882 return -ENOMEM; 2883 } else { 2884 pud = pud_offset(p4d, addr); 2885 } 2886 do { 2887 next = pud_addr_end(addr, end 2888 if (pud_none(*pud) && !create 2889 continue; 2890 if (WARN_ON_ONCE(pud_leaf(*pu 2891 return -EINVAL; 2892 if (!pud_none(*pud) && WARN_O 2893 if (!create) 2894 continue; 2895 pud_clear_bad(pud); 2896 } 2897 err = apply_to_pmd_range(mm, 2898 fn, 2899 if (err) 2900 break; 2901 } while (pud++, addr = next, addr != 2902 2903 return err; 2904 } 2905 2906 static int apply_to_p4d_range(struct mm_struc 2907 unsigned 2908 pte_fn_t 2909 pgtbl_mo 2910 { 2911 p4d_t *p4d; 2912 unsigned long next; 2913 int err = 0; 2914 2915 if (create) { 2916 p4d = p4d_alloc_track(mm, pgd 2917 if (!p4d) 2918 return -ENOMEM; 2919 } else { 2920 p4d = p4d_offset(pgd, addr); 2921 } 2922 do { 2923 next = p4d_addr_end(addr, end 2924 if (p4d_none(*p4d) && !create 2925 continue; 2926 if (WARN_ON_ONCE(p4d_leaf(*p4 2927 return -EINVAL; 2928 if (!p4d_none(*p4d) && WARN_O 2929 if (!create) 2930 continue; 2931 p4d_clear_bad(p4d); 2932 } 2933 err = apply_to_pud_range(mm, 2934 fn, 2935 if (err) 2936 break; 2937 } while (p4d++, addr = next, addr != 2938 2939 return err; 2940 } 2941 2942 static int __apply_to_page_range(struct mm_st 2943 unsigned lon 2944 void *data, 2945 { 2946 pgd_t *pgd; 2947 unsigned long start = addr, next; 2948 unsigned long end = addr + size; 2949 pgtbl_mod_mask mask = 0; 2950 int err = 0; 2951 2952 if (WARN_ON(addr >= end)) 2953 return -EINVAL; 2954 2955 pgd = pgd_offset(mm, addr); 2956 do { 2957 next = pgd_addr_end(addr, end 2958 if (pgd_none(*pgd) && !create 2959 continue; 2960 if (WARN_ON_ONCE(pgd_leaf(*pg 2961 return -EINVAL; 2962 if (!pgd_none(*pgd) && WARN_O 2963 if (!create) 2964 continue; 2965 pgd_clear_bad(pgd); 2966 } 2967 err = apply_to_p4d_range(mm, 2968 fn, 2969 if (err) 2970 break; 2971 } while (pgd++, addr = next, addr != 2972 2973 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2974 arch_sync_kernel_mappings(sta 2975 2976 return err; 2977 } 2978 2979 /* 2980 * Scan a region of virtual memory, filling i 2981 * and calling a provided function on each le 2982 */ 2983 int apply_to_page_range(struct mm_struct *mm, 2984 unsigned long size, p 2985 { 2986 return __apply_to_page_range(mm, addr 2987 } 2988 EXPORT_SYMBOL_GPL(apply_to_page_range); 2989 2990 /* 2991 * Scan a region of virtual memory, calling a 2992 * each leaf page table where it exists. 2993 * 2994 * Unlike apply_to_page_range, this does _not 2995 * where they are absent. 2996 */ 2997 int apply_to_existing_page_range(struct mm_st 2998 unsigned lon 2999 { 3000 return __apply_to_page_range(mm, addr 3001 } 3002 EXPORT_SYMBOL_GPL(apply_to_existing_page_rang 3003 3004 /* 3005 * handle_pte_fault chooses page fault handle 3006 * read non-atomically. Before making any co 3007 * or configurations (e.g. i386 with PAE) whi 3008 * parts, do_swap_page must check under lock 3009 * proceeding (but do_wp_page is only called 3010 * and do_anonymous_page can safely check lat 3011 */ 3012 static inline int pte_unmap_same(struct vm_fa 3013 { 3014 int same = 1; 3015 #if defined(CONFIG_SMP) || defined(CONFIG_PRE 3016 if (sizeof(pte_t) > sizeof(unsigned l 3017 spin_lock(vmf->ptl); 3018 same = pte_same(ptep_get(vmf- 3019 spin_unlock(vmf->ptl); 3020 } 3021 #endif 3022 pte_unmap(vmf->pte); 3023 vmf->pte = NULL; 3024 return same; 3025 } 3026 3027 /* 3028 * Return: 3029 * 0: copied succeeded 3030 * -EHWPOISON: copy failed due to hw 3031 * -EAGAIN: copied failed (some o 3032 */ 3033 static inline int __wp_page_copy_user(struct 3034 struct 3035 { 3036 int ret; 3037 void *kaddr; 3038 void __user *uaddr; 3039 struct vm_area_struct *vma = vmf->vma 3040 struct mm_struct *mm = vma->vm_mm; 3041 unsigned long addr = vmf->address; 3042 3043 if (likely(src)) { 3044 if (copy_mc_user_highpage(dst 3045 return -EHWPOISON; 3046 return 0; 3047 } 3048 3049 /* 3050 * If the source page was a PFN mappi 3051 * a "struct page" for it. We do a be 3052 * just copying from the original use 3053 * fails, we just zero-fill it. Live 3054 */ 3055 kaddr = kmap_local_page(dst); 3056 pagefault_disable(); 3057 uaddr = (void __user *)(addr & PAGE_M 3058 3059 /* 3060 * On architectures with software "ac 3061 * take a double page fault, so mark 3062 */ 3063 vmf->pte = NULL; 3064 if (!arch_has_hw_pte_young() && !pte_ 3065 pte_t entry; 3066 3067 vmf->pte = pte_offset_map_loc 3068 if (unlikely(!vmf->pte || !pt 3069 /* 3070 * Other thread has a 3071 * and update local t 3072 */ 3073 if (vmf->pte) 3074 update_mmu_tl 3075 ret = -EAGAIN; 3076 goto pte_unlock; 3077 } 3078 3079 entry = pte_mkyoung(vmf->orig 3080 if (ptep_set_access_flags(vma 3081 update_mmu_cache_rang 3082 } 3083 3084 /* 3085 * This really shouldn't fail, becaus 3086 * in the page tables. But it might j 3087 * in which case we just give up and 3088 * zeroes. 3089 */ 3090 if (__copy_from_user_inatomic(kaddr, 3091 if (vmf->pte) 3092 goto warn; 3093 3094 /* Re-validate under PTL if t 3095 vmf->pte = pte_offset_map_loc 3096 if (unlikely(!vmf->pte || !pt 3097 /* The PTE changed un 3098 if (vmf->pte) 3099 update_mmu_tl 3100 ret = -EAGAIN; 3101 goto pte_unlock; 3102 } 3103 3104 /* 3105 * The same page can be mappe 3106 * Try to copy again under PT 3107 */ 3108 if (__copy_from_user_inatomic 3109 /* 3110 * Give a warn in cas 3111 * use-case 3112 */ 3113 warn: 3114 WARN_ON_ONCE(1); 3115 clear_page(kaddr); 3116 } 3117 } 3118 3119 ret = 0; 3120 3121 pte_unlock: 3122 if (vmf->pte) 3123 pte_unmap_unlock(vmf->pte, vm 3124 pagefault_enable(); 3125 kunmap_local(kaddr); 3126 flush_dcache_page(dst); 3127 3128 return ret; 3129 } 3130 3131 static gfp_t __get_fault_gfp_mask(struct vm_a 3132 { 3133 struct file *vm_file = vma->vm_file; 3134 3135 if (vm_file) 3136 return mapping_gfp_mask(vm_fi 3137 3138 /* 3139 * Special mappings (e.g. VDSO) do no 3140 * a default GFP_KERNEL for them. 3141 */ 3142 return GFP_KERNEL; 3143 } 3144 3145 /* 3146 * Notify the address space that the page is 3147 * it can prohibit this or wait for the page 3148 * 3149 * We do this without the lock held, so that 3150 */ 3151 static vm_fault_t do_page_mkwrite(struct vm_f 3152 { 3153 vm_fault_t ret; 3154 unsigned int old_flags = vmf->flags; 3155 3156 vmf->flags = FAULT_FLAG_WRITE|FAULT_F 3157 3158 if (vmf->vma->vm_file && 3159 IS_SWAPFILE(vmf->vma->vm_file->f_ 3160 return VM_FAULT_SIGBUS; 3161 3162 ret = vmf->vma->vm_ops->page_mkwrite( 3163 /* Restore original flags so that cal 3164 vmf->flags = old_flags; 3165 if (unlikely(ret & (VM_FAULT_ERROR | 3166 return ret; 3167 if (unlikely(!(ret & VM_FAULT_LOCKED) 3168 folio_lock(folio); 3169 if (!folio->mapping) { 3170 folio_unlock(folio); 3171 return 0; /* retry */ 3172 } 3173 ret |= VM_FAULT_LOCKED; 3174 } else 3175 VM_BUG_ON_FOLIO(!folio_test_l 3176 return ret; 3177 } 3178 3179 /* 3180 * Handle dirtying of a page in shared file m 3181 * 3182 * The function expects the page to be locked 3183 */ 3184 static vm_fault_t fault_dirty_shared_page(str 3185 { 3186 struct vm_area_struct *vma = vmf->vma 3187 struct address_space *mapping; 3188 struct folio *folio = page_folio(vmf- 3189 bool dirtied; 3190 bool page_mkwrite = vma->vm_ops && vm 3191 3192 dirtied = folio_mark_dirty(folio); 3193 VM_BUG_ON_FOLIO(folio_test_anon(folio 3194 /* 3195 * Take a local copy of the address_s 3196 * by truncate after folio_unlock(). 3197 * pinned by vma->vm_file's reference 3198 * release semantics to prevent the c 3199 */ 3200 mapping = folio_raw_mapping(folio); 3201 folio_unlock(folio); 3202 3203 if (!page_mkwrite) 3204 file_update_time(vma->vm_file 3205 3206 /* 3207 * Throttle page dirtying rate down t 3208 * 3209 * mapping may be NULL here because s 3210 * set page.mapping but still dirty t 3211 * 3212 * Drop the mmap_lock before waiting 3213 * is pinning the mapping, as per abo 3214 */ 3215 if ((dirtied || page_mkwrite) && mapp 3216 struct file *fpin; 3217 3218 fpin = maybe_unlock_mmap_for_ 3219 balance_dirty_pages_ratelimit 3220 if (fpin) { 3221 fput(fpin); 3222 return VM_FAULT_COMPL 3223 } 3224 } 3225 3226 return 0; 3227 } 3228 3229 /* 3230 * Handle write page faults for pages that ca 3231 * 3232 * This can happen either due to the mapping 3233 * or due to us being the last reference stan 3234 * case, all we need to do here is to mark th 3235 * any related book-keeping. 3236 */ 3237 static inline void wp_page_reuse(struct vm_fa 3238 __releases(vmf->ptl) 3239 { 3240 struct vm_area_struct *vma = vmf->vma 3241 pte_t entry; 3242 3243 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_W 3244 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->o 3245 3246 if (folio) { 3247 VM_BUG_ON(folio_test_anon(fol 3248 !PageAnonExclusive( 3249 /* 3250 * Clear the folio's cpupid i 3251 * information potentially be 3252 * unrelated process. 3253 */ 3254 folio_xchg_last_cpupid(folio, 3255 } 3256 3257 flush_cache_page(vma, vmf->address, p 3258 entry = pte_mkyoung(vmf->orig_pte); 3259 entry = maybe_mkwrite(pte_mkdirty(ent 3260 if (ptep_set_access_flags(vma, vmf->a 3261 update_mmu_cache_range(vmf, v 3262 pte_unmap_unlock(vmf->pte, vmf->ptl); 3263 count_vm_event(PGREUSE); 3264 } 3265 3266 /* 3267 * We could add a bitflag somewhere, but for 3268 * vm_ops that have a ->map_pages have been a 3269 * the mmap_lock to be held. 3270 */ 3271 static inline vm_fault_t vmf_can_call_fault(c 3272 { 3273 struct vm_area_struct *vma = vmf->vma 3274 3275 if (vma->vm_ops->map_pages || !(vmf-> 3276 return 0; 3277 vma_end_read(vma); 3278 return VM_FAULT_RETRY; 3279 } 3280 3281 /** 3282 * __vmf_anon_prepare - Prepare to handle an 3283 * @vmf: The vm_fault descriptor passed from 3284 * 3285 * When preparing to insert an anonymous page 3286 * fault handler, call this function rather t 3287 * If this vma does not already have an assoc 3288 * only protected by the per-VMA lock, the ca 3289 * mmap_lock held. __anon_vma_prepare() will 3290 * determine if this VMA can share its anon_v 3291 * do with only the per-VMA lock held for thi 3292 * 3293 * Return: 0 if fault handling can proceed. 3294 * returned to the caller. 3295 */ 3296 vm_fault_t __vmf_anon_prepare(struct vm_fault 3297 { 3298 struct vm_area_struct *vma = vmf->vma 3299 vm_fault_t ret = 0; 3300 3301 if (likely(vma->anon_vma)) 3302 return 0; 3303 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3304 if (!mmap_read_trylock(vma->v 3305 return VM_FAULT_RETRY 3306 } 3307 if (__anon_vma_prepare(vma)) 3308 ret = VM_FAULT_OOM; 3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3310 mmap_read_unlock(vma->vm_mm); 3311 return ret; 3312 } 3313 3314 /* 3315 * Handle the case of a page which we actuall 3316 * either due to COW or unsharing. 3317 * 3318 * Called with mmap_lock locked and the old p 3319 * without the ptl held. 3320 * 3321 * High level logic flow: 3322 * 3323 * - Allocate a page, copy the content of the 3324 * - Handle book keeping and accounting - cgr 3325 * - Take the PTL. If the pte changed, bail o 3326 * - If the pte is still the way we remember 3327 * relevant references. This includes dropp 3328 * held to the old page, as well as updatin 3329 * - In any case, unlock the PTL and drop the 3330 */ 3331 static vm_fault_t wp_page_copy(struct vm_faul 3332 { 3333 const bool unshare = vmf->flags & FAU 3334 struct vm_area_struct *vma = vmf->vma 3335 struct mm_struct *mm = vma->vm_mm; 3336 struct folio *old_folio = NULL; 3337 struct folio *new_folio = NULL; 3338 pte_t entry; 3339 int page_copied = 0; 3340 struct mmu_notifier_range range; 3341 vm_fault_t ret; 3342 bool pfn_is_zero; 3343 3344 delayacct_wpcopy_start(); 3345 3346 if (vmf->page) 3347 old_folio = page_folio(vmf->p 3348 ret = vmf_anon_prepare(vmf); 3349 if (unlikely(ret)) 3350 goto out; 3351 3352 pfn_is_zero = is_zero_pfn(pte_pfn(vmf 3353 new_folio = folio_prealloc(mm, vma, v 3354 if (!new_folio) 3355 goto oom; 3356 3357 if (!pfn_is_zero) { 3358 int err; 3359 3360 err = __wp_page_copy_user(&ne 3361 if (err) { 3362 /* 3363 * COW failed, if the 3364 * it's fine. If not, 3365 * the same address a 3366 * from the second at 3367 * The -EHWPOISON cas 3368 */ 3369 folio_put(new_folio); 3370 if (old_folio) 3371 folio_put(old 3372 3373 delayacct_wpcopy_end( 3374 return err == -EHWPOI 3375 } 3376 kmsan_copy_page_meta(&new_fol 3377 } 3378 3379 __folio_mark_uptodate(new_folio); 3380 3381 mmu_notifier_range_init(&range, MMU_N 3382 vmf->address 3383 (vmf->address 3384 mmu_notifier_invalidate_range_start(& 3385 3386 /* 3387 * Re-check the pte - we dropped the 3388 */ 3389 vmf->pte = pte_offset_map_lock(mm, vm 3390 if (likely(vmf->pte && pte_same(ptep_ 3391 if (old_folio) { 3392 if (!folio_test_anon( 3393 dec_mm_counte 3394 inc_mm_counte 3395 } 3396 } else { 3397 ksm_might_unmap_zero_ 3398 inc_mm_counter(mm, MM 3399 } 3400 flush_cache_page(vma, vmf->ad 3401 entry = mk_pte(&new_folio->pa 3402 entry = pte_sw_mkyoung(entry) 3403 if (unlikely(unshare)) { 3404 if (pte_soft_dirty(vm 3405 entry = pte_m 3406 if (pte_uffd_wp(vmf-> 3407 entry = pte_m 3408 } else { 3409 entry = maybe_mkwrite 3410 } 3411 3412 /* 3413 * Clear the pte entry and fl 3414 * pte with the new entry, to 3415 * sync. This code used to se 3416 * that left a window where t 3417 * some TLBs while the old PT 3418 */ 3419 ptep_clear_flush(vma, vmf->ad 3420 folio_add_new_anon_rmap(new_f 3421 folio_add_lru_vma(new_folio, 3422 BUG_ON(unshare && pte_write(e 3423 set_pte_at(mm, vmf->address, 3424 update_mmu_cache_range(vmf, v 3425 if (old_folio) { 3426 /* 3427 * Only after switchi 3428 * we remove the mapc 3429 * process may come a 3430 * before the pte is 3431 * "reuse" the old pa 3432 * here still points 3433 * threads. 3434 * 3435 * The critical issue 3436 * folio_remove_rmap_ 3437 * above. Those store 3438 * the barrier presen 3439 * in folio_remove_rm 3440 * 3441 * Then the TLB flush 3442 * no process can acc 3443 * decremented mapcou 3444 * cannot be reused u 3445 * mapcount is visibl 3446 * old page will be f 3447 */ 3448 folio_remove_rmap_pte 3449 } 3450 3451 /* Free the old page.. */ 3452 new_folio = old_folio; 3453 page_copied = 1; 3454 pte_unmap_unlock(vmf->pte, vm 3455 } else if (vmf->pte) { 3456 update_mmu_tlb(vma, vmf->addr 3457 pte_unmap_unlock(vmf->pte, vm 3458 } 3459 3460 mmu_notifier_invalidate_range_end(&ra 3461 3462 if (new_folio) 3463 folio_put(new_folio); 3464 if (old_folio) { 3465 if (page_copied) 3466 free_swap_cache(old_f 3467 folio_put(old_folio); 3468 } 3469 3470 delayacct_wpcopy_end(); 3471 return 0; 3472 oom: 3473 ret = VM_FAULT_OOM; 3474 out: 3475 if (old_folio) 3476 folio_put(old_folio); 3477 3478 delayacct_wpcopy_end(); 3479 return ret; 3480 } 3481 3482 /** 3483 * finish_mkwrite_fault - finish page fault f 3484 * writeable once the 3485 * 3486 * @vmf: structure describing the fault 3487 * @folio: the folio of vmf->page 3488 * 3489 * This function handles all that is needed t 3490 * shared mapping due to PTE being read-only 3491 * It handles locking of PTE and modifying it 3492 * 3493 * The function expects the page to be locked 3494 * concurrent faults / writeback (such as DAX 3495 * 3496 * Return: %0 on success, %VM_FAULT_NOPAGE wh 3497 * we acquired PTE lock. 3498 */ 3499 static vm_fault_t finish_mkwrite_fault(struct 3500 { 3501 WARN_ON_ONCE(!(vmf->vma->vm_flags & V 3502 vmf->pte = pte_offset_map_lock(vmf->v 3503 &vmf-> 3504 if (!vmf->pte) 3505 return VM_FAULT_NOPAGE; 3506 /* 3507 * We might have raced with another p 3508 * pte_offset_map_lock. 3509 */ 3510 if (!pte_same(ptep_get(vmf->pte), vmf 3511 update_mmu_tlb(vmf->vma, vmf- 3512 pte_unmap_unlock(vmf->pte, vm 3513 return VM_FAULT_NOPAGE; 3514 } 3515 wp_page_reuse(vmf, folio); 3516 return 0; 3517 } 3518 3519 /* 3520 * Handle write page faults for VM_MIXEDMAP o 3521 * mapping 3522 */ 3523 static vm_fault_t wp_pfn_shared(struct vm_fau 3524 { 3525 struct vm_area_struct *vma = vmf->vma 3526 3527 if (vma->vm_ops && vma->vm_ops->pfn_m 3528 vm_fault_t ret; 3529 3530 pte_unmap_unlock(vmf->pte, vm 3531 ret = vmf_can_call_fault(vmf) 3532 if (ret) 3533 return ret; 3534 3535 vmf->flags |= FAULT_FLAG_MKWR 3536 ret = vma->vm_ops->pfn_mkwrit 3537 if (ret & (VM_FAULT_ERROR | V 3538 return ret; 3539 return finish_mkwrite_fault(v 3540 } 3541 wp_page_reuse(vmf, NULL); 3542 return 0; 3543 } 3544 3545 static vm_fault_t wp_page_shared(struct vm_fa 3546 __releases(vmf->ptl) 3547 { 3548 struct vm_area_struct *vma = vmf->vma 3549 vm_fault_t ret = 0; 3550 3551 folio_get(folio); 3552 3553 if (vma->vm_ops && vma->vm_ops->page_ 3554 vm_fault_t tmp; 3555 3556 pte_unmap_unlock(vmf->pte, vm 3557 tmp = vmf_can_call_fault(vmf) 3558 if (tmp) { 3559 folio_put(folio); 3560 return tmp; 3561 } 3562 3563 tmp = do_page_mkwrite(vmf, fo 3564 if (unlikely(!tmp || (tmp & 3565 (VM_FAU 3566 folio_put(folio); 3567 return tmp; 3568 } 3569 tmp = finish_mkwrite_fault(vm 3570 if (unlikely(tmp & (VM_FAULT_ 3571 folio_unlock(folio); 3572 folio_put(folio); 3573 return tmp; 3574 } 3575 } else { 3576 wp_page_reuse(vmf, folio); 3577 folio_lock(folio); 3578 } 3579 ret |= fault_dirty_shared_page(vmf); 3580 folio_put(folio); 3581 3582 return ret; 3583 } 3584 3585 static bool wp_can_reuse_anon_folio(struct fo 3586 struct vm 3587 { 3588 /* 3589 * We could currently only reuse a su 3590 * other subpages of the large folios 3591 * let's just consistently not reuse 3592 * reuse in that scenario, and give b 3593 * sooner. 3594 */ 3595 if (folio_test_large(folio)) 3596 return false; 3597 3598 /* 3599 * We have to verify under folio lock 3600 * just an optimization to avoid lock 3601 * the swapcache if there is little h 3602 * 3603 * KSM doesn't necessarily raise the 3604 */ 3605 if (folio_test_ksm(folio) || folio_re 3606 return false; 3607 if (!folio_test_lru(folio)) 3608 /* 3609 * We cannot easily detect+ha 3610 * remote LRU caches or refer 3611 */ 3612 lru_add_drain(); 3613 if (folio_ref_count(folio) > 1 + foli 3614 return false; 3615 if (!folio_trylock(folio)) 3616 return false; 3617 if (folio_test_swapcache(folio)) 3618 folio_free_swap(folio); 3619 if (folio_test_ksm(folio) || folio_re 3620 folio_unlock(folio); 3621 return false; 3622 } 3623 /* 3624 * Ok, we've got the only folio refer 3625 * and the folio is locked, it's dark 3626 * sunglasses. Hit it. 3627 */ 3628 folio_move_anon_rmap(folio, vma); 3629 folio_unlock(folio); 3630 return true; 3631 } 3632 3633 /* 3634 * This routine handles present pages, when 3635 * * users try to write to a shared page (FAU 3636 * * GUP wants to take a R/O pin on a possibl 3637 * (FAULT_FLAG_UNSHARE) 3638 * 3639 * It is done by copying the page to a new ad 3640 * shared-page counter for the old page. 3641 * 3642 * Note that this routine assumes that the pr 3643 * done by the caller (the low-level page fau 3644 * Thus, with FAULT_FLAG_WRITE, we can safely 3645 * done any necessary COW. 3646 * 3647 * In case of FAULT_FLAG_WRITE, we also mark 3648 * though the page will change only once the 3649 * avoids a few races, and potentially makes 3650 * 3651 * We enter with non-exclusive mmap_lock (to 3652 * but allow concurrent faults), with pte bot 3653 * We return with mmap_lock still held, but p 3654 */ 3655 static vm_fault_t do_wp_page(struct vm_fault 3656 __releases(vmf->ptl) 3657 { 3658 const bool unshare = vmf->flags & FAU 3659 struct vm_area_struct *vma = vmf->vma 3660 struct folio *folio = NULL; 3661 pte_t pte; 3662 3663 if (likely(!unshare)) { 3664 if (userfaultfd_pte_wp(vma, p 3665 if (!userfaultfd_wp_a 3666 pte_unmap_unl 3667 return handle 3668 } 3669 3670 /* 3671 * Nothing needed (ca 3672 * etc.) because we'r 3673 * which is completel 3674 */ 3675 pte = pte_clear_uffd_ 3676 3677 set_pte_at(vma->vm_mm 3678 /* 3679 * Update this to be 3680 * handling 3681 */ 3682 vmf->orig_pte = pte; 3683 } 3684 3685 /* 3686 * Userfaultfd write-protect 3687 * is flushed in this case be 3688 */ 3689 if (unlikely(userfaultfd_wp(v 3690 mm_tlb_flush_pen 3691 flush_tlb_page(vmf->v 3692 } 3693 3694 vmf->page = vm_normal_page(vma, vmf-> 3695 3696 if (vmf->page) 3697 folio = page_folio(vmf->page) 3698 3699 /* 3700 * Shared mapping: we are guaranteed 3701 * FAULT_FLAG_WRITE set at this point 3702 */ 3703 if (vma->vm_flags & (VM_SHARED | VM_M 3704 /* 3705 * VM_MIXEDMAP !pfn_valid() c 3706 * VM_PFNMAP VMA. 3707 * 3708 * We should not cow pages in 3709 * Just mark the pages writab 3710 */ 3711 if (!vmf->page) 3712 return wp_pfn_shared( 3713 return wp_page_shared(vmf, fo 3714 } 3715 3716 /* 3717 * Private mapping: create an exclusi 3718 * is impossible. We might miss VM_WR 3719 * 3720 * If we encounter a page that is mar 3721 * the page without further checks. 3722 */ 3723 if (folio && folio_test_anon(folio) & 3724 (PageAnonExclusive(vmf->page) || 3725 if (!PageAnonExclusive(vmf->p 3726 SetPageAnonExclusive( 3727 if (unlikely(unshare)) { 3728 pte_unmap_unlock(vmf- 3729 return 0; 3730 } 3731 wp_page_reuse(vmf, folio); 3732 return 0; 3733 } 3734 /* 3735 * Ok, we need to copy. Oh, well.. 3736 */ 3737 if (folio) 3738 folio_get(folio); 3739 3740 pte_unmap_unlock(vmf->pte, vmf->ptl); 3741 #ifdef CONFIG_KSM 3742 if (folio && folio_test_ksm(folio)) 3743 count_vm_event(COW_KSM); 3744 #endif 3745 return wp_page_copy(vmf); 3746 } 3747 3748 static void unmap_mapping_range_vma(struct vm 3749 unsigned long start_addr, uns 3750 struct zap_details *details) 3751 { 3752 zap_page_range_single(vma, start_addr 3753 } 3754 3755 static inline void unmap_mapping_range_tree(s 3756 p 3757 p 3758 s 3759 { 3760 struct vm_area_struct *vma; 3761 pgoff_t vba, vea, zba, zea; 3762 3763 vma_interval_tree_foreach(vma, root, 3764 vba = vma->vm_pgoff; 3765 vea = vba + vma_pages(vma) - 3766 zba = max(first_index, vba); 3767 zea = min(last_index, vea); 3768 3769 unmap_mapping_range_vma(vma, 3770 ((zba - vba) << PAGE_ 3771 ((zea - vba + 1) << P 3772 details); 3773 } 3774 } 3775 3776 /** 3777 * unmap_mapping_folio() - Unmap single folio 3778 * @folio: The locked folio to be unmapped. 3779 * 3780 * Unmap this folio from any userspace proces 3781 * Typically, for efficiency, the range of ne 3782 * unmapped by unmap_mapping_pages() or unmap 3783 * truncation or invalidation holds the lock 3784 * the page has been remapped again: and then 3785 * to unmap it finally. 3786 */ 3787 void unmap_mapping_folio(struct folio *folio) 3788 { 3789 struct address_space *mapping = folio 3790 struct zap_details details = { }; 3791 pgoff_t first_index; 3792 pgoff_t last_index; 3793 3794 VM_BUG_ON(!folio_test_locked(folio)); 3795 3796 first_index = folio->index; 3797 last_index = folio_next_index(folio) 3798 3799 details.even_cows = false; 3800 details.single_folio = folio; 3801 details.zap_flags = ZAP_FLAG_DROP_MAR 3802 3803 i_mmap_lock_read(mapping); 3804 if (unlikely(!RB_EMPTY_ROOT(&mapping- 3805 unmap_mapping_range_tree(&map 3806 last 3807 i_mmap_unlock_read(mapping); 3808 } 3809 3810 /** 3811 * unmap_mapping_pages() - Unmap pages from p 3812 * @mapping: The address space containing pag 3813 * @start: Index of first page to be unmapped 3814 * @nr: Number of pages to be unmapped. 0 to 3815 * @even_cows: Whether to unmap even private 3816 * 3817 * Unmap the pages in this address space from 3818 * has them mmaped. Generally, you want to r 3819 * a file is being truncated, but not when in 3820 * cache. 3821 */ 3822 void unmap_mapping_pages(struct address_space 3823 pgoff_t nr, bool even_cows) 3824 { 3825 struct zap_details details = { }; 3826 pgoff_t first_index = start; 3827 pgoff_t last_index = start + nr - 1; 3828 3829 details.even_cows = even_cows; 3830 if (last_index < first_index) 3831 last_index = ULONG_MAX; 3832 3833 i_mmap_lock_read(mapping); 3834 if (unlikely(!RB_EMPTY_ROOT(&mapping- 3835 unmap_mapping_range_tree(&map 3836 last 3837 i_mmap_unlock_read(mapping); 3838 } 3839 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3840 3841 /** 3842 * unmap_mapping_range - unmap the portion of 3843 * address_space corresponding to the specifi 3844 * file. 3845 * 3846 * @mapping: the address space containing mma 3847 * @holebegin: byte in first page to unmap, r 3848 * the underlying file. This will be rounded 3849 * boundary. Note that this is different fro 3850 * must keep the partial page. In contrast, 3851 * partial pages. 3852 * @holelen: size of prospective hole in byte 3853 * up to a PAGE_SIZE boundary. A holelen of 3854 * end of the file. 3855 * @even_cows: 1 when truncating a file, unma 3856 * but 0 when invalidating pagecache, don't t 3857 */ 3858 void unmap_mapping_range(struct address_space 3859 loff_t const holebegin, loff_ 3860 { 3861 pgoff_t hba = (pgoff_t)(holebegin) >> 3862 pgoff_t hlen = ((pgoff_t)(holelen) + 3863 3864 /* Check for overflow. */ 3865 if (sizeof(holelen) > sizeof(hlen)) { 3866 long long holeend = 3867 (holebegin + holelen 3868 if (holeend & ~(long long)ULO 3869 hlen = ULONG_MAX - hb 3870 } 3871 3872 unmap_mapping_pages(mapping, hba, hle 3873 } 3874 EXPORT_SYMBOL(unmap_mapping_range); 3875 3876 /* 3877 * Restore a potential device exclusive pte t 3878 */ 3879 static vm_fault_t remove_device_exclusive_ent 3880 { 3881 struct folio *folio = page_folio(vmf- 3882 struct vm_area_struct *vma = vmf->vma 3883 struct mmu_notifier_range range; 3884 vm_fault_t ret; 3885 3886 /* 3887 * We need a reference to lock the fo 3888 * the PTL so a racing thread can rem 3889 * entry and unmap it. If the folio i 3890 * have been removed already. If it h 3891 * been re-allocated after being free 3892 * unlock it. 3893 */ 3894 if (!folio_try_get(folio)) 3895 return 0; 3896 3897 ret = folio_lock_or_retry(folio, vmf) 3898 if (ret) { 3899 folio_put(folio); 3900 return ret; 3901 } 3902 mmu_notifier_range_init_owner(&range, 3903 vma->vm_mm, v 3904 (vmf->address 3905 mmu_notifier_invalidate_range_start(& 3906 3907 vmf->pte = pte_offset_map_lock(vma->v 3908 &vmf->ptl); 3909 if (likely(vmf->pte && pte_same(ptep_ 3910 restore_exclusive_pte(vma, vm 3911 3912 if (vmf->pte) 3913 pte_unmap_unlock(vmf->pte, vm 3914 folio_unlock(folio); 3915 folio_put(folio); 3916 3917 mmu_notifier_invalidate_range_end(&ra 3918 return 0; 3919 } 3920 3921 static inline bool should_try_to_free_swap(st 3922 st 3923 un 3924 { 3925 if (!folio_test_swapcache(folio)) 3926 return false; 3927 if (mem_cgroup_swap_full(folio) || (v 3928 folio_test_mlocked(folio)) 3929 return true; 3930 /* 3931 * If we want to map a page that's in 3932 * have to detect via the refcount if 3933 * user. Try freeing the swapcache to 3934 * reference only in case it's likely 3935 */ 3936 return (fault_flags & FAULT_FLAG_WRIT 3937 folio_ref_count(folio) == (1 3938 } 3939 3940 static vm_fault_t pte_marker_clear(struct vm_ 3941 { 3942 vmf->pte = pte_offset_map_lock(vmf->v 3943 vmf->a 3944 if (!vmf->pte) 3945 return 0; 3946 /* 3947 * Be careful so that we will only re 3948 * none pte. Otherwise it means the 3949 * 3950 * This should also cover the case wh 3951 * quickly from a PTE_MARKER_UFFD_WP 3952 * So is_pte_marker() check is not en 3953 */ 3954 if (pte_same(vmf->orig_pte, ptep_get( 3955 pte_clear(vmf->vma->vm_mm, vm 3956 pte_unmap_unlock(vmf->pte, vmf->ptl); 3957 return 0; 3958 } 3959 3960 static vm_fault_t do_pte_missing(struct vm_fa 3961 { 3962 if (vma_is_anonymous(vmf->vma)) 3963 return do_anonymous_page(vmf) 3964 else 3965 return do_fault(vmf); 3966 } 3967 3968 /* 3969 * This is actually a page-missing access, bu 3970 * installed. It means this pte was wr-prote 3971 */ 3972 static vm_fault_t pte_marker_handle_uffd_wp(s 3973 { 3974 /* 3975 * Just in case there're leftover spe 3976 * got unregistered - we can simply c 3977 */ 3978 if (unlikely(!userfaultfd_wp(vmf->vma 3979 return pte_marker_clear(vmf); 3980 3981 return do_pte_missing(vmf); 3982 } 3983 3984 static vm_fault_t handle_pte_marker(struct vm 3985 { 3986 swp_entry_t entry = pte_to_swp_entry( 3987 unsigned long marker = pte_marker_get 3988 3989 /* 3990 * PTE markers should never be empty. 3991 * the best thing to do is to kill th 3992 */ 3993 if (WARN_ON_ONCE(!marker)) 3994 return VM_FAULT_SIGBUS; 3995 3996 /* Higher priority than uffd-wp when 3997 if (marker & PTE_MARKER_POISONED) 3998 return VM_FAULT_HWPOISON; 3999 4000 if (pte_marker_entry_uffd_wp(entry)) 4001 return pte_marker_handle_uffd 4002 4003 /* This is an unknown pte marker */ 4004 return VM_FAULT_SIGBUS; 4005 } 4006 4007 static struct folio *__alloc_swap_folio(struc 4008 { 4009 struct vm_area_struct *vma = vmf->vma 4010 struct folio *folio; 4011 swp_entry_t entry; 4012 4013 folio = vma_alloc_folio(GFP_HIGHUSER_ 4014 vmf->address, 4015 if (!folio) 4016 return NULL; 4017 4018 entry = pte_to_swp_entry(vmf->orig_pt 4019 if (mem_cgroup_swapin_charge_folio(fo 4020 GF 4021 folio_put(folio); 4022 return NULL; 4023 } 4024 4025 return folio; 4026 } 4027 4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4029 static inline int non_swapcache_batch(swp_ent 4030 { 4031 struct swap_info_struct *si = swp_swa 4032 pgoff_t offset = swp_offset(entry); 4033 int i; 4034 4035 /* 4036 * While allocating a large folio and 4037 * the case the being faulted pte doe 4038 * ensure all PTEs have no cache as w 4039 * swap devices while the content is 4040 */ 4041 for (i = 0; i < max_nr; i++) { 4042 if ((si->swap_map[offset + i] 4043 return i; 4044 } 4045 4046 return i; 4047 } 4048 4049 /* 4050 * Check if the PTEs within a range are conti 4051 * and have consistent swapcache, zeromap. 4052 */ 4053 static bool can_swapin_thp(struct vm_fault *v 4054 { 4055 unsigned long addr; 4056 swp_entry_t entry; 4057 int idx; 4058 pte_t pte; 4059 4060 addr = ALIGN_DOWN(vmf->address, nr_pa 4061 idx = (vmf->address - addr) / PAGE_SI 4062 pte = ptep_get(ptep); 4063 4064 if (!pte_same(pte, pte_move_swp_offse 4065 return false; 4066 entry = pte_to_swp_entry(pte); 4067 if (swap_pte_batch(ptep, nr_pages, pt 4068 return false; 4069 4070 /* 4071 * swap_read_folio() can't handle the 4072 * from different backends. And they 4073 * things might be added once zswap s 4074 */ 4075 if (unlikely(swap_zeromap_batch(entry 4076 return false; 4077 if (unlikely(non_swapcache_batch(entr 4078 return false; 4079 4080 return true; 4081 } 4082 4083 static inline unsigned long thp_swap_suitable 4084 4085 4086 { 4087 int order, nr; 4088 4089 order = highest_order(orders); 4090 4091 /* 4092 * To swap in a THP with nr pages, we 4093 * is aligned with that number, as it 4094 * This helps filter out most invalid 4095 */ 4096 while (orders) { 4097 nr = 1 << order; 4098 if ((addr >> PAGE_SHIFT) % nr 4099 break; 4100 order = next_order(&orders, o 4101 } 4102 4103 return orders; 4104 } 4105 4106 static struct folio *alloc_swap_folio(struct 4107 { 4108 struct vm_area_struct *vma = vmf->vma 4109 unsigned long orders; 4110 struct folio *folio; 4111 unsigned long addr; 4112 swp_entry_t entry; 4113 spinlock_t *ptl; 4114 pte_t *pte; 4115 gfp_t gfp; 4116 int order; 4117 4118 /* 4119 * If uffd is active for the vma we n 4120 * maintain the uffd semantics. 4121 */ 4122 if (unlikely(userfaultfd_armed(vma))) 4123 goto fallback; 4124 4125 /* 4126 * A large swapped out folio could be 4127 * lack handling for such cases, so f 4128 * folio. 4129 */ 4130 if (!zswap_never_enabled()) 4131 goto fallback; 4132 4133 entry = pte_to_swp_entry(vmf->orig_pt 4134 /* 4135 * Get a list of all the (large) orde 4136 * and suitable for swapping THP. 4137 */ 4138 orders = thp_vma_allowable_orders(vma 4139 TVA_IN_PF | TVA_ENFOR 4140 orders = thp_vma_suitable_orders(vma, 4141 orders = thp_swap_suitable_orders(swp 4142 vmf 4143 4144 if (!orders) 4145 goto fallback; 4146 4147 pte = pte_offset_map_lock(vmf->vma->v 4148 vmf->addres 4149 if (unlikely(!pte)) 4150 goto fallback; 4151 4152 /* 4153 * For do_swap_page, find the highest 4154 * completely swap entries with conti 4155 */ 4156 order = highest_order(orders); 4157 while (orders) { 4158 addr = ALIGN_DOWN(vmf->addres 4159 if (can_swapin_thp(vmf, pte + 4160 break; 4161 order = next_order(&orders, o 4162 } 4163 4164 pte_unmap_unlock(pte, ptl); 4165 4166 /* Try allocating the highest of the 4167 gfp = vma_thp_gfp_mask(vma); 4168 while (orders) { 4169 addr = ALIGN_DOWN(vmf->addres 4170 folio = vma_alloc_folio(gfp, 4171 if (folio) { 4172 if (!mem_cgroup_swapi 4173 4174 return folio; 4175 folio_put(folio); 4176 } 4177 order = next_order(&orders, o 4178 } 4179 4180 fallback: 4181 return __alloc_swap_folio(vmf); 4182 } 4183 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4184 static struct folio *alloc_swap_folio(struct 4185 { 4186 return __alloc_swap_folio(vmf); 4187 } 4188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4189 4190 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4191 4192 /* 4193 * We enter with non-exclusive mmap_lock (to 4194 * but allow concurrent faults), and pte mapp 4195 * We return with pte unmapped and unlocked. 4196 * 4197 * We return with the mmap_lock locked or unl 4198 * as does filemap_fault(). 4199 */ 4200 vm_fault_t do_swap_page(struct vm_fault *vmf) 4201 { 4202 struct vm_area_struct *vma = vmf->vma 4203 struct folio *swapcache, *folio = NUL 4204 DECLARE_WAITQUEUE(wait, current); 4205 struct page *page; 4206 struct swap_info_struct *si = NULL; 4207 rmap_t rmap_flags = RMAP_NONE; 4208 bool need_clear_cache = false; 4209 bool exclusive = false; 4210 swp_entry_t entry; 4211 pte_t pte; 4212 vm_fault_t ret = 0; 4213 void *shadow = NULL; 4214 int nr_pages; 4215 unsigned long page_idx; 4216 unsigned long address; 4217 pte_t *ptep; 4218 4219 if (!pte_unmap_same(vmf)) 4220 goto out; 4221 4222 entry = pte_to_swp_entry(vmf->orig_pt 4223 if (unlikely(non_swap_entry(entry))) 4224 if (is_migration_entry(entry) 4225 migration_entry_wait( 4226 4227 } else if (is_device_exclusiv 4228 vmf->page = pfn_swap_ 4229 ret = remove_device_e 4230 } else if (is_device_private_ 4231 if (vmf->flags & FAUL 4232 /* 4233 * migrate_to 4234 * under VMA 4235 */ 4236 vma_end_read( 4237 ret = VM_FAUL 4238 goto out; 4239 } 4240 4241 vmf->page = pfn_swap_ 4242 vmf->pte = pte_offset 4243 vmf-> 4244 if (unlikely(!vmf->pt 4245 !pte_sam 4246 4247 goto unlock; 4248 4249 /* 4250 * Get a page referen 4251 * freed. 4252 */ 4253 get_page(vmf->page); 4254 pte_unmap_unlock(vmf- 4255 ret = vmf->page->pgma 4256 put_page(vmf->page); 4257 } else if (is_hwpoison_entry( 4258 ret = VM_FAULT_HWPOIS 4259 } else if (is_pte_marker_entr 4260 ret = handle_pte_mark 4261 } else { 4262 print_bad_pte(vma, vm 4263 ret = VM_FAULT_SIGBUS 4264 } 4265 goto out; 4266 } 4267 4268 /* Prevent swapoff from happening to 4269 si = get_swap_device(entry); 4270 if (unlikely(!si)) 4271 goto out; 4272 4273 folio = swap_cache_get_folio(entry, v 4274 if (folio) 4275 page = folio_file_page(folio, 4276 swapcache = folio; 4277 4278 if (!folio) { 4279 if (data_race(si->flags & SWP 4280 __swap_count(entry) == 1) 4281 /* skip swapcache */ 4282 folio = alloc_swap_fo 4283 if (folio) { 4284 __folio_set_l 4285 __folio_set_s 4286 4287 nr_pages = fo 4288 if (folio_tes 4289 entry 4290 /* 4291 * Prevent pa 4292 * the cache 4293 * may finish 4294 * swapout re 4295 * undetectab 4296 * to entry r 4297 */ 4298 if (swapcache 4299 /* 4300 * Re 4301 * re 4302 */ 4303 add_w 4304 sched 4305 remov 4306 goto 4307 } 4308 need_clear_ca 4309 4310 mem_cgroup_sw 4311 4312 shadow = get_ 4313 if (shadow) 4314 worki 4315 4316 folio_add_lru 4317 4318 /* To provide 4319 folio->swap = 4320 swap_read_fol 4321 folio->privat 4322 } 4323 } else { 4324 folio = swapin_readah 4325 4326 swapcache = folio; 4327 } 4328 4329 if (!folio) { 4330 /* 4331 * Back out if somebo 4332 * while we released 4333 */ 4334 vmf->pte = pte_offset 4335 vmf-> 4336 if (likely(vmf->pte & 4337 pte_same(p 4338 ret = VM_FAUL 4339 goto unlock; 4340 } 4341 4342 /* Had to read the page from 4343 ret = VM_FAULT_MAJOR; 4344 count_vm_event(PGMAJFAULT); 4345 count_memcg_event_mm(vma->vm_ 4346 page = folio_file_page(folio, 4347 } else if (PageHWPoison(page)) { 4348 /* 4349 * hwpoisoned dirty swapcache 4350 * owner processes (which may 4351 */ 4352 ret = VM_FAULT_HWPOISON; 4353 goto out_release; 4354 } 4355 4356 ret |= folio_lock_or_retry(folio, vmf 4357 if (ret & VM_FAULT_RETRY) 4358 goto out_release; 4359 4360 if (swapcache) { 4361 /* 4362 * Make sure folio_free_swap( 4363 * swapcache from under us. 4364 * below, are not enough to e 4365 * swapcache, we need to chec 4366 * changed. 4367 */ 4368 if (unlikely(!folio_test_swap 4369 page_swap_entry( 4370 goto out_page; 4371 4372 /* 4373 * KSM sometimes has to copy 4374 * page->index of !PageKSM() 4375 * anon VMA -- PageKSM() is l 4376 */ 4377 folio = ksm_might_need_to_cop 4378 if (unlikely(!folio)) { 4379 ret = VM_FAULT_OOM; 4380 folio = swapcache; 4381 goto out_page; 4382 } else if (unlikely(folio == 4383 ret = VM_FAULT_HWPOIS 4384 folio = swapcache; 4385 goto out_page; 4386 } 4387 if (folio != swapcache) 4388 page = folio_page(fol 4389 4390 /* 4391 * If we want to map a page t 4392 * have to detect via the ref 4393 * owner. Try removing the ex 4394 * caches if required. 4395 */ 4396 if ((vmf->flags & FAULT_FLAG_ 4397 !folio_test_ksm(folio) && 4398 lru_add_drain(); 4399 } 4400 4401 folio_throttle_swaprate(folio, GFP_KE 4402 4403 /* 4404 * Back out if somebody else already 4405 */ 4406 vmf->pte = pte_offset_map_lock(vma->v 4407 &vmf->ptl); 4408 if (unlikely(!vmf->pte || !pte_same(p 4409 goto out_nomap; 4410 4411 if (unlikely(!folio_test_uptodate(fol 4412 ret = VM_FAULT_SIGBUS; 4413 goto out_nomap; 4414 } 4415 4416 /* allocated large folios for SWP_SYN 4417 if (folio_test_large(folio) && !folio 4418 unsigned long nr = folio_nr_p 4419 unsigned long folio_start = A 4420 unsigned long idx = (vmf->add 4421 pte_t *folio_ptep = vmf->pte 4422 pte_t folio_pte = ptep_get(fo 4423 4424 if (!pte_same(folio_pte, pte_ 4425 swap_pte_batch(folio_ptep 4426 goto out_nomap; 4427 4428 page_idx = idx; 4429 address = folio_start; 4430 ptep = folio_ptep; 4431 goto check_folio; 4432 } 4433 4434 nr_pages = 1; 4435 page_idx = 0; 4436 address = vmf->address; 4437 ptep = vmf->pte; 4438 if (folio_test_large(folio) && folio_ 4439 int nr = folio_nr_pages(folio 4440 unsigned long idx = folio_pag 4441 unsigned long folio_start = a 4442 unsigned long folio_end = fol 4443 pte_t *folio_ptep; 4444 pte_t folio_pte; 4445 4446 if (unlikely(folio_start < ma 4447 goto check_folio; 4448 if (unlikely(folio_end > pmd_ 4449 goto check_folio; 4450 4451 folio_ptep = vmf->pte - idx; 4452 folio_pte = ptep_get(folio_pt 4453 if (!pte_same(folio_pte, pte_ 4454 swap_pte_batch(folio_ptep 4455 goto check_folio; 4456 4457 page_idx = idx; 4458 address = folio_start; 4459 ptep = folio_ptep; 4460 nr_pages = nr; 4461 entry = folio->swap; 4462 page = &folio->page; 4463 } 4464 4465 check_folio: 4466 /* 4467 * PG_anon_exclusive reuses PG_mapped 4468 * must never point at an anonymous p 4469 * PG_anon_exclusive. Sanity check th 4470 * no filesystem set PG_mappedtodisk 4471 * check after taking the PT lock and 4472 * concurrently faulted in this page 4473 */ 4474 BUG_ON(!folio_test_anon(folio) && fol 4475 BUG_ON(folio_test_anon(folio) && Page 4476 4477 /* 4478 * Check under PT lock (to protect ag 4479 * the swap entry concurrently) for c 4480 */ 4481 if (!folio_test_ksm(folio)) { 4482 exclusive = pte_swp_exclusive 4483 if (folio != swapcache) { 4484 /* 4485 * We have a fresh pa 4486 * swapcache -> certa 4487 */ 4488 exclusive = true; 4489 } else if (exclusive && folio 4490 data_race(si->flags 4491 /* 4492 * This is tricky: no 4493 * concurrent page mo 4494 * 4495 * So if we stumble o 4496 * we must not set th 4497 * map it writable wi 4498 * while still under 4499 * 4500 * For these problema 4501 * exclusive marker: 4502 * writeback only if 4503 * there are no unexp 4504 * unmapping succeede 4505 * further GUP refere 4506 * appear, so droppin 4507 * it only R/O is fin 4508 */ 4509 exclusive = false; 4510 } 4511 } 4512 4513 /* 4514 * Some architectures may have to res 4515 * when reading from swap. This metad 4516 * so this must be called before swap 4517 */ 4518 arch_swap_restore(folio_swap(entry, f 4519 4520 /* 4521 * Remove the swap entry and conditio 4522 * We're already holding a reference 4523 * yet. 4524 */ 4525 swap_free_nr(entry, nr_pages); 4526 if (should_try_to_free_swap(folio, vm 4527 folio_free_swap(folio); 4528 4529 add_mm_counter(vma->vm_mm, MM_ANONPAG 4530 add_mm_counter(vma->vm_mm, MM_SWAPENT 4531 pte = mk_pte(page, vma->vm_page_prot) 4532 if (pte_swp_soft_dirty(vmf->orig_pte) 4533 pte = pte_mksoft_dirty(pte); 4534 if (pte_swp_uffd_wp(vmf->orig_pte)) 4535 pte = pte_mkuffd_wp(pte); 4536 4537 /* 4538 * Same logic as in do_wp_page(); how 4539 * certainly not shared either becaus 4540 * exposing them to the swapcache or 4541 * exclusivity. 4542 */ 4543 if (!folio_test_ksm(folio) && 4544 (exclusive || folio_ref_count(fol 4545 if ((vma->vm_flags & VM_WRITE 4546 !pte_needs_soft_dirty_wp( 4547 pte = pte_mkwrite(pte 4548 if (vmf->flags & FAUL 4549 pte = pte_mkd 4550 vmf->flags &= 4551 } 4552 } 4553 rmap_flags |= RMAP_EXCLUSIVE; 4554 } 4555 folio_ref_add(folio, nr_pages - 1); 4556 flush_icache_pages(vma, page, nr_page 4557 vmf->orig_pte = pte_advance_pfn(pte, 4558 4559 /* ksm created a completely new copy 4560 if (unlikely(folio != swapcache && sw 4561 folio_add_new_anon_rmap(folio 4562 folio_add_lru_vma(folio, vma) 4563 } else if (!folio_test_anon(folio)) { 4564 /* 4565 * We currently only expect s 4566 * fully exclusive or fully s 4567 * folios which are fully exc 4568 * folios within swapcache he 4569 */ 4570 VM_WARN_ON_ONCE(folio_test_la 4571 VM_WARN_ON_FOLIO(!folio_test_ 4572 folio_add_new_anon_rmap(folio 4573 } else { 4574 folio_add_anon_rmap_ptes(foli 4575 rmap_ 4576 } 4577 4578 VM_BUG_ON(!folio_test_anon(folio) || 4579 (pte_write(pte) && !P 4580 set_ptes(vma->vm_mm, address, ptep, p 4581 arch_do_swap_page_nr(vma->vm_mm, vma, 4582 pte, pte, nr_pages); 4583 4584 folio_unlock(folio); 4585 if (folio != swapcache && swapcache) 4586 /* 4587 * Hold the lock to avoid the 4588 * until we take the PT lock 4589 * (to avoid false positives 4590 * further safety release the 4591 * so that the swap count won 4592 * parallel locked swapcache. 4593 */ 4594 folio_unlock(swapcache); 4595 folio_put(swapcache); 4596 } 4597 4598 if (vmf->flags & FAULT_FLAG_WRITE) { 4599 ret |= do_wp_page(vmf); 4600 if (ret & VM_FAULT_ERROR) 4601 ret &= VM_FAULT_ERROR 4602 goto out; 4603 } 4604 4605 /* No need to invalidate - it was non 4606 update_mmu_cache_range(vmf, vma, addr 4607 unlock: 4608 if (vmf->pte) 4609 pte_unmap_unlock(vmf->pte, vm 4610 out: 4611 /* Clear the swap cache pin for direc 4612 if (need_clear_cache) { 4613 swapcache_clear(si, entry, nr 4614 if (waitqueue_active(&swapcac 4615 wake_up(&swapcache_wq 4616 } 4617 if (si) 4618 put_swap_device(si); 4619 return ret; 4620 out_nomap: 4621 if (vmf->pte) 4622 pte_unmap_unlock(vmf->pte, vm 4623 out_page: 4624 folio_unlock(folio); 4625 out_release: 4626 folio_put(folio); 4627 if (folio != swapcache && swapcache) 4628 folio_unlock(swapcache); 4629 folio_put(swapcache); 4630 } 4631 if (need_clear_cache) { 4632 swapcache_clear(si, entry, nr 4633 if (waitqueue_active(&swapcac 4634 wake_up(&swapcache_wq 4635 } 4636 if (si) 4637 put_swap_device(si); 4638 return ret; 4639 } 4640 4641 static bool pte_range_none(pte_t *pte, int nr 4642 { 4643 int i; 4644 4645 for (i = 0; i < nr_pages; i++) { 4646 if (!pte_none(ptep_get_lockle 4647 return false; 4648 } 4649 4650 return true; 4651 } 4652 4653 static struct folio *alloc_anon_folio(struct 4654 { 4655 struct vm_area_struct *vma = vmf->vma 4656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4657 unsigned long orders; 4658 struct folio *folio; 4659 unsigned long addr; 4660 pte_t *pte; 4661 gfp_t gfp; 4662 int order; 4663 4664 /* 4665 * If uffd is active for the vma we n 4666 * maintain the uffd semantics. 4667 */ 4668 if (unlikely(userfaultfd_armed(vma))) 4669 goto fallback; 4670 4671 /* 4672 * Get a list of all the (large) orde 4673 * for this vma. Then filter out the 4674 * the faulting address and still be 4675 */ 4676 orders = thp_vma_allowable_orders(vma 4677 TVA_IN_PF | TVA_ENFOR 4678 orders = thp_vma_suitable_orders(vma, 4679 4680 if (!orders) 4681 goto fallback; 4682 4683 pte = pte_offset_map(vmf->pmd, vmf->a 4684 if (!pte) 4685 return ERR_PTR(-EAGAIN); 4686 4687 /* 4688 * Find the highest order where the a 4689 * pte_none(). Note that all remainin 4690 * pte_none(). 4691 */ 4692 order = highest_order(orders); 4693 while (orders) { 4694 addr = ALIGN_DOWN(vmf->addres 4695 if (pte_range_none(pte + pte_ 4696 break; 4697 order = next_order(&orders, o 4698 } 4699 4700 pte_unmap(pte); 4701 4702 if (!orders) 4703 goto fallback; 4704 4705 /* Try allocating the highest of the 4706 gfp = vma_thp_gfp_mask(vma); 4707 while (orders) { 4708 addr = ALIGN_DOWN(vmf->addres 4709 folio = vma_alloc_folio(gfp, 4710 if (folio) { 4711 if (mem_cgroup_charge 4712 count_mthp_st 4713 folio_put(fol 4714 goto next; 4715 } 4716 folio_throttle_swapra 4717 folio_zero_user(folio 4718 return folio; 4719 } 4720 next: 4721 count_mthp_stat(order, MTHP_S 4722 order = next_order(&orders, o 4723 } 4724 4725 fallback: 4726 #endif 4727 return folio_prealloc(vma->vm_mm, vma 4728 } 4729 4730 /* 4731 * We enter with non-exclusive mmap_lock (to 4732 * but allow concurrent faults), and pte mapp 4733 * We return with mmap_lock still held, but p 4734 */ 4735 static vm_fault_t do_anonymous_page(struct vm 4736 { 4737 struct vm_area_struct *vma = vmf->vma 4738 unsigned long addr = vmf->address; 4739 struct folio *folio; 4740 vm_fault_t ret = 0; 4741 int nr_pages = 1; 4742 pte_t entry; 4743 4744 /* File mapping without ->vm_ops ? */ 4745 if (vma->vm_flags & VM_SHARED) 4746 return VM_FAULT_SIGBUS; 4747 4748 /* 4749 * Use pte_alloc() instead of pte_all 4750 * be distinguished from a transient 4751 */ 4752 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4753 return VM_FAULT_OOM; 4754 4755 /* Use the zero-page for reads */ 4756 if (!(vmf->flags & FAULT_FLAG_WRITE) 4757 !mm_forbids_zeropage( 4758 entry = pte_mkspecial(pfn_pte 4759 4760 vmf->pte = pte_offset_map_loc 4761 vmf->address, 4762 if (!vmf->pte) 4763 goto unlock; 4764 if (vmf_pte_changed(vmf)) { 4765 update_mmu_tlb(vma, v 4766 goto unlock; 4767 } 4768 ret = check_stable_address_sp 4769 if (ret) 4770 goto unlock; 4771 /* Deliver the page fault to 4772 if (userfaultfd_missing(vma)) 4773 pte_unmap_unlock(vmf- 4774 return handle_userfau 4775 } 4776 goto setpte; 4777 } 4778 4779 /* Allocate our own private page. */ 4780 ret = vmf_anon_prepare(vmf); 4781 if (ret) 4782 return ret; 4783 /* Returns NULL on OOM or ERR_PTR(-EA 4784 folio = alloc_anon_folio(vmf); 4785 if (IS_ERR(folio)) 4786 return 0; 4787 if (!folio) 4788 goto oom; 4789 4790 nr_pages = folio_nr_pages(folio); 4791 addr = ALIGN_DOWN(vmf->address, nr_pa 4792 4793 /* 4794 * The memory barrier inside __folio_ 4795 * preceding stores to the page conte 4796 * the set_pte_at() write. 4797 */ 4798 __folio_mark_uptodate(folio); 4799 4800 entry = mk_pte(&folio->page, vma->vm_ 4801 entry = pte_sw_mkyoung(entry); 4802 if (vma->vm_flags & VM_WRITE) 4803 entry = pte_mkwrite(pte_mkdir 4804 4805 vmf->pte = pte_offset_map_lock(vma->v 4806 if (!vmf->pte) 4807 goto release; 4808 if (nr_pages == 1 && vmf_pte_changed( 4809 update_mmu_tlb(vma, addr, vmf 4810 goto release; 4811 } else if (nr_pages > 1 && !pte_range 4812 update_mmu_tlb_range(vma, add 4813 goto release; 4814 } 4815 4816 ret = check_stable_address_space(vma- 4817 if (ret) 4818 goto release; 4819 4820 /* Deliver the page fault to userland 4821 if (userfaultfd_missing(vma)) { 4822 pte_unmap_unlock(vmf->pte, vm 4823 folio_put(folio); 4824 return handle_userfault(vmf, 4825 } 4826 4827 folio_ref_add(folio, nr_pages - 1); 4828 add_mm_counter(vma->vm_mm, MM_ANONPAG 4829 count_mthp_stat(folio_order(folio), M 4830 folio_add_new_anon_rmap(folio, vma, a 4831 folio_add_lru_vma(folio, vma); 4832 setpte: 4833 if (vmf_orig_pte_uffd_wp(vmf)) 4834 entry = pte_mkuffd_wp(entry); 4835 set_ptes(vma->vm_mm, addr, vmf->pte, 4836 4837 /* No need to invalidate - it was non 4838 update_mmu_cache_range(vmf, vma, addr 4839 unlock: 4840 if (vmf->pte) 4841 pte_unmap_unlock(vmf->pte, vm 4842 return ret; 4843 release: 4844 folio_put(folio); 4845 goto unlock; 4846 oom: 4847 return VM_FAULT_OOM; 4848 } 4849 4850 /* 4851 * The mmap_lock must have been held on entry 4852 * released depending on flags and vma->vm_op 4853 * See filemap_fault() and __lock_page_retry( 4854 */ 4855 static vm_fault_t __do_fault(struct vm_fault 4856 { 4857 struct vm_area_struct *vma = vmf->vma 4858 struct folio *folio; 4859 vm_fault_t ret; 4860 4861 /* 4862 * Preallocate pte before we take pag 4863 * deadlocks for memcg reclaim which 4864 * lock_ 4865 * SetPa 4866 * unloc 4867 * lock_page(B) 4868 * lock_ 4869 * pte_alloc_one 4870 * shrink_folio_list 4871 * wait_on_page_writeback(A) 4872 * SetPa 4873 * unloc 4874 * # flu 4875 */ 4876 if (pmd_none(*vmf->pmd) && !vmf->prea 4877 vmf->prealloc_pte = pte_alloc 4878 if (!vmf->prealloc_pte) 4879 return VM_FAULT_OOM; 4880 } 4881 4882 ret = vma->vm_ops->fault(vmf); 4883 if (unlikely(ret & (VM_FAULT_ERROR | 4884 VM_FAULT_DONE_COW 4885 return ret; 4886 4887 folio = page_folio(vmf->page); 4888 if (unlikely(PageHWPoison(vmf->page)) 4889 vm_fault_t poisonret = VM_FAU 4890 if (ret & VM_FAULT_LOCKED) { 4891 if (page_mapped(vmf-> 4892 unmap_mapping 4893 /* Retry if a clean f 4894 if (mapping_evict_fol 4895 poisonret = V 4896 folio_unlock(folio); 4897 } 4898 folio_put(folio); 4899 vmf->page = NULL; 4900 return poisonret; 4901 } 4902 4903 if (unlikely(!(ret & VM_FAULT_LOCKED) 4904 folio_lock(folio); 4905 else 4906 VM_BUG_ON_PAGE(!folio_test_lo 4907 4908 return ret; 4909 } 4910 4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4912 static void deposit_prealloc_pte(struct vm_fa 4913 { 4914 struct vm_area_struct *vma = vmf->vma 4915 4916 pgtable_trans_huge_deposit(vma->vm_mm 4917 /* 4918 * We are going to consume the preall 4919 * count that as nr_ptes. 4920 */ 4921 mm_inc_nr_ptes(vma->vm_mm); 4922 vmf->prealloc_pte = NULL; 4923 } 4924 4925 vm_fault_t do_set_pmd(struct vm_fault *vmf, s 4926 { 4927 struct folio *folio = page_folio(page 4928 struct vm_area_struct *vma = vmf->vma 4929 bool write = vmf->flags & FAULT_FLAG_ 4930 unsigned long haddr = vmf->address & 4931 pmd_t entry; 4932 vm_fault_t ret = VM_FAULT_FALLBACK; 4933 4934 /* 4935 * It is too late to allocate a small 4936 * folio in the pagecache: especially 4937 * PMD mappings, but PTE-mapped THP a 4938 * PMD mappings if THPs are disabled. 4939 */ 4940 if (thp_disabled_by_hw() || vma_thp_d 4941 return ret; 4942 4943 if (!thp_vma_suitable_order(vma, hadd 4944 return ret; 4945 4946 if (folio_order(folio) != HPAGE_PMD_O 4947 return ret; 4948 page = &folio->page; 4949 4950 /* 4951 * Just backoff if any subpage of a T 4952 * the corrupted page may mapped by P 4953 * check. This kind of THP just can 4954 * the corrupted subpage should trigg 4955 */ 4956 if (unlikely(folio_test_has_hwpoisone 4957 return ret; 4958 4959 /* 4960 * Archs like ppc64 need additional s 4961 * related to pte entry. Use the prea 4962 */ 4963 if (arch_needs_pgtable_deposit() && ! 4964 vmf->prealloc_pte = pte_alloc 4965 if (!vmf->prealloc_pte) 4966 return VM_FAULT_OOM; 4967 } 4968 4969 vmf->ptl = pmd_lock(vma->vm_mm, vmf-> 4970 if (unlikely(!pmd_none(*vmf->pmd))) 4971 goto out; 4972 4973 flush_icache_pages(vma, page, HPAGE_P 4974 4975 entry = mk_huge_pmd(page, vma->vm_pag 4976 if (write) 4977 entry = maybe_pmd_mkwrite(pmd 4978 4979 add_mm_counter(vma->vm_mm, mm_counter 4980 folio_add_file_rmap_pmd(folio, page, 4981 4982 /* 4983 * deposit and withdraw with pmd lock 4984 */ 4985 if (arch_needs_pgtable_deposit()) 4986 deposit_prealloc_pte(vmf); 4987 4988 set_pmd_at(vma->vm_mm, haddr, vmf->pm 4989 4990 update_mmu_cache_pmd(vma, haddr, vmf- 4991 4992 /* fault is handled */ 4993 ret = 0; 4994 count_vm_event(THP_FILE_MAPPED); 4995 out: 4996 spin_unlock(vmf->ptl); 4997 return ret; 4998 } 4999 #else 5000 vm_fault_t do_set_pmd(struct vm_fault *vmf, s 5001 { 5002 return VM_FAULT_FALLBACK; 5003 } 5004 #endif 5005 5006 /** 5007 * set_pte_range - Set a range of PTEs to poi 5008 * @vmf: Fault decription. 5009 * @folio: The folio that contains @page. 5010 * @page: The first page to create a PTE for. 5011 * @nr: The number of PTEs to create. 5012 * @addr: The first address to create a PTE f 5013 */ 5014 void set_pte_range(struct vm_fault *vmf, stru 5015 struct page *page, unsigned i 5016 { 5017 struct vm_area_struct *vma = vmf->vma 5018 bool write = vmf->flags & FAULT_FLAG_ 5019 bool prefault = !in_range(vmf->addres 5020 pte_t entry; 5021 5022 flush_icache_pages(vma, page, nr); 5023 entry = mk_pte(page, vma->vm_page_pro 5024 5025 if (prefault && arch_wants_old_prefau 5026 entry = pte_mkold(entry); 5027 else 5028 entry = pte_sw_mkyoung(entry) 5029 5030 if (write) 5031 entry = maybe_mkwrite(pte_mkd 5032 if (unlikely(vmf_orig_pte_uffd_wp(vmf 5033 entry = pte_mkuffd_wp(entry); 5034 /* copy-on-write page */ 5035 if (write && !(vma->vm_flags & VM_SHA 5036 VM_BUG_ON_FOLIO(nr != 1, foli 5037 folio_add_new_anon_rmap(folio 5038 folio_add_lru_vma(folio, vma) 5039 } else { 5040 folio_add_file_rmap_ptes(foli 5041 } 5042 set_ptes(vma->vm_mm, addr, vmf->pte, 5043 5044 /* no need to invalidate: a not-prese 5045 update_mmu_cache_range(vmf, vma, addr 5046 } 5047 5048 static bool vmf_pte_changed(struct vm_fault * 5049 { 5050 if (vmf->flags & FAULT_FLAG_ORIG_PTE_ 5051 return !pte_same(ptep_get(vmf 5052 5053 return !pte_none(ptep_get(vmf->pte)); 5054 } 5055 5056 /** 5057 * finish_fault - finish page fault once we h 5058 * 5059 * @vmf: structure describing the fault 5060 * 5061 * This function handles all that is needed t 5062 * page to fault in is prepared. It handles l 5063 * given page, adds reverse page mapping, han 5064 * addition. 5065 * 5066 * The function expects the page to be locked 5067 * reference of a page being mapped (for the 5068 * 5069 * Return: %0 on success, %VM_FAULT_ code in 5070 */ 5071 vm_fault_t finish_fault(struct vm_fault *vmf) 5072 { 5073 struct vm_area_struct *vma = vmf->vma 5074 struct page *page; 5075 struct folio *folio; 5076 vm_fault_t ret; 5077 bool is_cow = (vmf->flags & FAULT_FLA 5078 !(vma->vm_flags & VM_SH 5079 int type, nr_pages; 5080 unsigned long addr = vmf->address; 5081 5082 /* Did we COW the page? */ 5083 if (is_cow) 5084 page = vmf->cow_page; 5085 else 5086 page = vmf->page; 5087 5088 /* 5089 * check even for read faults because 5090 * page 5091 */ 5092 if (!(vma->vm_flags & VM_SHARED)) { 5093 ret = check_stable_address_sp 5094 if (ret) 5095 return ret; 5096 } 5097 5098 if (pmd_none(*vmf->pmd)) { 5099 if (PageTransCompound(page)) 5100 ret = do_set_pmd(vmf, 5101 if (ret != VM_FAULT_F 5102 return ret; 5103 } 5104 5105 if (vmf->prealloc_pte) 5106 pmd_install(vma->vm_m 5107 else if (unlikely(pte_alloc(v 5108 return VM_FAULT_OOM; 5109 } 5110 5111 folio = page_folio(page); 5112 nr_pages = folio_nr_pages(folio); 5113 5114 /* 5115 * Using per-page fault to maintain t 5116 * approach also applies to non-anony 5117 * inflating the RSS of the process. 5118 */ 5119 if (!vma_is_anon_shmem(vma) || unlike 5120 nr_pages = 1; 5121 } else if (nr_pages > 1) { 5122 pgoff_t idx = folio_page_idx( 5123 /* The page offset of vmf->ad 5124 pgoff_t vma_off = vmf->pgoff 5125 /* The index of the entry in 5126 pgoff_t pte_off = pte_index(v 5127 5128 /* 5129 * Fallback to per-page fault 5130 * cache beyond the VMA limit 5131 */ 5132 if (unlikely(vma_off < idx || 5133 vma_off + (nr_pag 5134 pte_off < idx || 5135 pte_off + (nr_pag 5136 nr_pages = 1; 5137 } else { 5138 /* Now we can set map 5139 addr = vmf->address - 5140 page = &folio->page; 5141 } 5142 } 5143 5144 vmf->pte = pte_offset_map_lock(vma->v 5145 addr, 5146 if (!vmf->pte) 5147 return VM_FAULT_NOPAGE; 5148 5149 /* Re-check under ptl */ 5150 if (nr_pages == 1 && unlikely(vmf_pte 5151 update_mmu_tlb(vma, addr, vmf 5152 ret = VM_FAULT_NOPAGE; 5153 goto unlock; 5154 } else if (nr_pages > 1 && !pte_range 5155 update_mmu_tlb_range(vma, add 5156 ret = VM_FAULT_NOPAGE; 5157 goto unlock; 5158 } 5159 5160 folio_ref_add(folio, nr_pages - 1); 5161 set_pte_range(vmf, folio, page, nr_pa 5162 type = is_cow ? MM_ANONPAGES : mm_cou 5163 add_mm_counter(vma->vm_mm, type, nr_p 5164 ret = 0; 5165 5166 unlock: 5167 pte_unmap_unlock(vmf->pte, vmf->ptl); 5168 return ret; 5169 } 5170 5171 static unsigned long fault_around_pages __rea 5172 65536 >> PAGE_SHIFT; 5173 5174 #ifdef CONFIG_DEBUG_FS 5175 static int fault_around_bytes_get(void *data, 5176 { 5177 *val = fault_around_pages << PAGE_SHI 5178 return 0; 5179 } 5180 5181 /* 5182 * fault_around_bytes must be rounded down to 5183 * what do_fault_around() expects to see. 5184 */ 5185 static int fault_around_bytes_set(void *data, 5186 { 5187 if (val / PAGE_SIZE > PTRS_PER_PTE) 5188 return -EINVAL; 5189 5190 /* 5191 * The minimum value is 1 page, howev 5192 * at all. See should_fault_around(). 5193 */ 5194 val = max(val, PAGE_SIZE); 5195 fault_around_pages = rounddown_pow_of 5196 5197 return 0; 5198 } 5199 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_f 5200 fault_around_bytes_get, fault 5201 5202 static int __init fault_around_debugfs(void) 5203 { 5204 debugfs_create_file_unsafe("fault_aro 5205 &fault_aro 5206 return 0; 5207 } 5208 late_initcall(fault_around_debugfs); 5209 #endif 5210 5211 /* 5212 * do_fault_around() tries to map few pages a 5213 * is that the pages will be needed soon and 5214 * faults to handle. 5215 * 5216 * It uses vm_ops->map_pages() to map the pag 5217 * not ready to be mapped: not up-to-date, lo 5218 * 5219 * This function doesn't cross VMA or page ta 5220 * map_pages() and acquire a PTE lock only on 5221 * 5222 * fault_around_pages defines how many pages 5223 * do_fault_around() expects it to be set to 5224 * to PTRS_PER_PTE. 5225 * 5226 * The virtual address of the area that we ma 5227 * fault_around_pages * PAGE_SIZE rounded dow 5228 * (and therefore to page order). This way i 5229 * that we don't cross page table boundaries. 5230 */ 5231 static vm_fault_t do_fault_around(struct vm_f 5232 { 5233 pgoff_t nr_pages = READ_ONCE(fault_ar 5234 pgoff_t pte_off = pte_index(vmf->addr 5235 /* The page offset of vmf->address wi 5236 pgoff_t vma_off = vmf->pgoff - vmf->v 5237 pgoff_t from_pte, to_pte; 5238 vm_fault_t ret; 5239 5240 /* The PTE offset of the start addres 5241 from_pte = max(ALIGN_DOWN(pte_off, nr 5242 pte_off - min(pte_off, 5243 5244 /* The PTE offset of the end address, 5245 to_pte = min3(from_pte + nr_pages, (p 5246 pte_off + vma_pages(vmf 5247 5248 if (pmd_none(*vmf->pmd)) { 5249 vmf->prealloc_pte = pte_alloc 5250 if (!vmf->prealloc_pte) 5251 return VM_FAULT_OOM; 5252 } 5253 5254 rcu_read_lock(); 5255 ret = vmf->vma->vm_ops->map_pages(vmf 5256 vmf->pgoff + from_pte 5257 vmf->pgoff + to_pte - 5258 rcu_read_unlock(); 5259 5260 return ret; 5261 } 5262 5263 /* Return true if we should do read fault-aro 5264 static inline bool should_fault_around(struct 5265 { 5266 /* No ->map_pages? No way to fault a 5267 if (!vmf->vma->vm_ops->map_pages) 5268 return false; 5269 5270 if (uffd_disable_fault_around(vmf->vm 5271 return false; 5272 5273 /* A single page implies no faulting 5274 return fault_around_pages > 1; 5275 } 5276 5277 static vm_fault_t do_read_fault(struct vm_fau 5278 { 5279 vm_fault_t ret = 0; 5280 struct folio *folio; 5281 5282 /* 5283 * Let's call ->map_pages() first and 5284 * if page by the offset is not ready 5285 * something). 5286 */ 5287 if (should_fault_around(vmf)) { 5288 ret = do_fault_around(vmf); 5289 if (ret) 5290 return ret; 5291 } 5292 5293 ret = vmf_can_call_fault(vmf); 5294 if (ret) 5295 return ret; 5296 5297 ret = __do_fault(vmf); 5298 if (unlikely(ret & (VM_FAULT_ERROR | 5299 return ret; 5300 5301 ret |= finish_fault(vmf); 5302 folio = page_folio(vmf->page); 5303 folio_unlock(folio); 5304 if (unlikely(ret & (VM_FAULT_ERROR | 5305 folio_put(folio); 5306 return ret; 5307 } 5308 5309 static vm_fault_t do_cow_fault(struct vm_faul 5310 { 5311 struct vm_area_struct *vma = vmf->vma 5312 struct folio *folio; 5313 vm_fault_t ret; 5314 5315 ret = vmf_can_call_fault(vmf); 5316 if (!ret) 5317 ret = vmf_anon_prepare(vmf); 5318 if (ret) 5319 return ret; 5320 5321 folio = folio_prealloc(vma->vm_mm, vm 5322 if (!folio) 5323 return VM_FAULT_OOM; 5324 5325 vmf->cow_page = &folio->page; 5326 5327 ret = __do_fault(vmf); 5328 if (unlikely(ret & (VM_FAULT_ERROR | 5329 goto uncharge_out; 5330 if (ret & VM_FAULT_DONE_COW) 5331 return ret; 5332 5333 if (copy_mc_user_highpage(vmf->cow_pa 5334 ret = VM_FAULT_HWPOISON; 5335 goto unlock; 5336 } 5337 __folio_mark_uptodate(folio); 5338 5339 ret |= finish_fault(vmf); 5340 unlock: 5341 unlock_page(vmf->page); 5342 put_page(vmf->page); 5343 if (unlikely(ret & (VM_FAULT_ERROR | 5344 goto uncharge_out; 5345 return ret; 5346 uncharge_out: 5347 folio_put(folio); 5348 return ret; 5349 } 5350 5351 static vm_fault_t do_shared_fault(struct vm_f 5352 { 5353 struct vm_area_struct *vma = vmf->vma 5354 vm_fault_t ret, tmp; 5355 struct folio *folio; 5356 5357 ret = vmf_can_call_fault(vmf); 5358 if (ret) 5359 return ret; 5360 5361 ret = __do_fault(vmf); 5362 if (unlikely(ret & (VM_FAULT_ERROR | 5363 return ret; 5364 5365 folio = page_folio(vmf->page); 5366 5367 /* 5368 * Check if the backing address space 5369 * about to become writable 5370 */ 5371 if (vma->vm_ops->page_mkwrite) { 5372 folio_unlock(folio); 5373 tmp = do_page_mkwrite(vmf, fo 5374 if (unlikely(!tmp || 5375 (tmp & (VM_FA 5376 folio_put(folio); 5377 return tmp; 5378 } 5379 } 5380 5381 ret |= finish_fault(vmf); 5382 if (unlikely(ret & (VM_FAULT_ERROR | 5383 VM_FA 5384 folio_unlock(folio); 5385 folio_put(folio); 5386 return ret; 5387 } 5388 5389 ret |= fault_dirty_shared_page(vmf); 5390 return ret; 5391 } 5392 5393 /* 5394 * We enter with non-exclusive mmap_lock (to 5395 * but allow concurrent faults). 5396 * The mmap_lock may have been released depen 5397 * return value. See filemap_fault() and __f 5398 * If mmap_lock is released, vma may become i 5399 * by other thread calling munmap()). 5400 */ 5401 static vm_fault_t do_fault(struct vm_fault *v 5402 { 5403 struct vm_area_struct *vma = vmf->vma 5404 struct mm_struct *vm_mm = vma->vm_mm; 5405 vm_fault_t ret; 5406 5407 /* 5408 * The VMA was not fully populated on 5409 */ 5410 if (!vma->vm_ops->fault) { 5411 vmf->pte = pte_offset_map_loc 5412 5413 if (unlikely(!vmf->pte)) 5414 ret = VM_FAULT_SIGBUS 5415 else { 5416 /* 5417 * Make sure this is 5418 * by holding ptl and 5419 * of pte involves: t 5420 * we don't have conc 5421 * followed by an upd 5422 */ 5423 if (unlikely(pte_none 5424 ret = VM_FAUL 5425 else 5426 ret = VM_FAUL 5427 5428 pte_unmap_unlock(vmf- 5429 } 5430 } else if (!(vmf->flags & FAULT_FLAG_ 5431 ret = do_read_fault(vmf); 5432 else if (!(vma->vm_flags & VM_SHARED) 5433 ret = do_cow_fault(vmf); 5434 else 5435 ret = do_shared_fault(vmf); 5436 5437 /* preallocated pagetable is unused: 5438 if (vmf->prealloc_pte) { 5439 pte_free(vm_mm, vmf->prealloc 5440 vmf->prealloc_pte = NULL; 5441 } 5442 return ret; 5443 } 5444 5445 int numa_migrate_check(struct folio *folio, s 5446 unsigned long addr, int 5447 bool writable, int *las 5448 { 5449 struct vm_area_struct *vma = vmf->vma 5450 5451 /* 5452 * Avoid grouping on RO pages in gene 5453 * much anyway since they can be in s 5454 * the case where a mapping is writab 5455 * to it but pte_write gets cleared d 5456 * pte_dirty has unpredictable behavi 5457 * background writeback, dirty balanc 5458 */ 5459 if (!writable) 5460 *flags |= TNF_NO_GROUP; 5461 5462 /* 5463 * Flag if the folio is shared betwee 5464 * is later used when determining whe 5465 */ 5466 if (folio_likely_mapped_shared(folio) 5467 *flags |= TNF_SHARED; 5468 /* 5469 * For memory tiering mode, cpupid of 5470 * to record page access time. So us 5471 */ 5472 if (folio_use_access_time(folio)) 5473 *last_cpupid = (-1 & LAST_CPU 5474 else 5475 *last_cpupid = folio_last_cpu 5476 5477 /* Record the current PID acceesing V 5478 vma_set_access_pid_bit(vma); 5479 5480 count_vm_numa_event(NUMA_HINT_FAULTS) 5481 #ifdef CONFIG_NUMA_BALANCING 5482 count_memcg_folio_events(folio, NUMA_ 5483 #endif 5484 if (folio_nid(folio) == numa_node_id( 5485 count_vm_numa_event(NUMA_HINT 5486 *flags |= TNF_FAULT_LOCAL; 5487 } 5488 5489 return mpol_misplaced(folio, vmf, add 5490 } 5491 5492 static void numa_rebuild_single_mapping(struc 5493 unsig 5494 bool 5495 { 5496 pte_t pte, old_pte; 5497 5498 old_pte = ptep_modify_prot_start(vma, 5499 pte = pte_modify(old_pte, vma->vm_pag 5500 pte = pte_mkyoung(pte); 5501 if (writable) 5502 pte = pte_mkwrite(pte, vma); 5503 ptep_modify_prot_commit(vma, fault_ad 5504 update_mmu_cache_range(vmf, vma, faul 5505 } 5506 5507 static void numa_rebuild_large_mapping(struct 5508 struct 5509 bool i 5510 { 5511 int nr = pte_pfn(fault_pte) - folio_p 5512 unsigned long start, end, addr = vmf- 5513 unsigned long addr_start = addr - (nr 5514 unsigned long pt_start = ALIGN_DOWN(a 5515 pte_t *start_ptep; 5516 5517 /* Stay within the VMA and within the 5518 start = max3(addr_start, pt_start, vm 5519 end = min3(addr_start + folio_size(fo 5520 vma->vm_end); 5521 start_ptep = vmf->pte - ((addr - star 5522 5523 /* Restore all PTEs' mapping of the l 5524 for (addr = start; addr != end; start 5525 pte_t ptent = ptep_get(start_ 5526 bool writable = false; 5527 5528 if (!pte_present(ptent) || !p 5529 continue; 5530 5531 if (pfn_folio(pte_pfn(ptent)) 5532 continue; 5533 5534 if (!ignore_writable) { 5535 ptent = pte_modify(pt 5536 writable = pte_write( 5537 if (!writable && pte_ 5538 can_change_pte_wr 5539 writable = tr 5540 } 5541 5542 numa_rebuild_single_mapping(v 5543 } 5544 } 5545 5546 static vm_fault_t do_numa_page(struct vm_faul 5547 { 5548 struct vm_area_struct *vma = vmf->vma 5549 struct folio *folio = NULL; 5550 int nid = NUMA_NO_NODE; 5551 bool writable = false, ignore_writabl 5552 bool pte_write_upgrade = vma_wants_ma 5553 int last_cpupid; 5554 int target_nid; 5555 pte_t pte, old_pte; 5556 int flags = 0, nr_pages; 5557 5558 /* 5559 * The pte cannot be used safely unti 5560 * table lock, that its contents have 5561 */ 5562 spin_lock(vmf->ptl); 5563 /* Read the live PTE from the page ta 5564 old_pte = ptep_get(vmf->pte); 5565 5566 if (unlikely(!pte_same(old_pte, vmf-> 5567 pte_unmap_unlock(vmf->pte, vm 5568 return 0; 5569 } 5570 5571 pte = pte_modify(old_pte, vma->vm_pag 5572 5573 /* 5574 * Detect now whether the PTE could b 5575 * is only valid while holding the PT 5576 */ 5577 writable = pte_write(pte); 5578 if (!writable && pte_write_upgrade && 5579 can_change_pte_writable(vma, vmf- 5580 writable = true; 5581 5582 folio = vm_normal_folio(vma, vmf->add 5583 if (!folio || folio_is_zone_device(fo 5584 goto out_map; 5585 5586 nid = folio_nid(folio); 5587 nr_pages = folio_nr_pages(folio); 5588 5589 target_nid = numa_migrate_check(folio 5590 writa 5591 if (target_nid == NUMA_NO_NODE) 5592 goto out_map; 5593 if (migrate_misplaced_folio_prepare(f 5594 flags |= TNF_MIGRATE_FAIL; 5595 goto out_map; 5596 } 5597 /* The folio is isolated and isolatio 5598 pte_unmap_unlock(vmf->pte, vmf->ptl); 5599 writable = false; 5600 ignore_writable = true; 5601 5602 /* Migrate to the requested node */ 5603 if (!migrate_misplaced_folio(folio, v 5604 nid = target_nid; 5605 flags |= TNF_MIGRATED; 5606 task_numa_fault(last_cpupid, 5607 return 0; 5608 } 5609 5610 flags |= TNF_MIGRATE_FAIL; 5611 vmf->pte = pte_offset_map_lock(vma->v 5612 vmf->a 5613 if (unlikely(!vmf->pte)) 5614 return 0; 5615 if (unlikely(!pte_same(ptep_get(vmf-> 5616 pte_unmap_unlock(vmf->pte, vm 5617 return 0; 5618 } 5619 out_map: 5620 /* 5621 * Make it present again, depending o 5622 * non-accessible ptes, some can allo 5623 */ 5624 if (folio && folio_test_large(folio)) 5625 numa_rebuild_large_mapping(vm 5626 pt 5627 else 5628 numa_rebuild_single_mapping(v 5629 w 5630 pte_unmap_unlock(vmf->pte, vmf->ptl); 5631 5632 if (nid != NUMA_NO_NODE) 5633 task_numa_fault(last_cpupid, 5634 return 0; 5635 } 5636 5637 static inline vm_fault_t create_huge_pmd(stru 5638 { 5639 struct vm_area_struct *vma = vmf->vma 5640 if (vma_is_anonymous(vma)) 5641 return do_huge_pmd_anonymous_ 5642 if (vma->vm_ops->huge_fault) 5643 return vma->vm_ops->huge_faul 5644 return VM_FAULT_FALLBACK; 5645 } 5646 5647 /* `inline' is required to avoid gcc 4.1.2 bu 5648 static inline vm_fault_t wp_huge_pmd(struct v 5649 { 5650 struct vm_area_struct *vma = vmf->vma 5651 const bool unshare = vmf->flags & FAU 5652 vm_fault_t ret; 5653 5654 if (vma_is_anonymous(vma)) { 5655 if (likely(!unshare) && 5656 userfaultfd_huge_pmd_wp(v 5657 if (userfaultfd_wp_as 5658 goto split; 5659 return handle_userfau 5660 } 5661 return do_huge_pmd_wp_page(vm 5662 } 5663 5664 if (vma->vm_flags & (VM_SHARED | VM_M 5665 if (vma->vm_ops->huge_fault) 5666 ret = vma->vm_ops->hu 5667 if (!(ret & VM_FAULT_ 5668 return ret; 5669 } 5670 } 5671 5672 split: 5673 /* COW or write-notify handled on pte 5674 __split_huge_pmd(vma, vmf->pmd, vmf-> 5675 5676 return VM_FAULT_FALLBACK; 5677 } 5678 5679 static vm_fault_t create_huge_pud(struct vm_f 5680 { 5681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && 5682 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ 5683 struct vm_area_struct *vma = vmf->vma 5684 /* No support for anonymous transpare 5685 if (vma_is_anonymous(vma)) 5686 return VM_FAULT_FALLBACK; 5687 if (vma->vm_ops->huge_fault) 5688 return vma->vm_ops->huge_faul 5689 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5690 return VM_FAULT_FALLBACK; 5691 } 5692 5693 static vm_fault_t wp_huge_pud(struct vm_fault 5694 { 5695 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && 5696 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ 5697 struct vm_area_struct *vma = vmf->vma 5698 vm_fault_t ret; 5699 5700 /* No support for anonymous transpare 5701 if (vma_is_anonymous(vma)) 5702 goto split; 5703 if (vma->vm_flags & (VM_SHARED | VM_M 5704 if (vma->vm_ops->huge_fault) 5705 ret = vma->vm_ops->hu 5706 if (!(ret & VM_FAULT_ 5707 return ret; 5708 } 5709 } 5710 split: 5711 /* COW or write-notify not handled on 5712 __split_huge_pud(vma, vmf->pud, vmf-> 5713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONF 5714 return VM_FAULT_FALLBACK; 5715 } 5716 5717 /* 5718 * These routines also need to handle stuff l 5719 * and/or accessed for architectures that don 5720 * RISC architectures). The early dirtying i 5721 * 5722 * There is also a hook called "update_mmu_ca 5723 * with external mmu caches can use to update 5724 * PowerPC hashed page tables that act as ext 5725 * 5726 * We enter with non-exclusive mmap_lock (to 5727 * concurrent faults). 5728 * 5729 * The mmap_lock may have been released depen 5730 * See filemap_fault() and __folio_lock_or_re 5731 */ 5732 static vm_fault_t handle_pte_fault(struct vm_ 5733 { 5734 pte_t entry; 5735 5736 if (unlikely(pmd_none(*vmf->pmd))) { 5737 /* 5738 * Leave __pte_alloc() until 5739 * want to allocate huge page 5740 * for an instant, it will be 5741 * concurrent faults and from 5742 */ 5743 vmf->pte = NULL; 5744 vmf->flags &= ~FAULT_FLAG_ORI 5745 } else { 5746 /* 5747 * A regular pmd is establish 5748 * pmd by anon khugepaged, si 5749 * mode; but shmem or file co 5750 * it into a huge pmd: just r 5751 */ 5752 vmf->pte = pte_offset_map_nol 5753 5754 if (unlikely(!vmf->pte)) 5755 return 0; 5756 vmf->orig_pte = ptep_get_lock 5757 vmf->flags |= FAULT_FLAG_ORIG 5758 5759 if (pte_none(vmf->orig_pte)) 5760 pte_unmap(vmf->pte); 5761 vmf->pte = NULL; 5762 } 5763 } 5764 5765 if (!vmf->pte) 5766 return do_pte_missing(vmf); 5767 5768 if (!pte_present(vmf->orig_pte)) 5769 return do_swap_page(vmf); 5770 5771 if (pte_protnone(vmf->orig_pte) && vm 5772 return do_numa_page(vmf); 5773 5774 spin_lock(vmf->ptl); 5775 entry = vmf->orig_pte; 5776 if (unlikely(!pte_same(ptep_get(vmf-> 5777 update_mmu_tlb(vmf->vma, vmf- 5778 goto unlock; 5779 } 5780 if (vmf->flags & (FAULT_FLAG_WRITE|FA 5781 if (!pte_write(entry)) 5782 return do_wp_page(vmf 5783 else if (likely(vmf->flags & 5784 entry = pte_mkdirty(e 5785 } 5786 entry = pte_mkyoung(entry); 5787 if (ptep_set_access_flags(vmf->vma, v 5788 vmf->flags & 5789 update_mmu_cache_range(vmf, v 5790 vmf->pte, 1); 5791 } else { 5792 /* Skip spurious TLB flush fo 5793 if (vmf->flags & FAULT_FLAG_T 5794 goto unlock; 5795 /* 5796 * This is needed only for pr 5797 * is not yet telling us if t 5798 * This still avoids useless 5799 * with threads. 5800 */ 5801 if (vmf->flags & FAULT_FLAG_W 5802 flush_tlb_fix_spuriou 5803 5804 } 5805 unlock: 5806 pte_unmap_unlock(vmf->pte, vmf->ptl); 5807 return 0; 5808 } 5809 5810 /* 5811 * On entry, we hold either the VMA lock or t 5812 * (FAULT_FLAG_VMA_LOCK tells you which). If 5813 * the result, the mmap_lock is not held on e 5814 * and __folio_lock_or_retry(). 5815 */ 5816 static vm_fault_t __handle_mm_fault(struct vm 5817 unsigned long address, unsign 5818 { 5819 struct vm_fault vmf = { 5820 .vma = vma, 5821 .address = address & PAGE_MAS 5822 .real_address = address, 5823 .flags = flags, 5824 .pgoff = linear_page_index(vm 5825 .gfp_mask = __get_fault_gfp_m 5826 }; 5827 struct mm_struct *mm = vma->vm_mm; 5828 unsigned long vm_flags = vma->vm_flag 5829 pgd_t *pgd; 5830 p4d_t *p4d; 5831 vm_fault_t ret; 5832 5833 pgd = pgd_offset(mm, address); 5834 p4d = p4d_alloc(mm, pgd, address); 5835 if (!p4d) 5836 return VM_FAULT_OOM; 5837 5838 vmf.pud = pud_alloc(mm, p4d, address) 5839 if (!vmf.pud) 5840 return VM_FAULT_OOM; 5841 retry_pud: 5842 if (pud_none(*vmf.pud) && 5843 thp_vma_allowable_order(vma, vm_f 5844 TVA_IN_PF | T 5845 ret = create_huge_pud(&vmf); 5846 if (!(ret & VM_FAULT_FALLBACK 5847 return ret; 5848 } else { 5849 pud_t orig_pud = *vmf.pud; 5850 5851 barrier(); 5852 if (pud_trans_huge(orig_pud) 5853 5854 /* 5855 * TODO once we suppo 5856 * FAULT_FLAG_UNSHARE 5857 */ 5858 if ((flags & FAULT_FL 5859 ret = wp_huge 5860 if (!(ret & V 5861 retur 5862 } else { 5863 huge_pud_set_ 5864 return 0; 5865 } 5866 } 5867 } 5868 5869 vmf.pmd = pmd_alloc(mm, vmf.pud, addr 5870 if (!vmf.pmd) 5871 return VM_FAULT_OOM; 5872 5873 /* Huge pud page fault raced with pmd 5874 if (pud_trans_unstable(vmf.pud)) 5875 goto retry_pud; 5876 5877 if (pmd_none(*vmf.pmd) && 5878 thp_vma_allowable_order(vma, vm_f 5879 TVA_IN_PF | T 5880 ret = create_huge_pmd(&vmf); 5881 if (!(ret & VM_FAULT_FALLBACK 5882 return ret; 5883 } else { 5884 vmf.orig_pmd = pmdp_get_lockl 5885 5886 if (unlikely(is_swap_pmd(vmf. 5887 VM_BUG_ON(thp_migrati 5888 !is 5889 if (is_pmd_migration_ 5890 pmd_migration 5891 return 0; 5892 } 5893 if (pmd_trans_huge(vmf.orig_p 5894 if (pmd_protnone(vmf. 5895 return do_hug 5896 5897 if ((flags & (FAULT_F 5898 !pmd_write(vmf.or 5899 ret = wp_huge 5900 if (!(ret & V 5901 retur 5902 } else { 5903 huge_pmd_set_ 5904 return 0; 5905 } 5906 } 5907 } 5908 5909 return handle_pte_fault(&vmf); 5910 } 5911 5912 /** 5913 * mm_account_fault - Do page fault accountin 5914 * @mm: mm from which memcg should be extract 5915 * @regs: the pt_regs struct pointer. When s 5916 * of perf event counters, but we'll s 5917 * the task who triggered this page fa 5918 * @address: the faulted address. 5919 * @flags: the fault flags. 5920 * @ret: the fault retcode. 5921 * 5922 * This will take care of most of the page fa 5923 * will also include the PERF_COUNT_SW_PAGE_F 5924 * updates. However, note that the handling 5925 * still be in per-arch page fault handlers a 5926 */ 5927 static inline void mm_account_fault(struct mm 5928 unsigned 5929 vm_fault_ 5930 { 5931 bool major; 5932 5933 /* Incomplete faults will be accounte 5934 if (ret & VM_FAULT_RETRY) 5935 return; 5936 5937 /* 5938 * To preserve the behavior of older 5939 * both successful and failed faults, 5940 * which ignore failed cases. 5941 */ 5942 count_vm_event(PGFAULT); 5943 count_memcg_event_mm(mm, PGFAULT); 5944 5945 /* 5946 * Do not account for unsuccessful fa 5947 * valid). That includes arch_vma_ac 5948 * reaching here. So this is not a "t 5949 * counter. We should use the hw pro 5950 */ 5951 if (ret & VM_FAULT_ERROR) 5952 return; 5953 5954 /* 5955 * We define the fault as a major fau 5956 * is VM_FAULT_MAJOR, or if it retrie 5957 * handle it immediately previously). 5958 */ 5959 major = (ret & VM_FAULT_MAJOR) || (fl 5960 5961 if (major) 5962 current->maj_flt++; 5963 else 5964 current->min_flt++; 5965 5966 /* 5967 * If the fault is done for GUP, regs 5968 * accounting for the per thread faul 5969 * fault, and we skip the perf event 5970 */ 5971 if (!regs) 5972 return; 5973 5974 if (major) 5975 perf_sw_event(PERF_COUNT_SW_P 5976 else 5977 perf_sw_event(PERF_COUNT_SW_P 5978 } 5979 5980 #ifdef CONFIG_LRU_GEN 5981 static void lru_gen_enter_fault(struct vm_are 5982 { 5983 /* the LRU algorithm only applies to 5984 current->in_lru_fault = vma_has_recen 5985 } 5986 5987 static void lru_gen_exit_fault(void) 5988 { 5989 current->in_lru_fault = false; 5990 } 5991 #else 5992 static void lru_gen_enter_fault(struct vm_are 5993 { 5994 } 5995 5996 static void lru_gen_exit_fault(void) 5997 { 5998 } 5999 #endif /* CONFIG_LRU_GEN */ 6000 6001 static vm_fault_t sanitize_fault_flags(struct 6002 unsign 6003 { 6004 if (unlikely(*flags & FAULT_FLAG_UNSH 6005 if (WARN_ON_ONCE(*flags & FAU 6006 return VM_FAULT_SIGSE 6007 /* 6008 * FAULT_FLAG_UNSHARE only ap 6009 * just treat it like an ordi 6010 */ 6011 if (!is_cow_mapping(vma->vm_f 6012 *flags &= ~FAULT_FLAG 6013 } else if (*flags & FAULT_FLAG_WRITE) 6014 /* Write faults on read-only 6015 if (WARN_ON_ONCE(!(vma->vm_fl 6016 return VM_FAULT_SIGSE 6017 /* ... and FOLL_FORCE only ap 6018 if (WARN_ON_ONCE(!(vma->vm_fl 6019 !is_cow_mapp 6020 return VM_FAULT_SIGSE 6021 } 6022 #ifdef CONFIG_PER_VMA_LOCK 6023 /* 6024 * Per-VMA locks can't be used with F 6025 * the assumption that lock is droppe 6026 */ 6027 if (WARN_ON_ONCE((*flags & 6028 (FAULT_FLAG_VMA_LOCK 6029 (FAULT_FLAG_VMA_LOCK 6030 return VM_FAULT_SIGSEGV; 6031 #endif 6032 6033 return 0; 6034 } 6035 6036 /* 6037 * By the time we get here, we already hold t 6038 * 6039 * The mmap_lock may have been released depen 6040 * return value. See filemap_fault() and __f 6041 */ 6042 vm_fault_t handle_mm_fault(struct vm_area_str 6043 unsigned int flags 6044 { 6045 /* If the fault handler drops the mma 6046 struct mm_struct *mm = vma->vm_mm; 6047 vm_fault_t ret; 6048 bool is_droppable; 6049 6050 __set_current_state(TASK_RUNNING); 6051 6052 ret = sanitize_fault_flags(vma, &flag 6053 if (ret) 6054 goto out; 6055 6056 if (!arch_vma_access_permitted(vma, f 6057 f 6058 f 6059 ret = VM_FAULT_SIGSEGV; 6060 goto out; 6061 } 6062 6063 is_droppable = !!(vma->vm_flags & VM_ 6064 6065 /* 6066 * Enable the memcg OOM handling for 6067 * space. Kernel faults are handled 6068 */ 6069 if (flags & FAULT_FLAG_USER) 6070 mem_cgroup_enter_user_fault() 6071 6072 lru_gen_enter_fault(vma); 6073 6074 if (unlikely(is_vm_hugetlb_page(vma)) 6075 ret = hugetlb_fault(vma->vm_m 6076 else 6077 ret = __handle_mm_fault(vma, 6078 6079 /* 6080 * Warning: It is no longer safe to d 6081 * because mmap_lock might have been 6082 * vma might be destroyed from undern 6083 */ 6084 6085 lru_gen_exit_fault(); 6086 6087 /* If the mapping is droppable, then 6088 if (is_droppable) 6089 ret &= ~VM_FAULT_OOM; 6090 6091 if (flags & FAULT_FLAG_USER) { 6092 mem_cgroup_exit_user_fault(); 6093 /* 6094 * The task may have entered 6095 * if the allocation error wa 6096 * VM_FAULT_OOM), there is no 6097 * Just clean up the OOM stat 6098 */ 6099 if (task_in_memcg_oom(current 6100 mem_cgroup_oom_synchr 6101 } 6102 out: 6103 mm_account_fault(mm, regs, address, f 6104 6105 return ret; 6106 } 6107 EXPORT_SYMBOL_GPL(handle_mm_fault); 6108 6109 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6110 #include <linux/extable.h> 6111 6112 static inline bool get_mmap_lock_carefully(st 6113 { 6114 if (likely(mmap_read_trylock(mm))) 6115 return true; 6116 6117 if (regs && !user_mode(regs)) { 6118 unsigned long ip = exception_ 6119 if (!search_exception_tables( 6120 return false; 6121 } 6122 6123 return !mmap_read_lock_killable(mm); 6124 } 6125 6126 static inline bool mmap_upgrade_trylock(struc 6127 { 6128 /* 6129 * We don't have this operation yet. 6130 * 6131 * It should be easy enough to do: it 6132 * atomic_long_try_cmpxchg_acquire 6133 * from RWSEM_READER_BIAS -> RWSEM_WR 6134 * it also needs the proper lockdep m 6135 */ 6136 return false; 6137 } 6138 6139 static inline bool upgrade_mmap_lock_carefull 6140 { 6141 mmap_read_unlock(mm); 6142 if (regs && !user_mode(regs)) { 6143 unsigned long ip = exception_ 6144 if (!search_exception_tables( 6145 return false; 6146 } 6147 return !mmap_write_lock_killable(mm); 6148 } 6149 6150 /* 6151 * Helper for page fault handling. 6152 * 6153 * This is kind of equivalend to "mmap_read_l 6154 * by "find_extend_vma()", except it's a lot 6155 * the locking (and will drop the lock on fai 6156 * 6157 * For example, if we have a kernel bug that 6158 * fault, we don't want to just use mmap_read 6159 * the mm lock, because that would deadlock i 6160 * to happen while we're holding the mm lock 6161 * 6162 * So this checks the exception tables on ker 6163 * order to only do this all for instructions 6164 * expected to fault. 6165 * 6166 * We can also actually take the mm lock for 6167 * need to extend the vma, which helps the VM 6168 */ 6169 struct vm_area_struct *lock_mm_and_find_vma(s 6170 unsigned long addr, s 6171 { 6172 struct vm_area_struct *vma; 6173 6174 if (!get_mmap_lock_carefully(mm, regs 6175 return NULL; 6176 6177 vma = find_vma(mm, addr); 6178 if (likely(vma && (vma->vm_start <= a 6179 return vma; 6180 6181 /* 6182 * Well, dang. We might still be succ 6183 * if we can extend a vma to do so. 6184 */ 6185 if (!vma || !(vma->vm_flags & VM_GROW 6186 mmap_read_unlock(mm); 6187 return NULL; 6188 } 6189 6190 /* 6191 * We can try to upgrade the mmap loc 6192 * in which case we can continue to u 6193 * we already looked up. 6194 * 6195 * Otherwise we'll have to drop the m 6196 * re-take it, and also look up the v 6197 * re-checking it. 6198 */ 6199 if (!mmap_upgrade_trylock(mm)) { 6200 if (!upgrade_mmap_lock_carefu 6201 return NULL; 6202 6203 vma = find_vma(mm, addr); 6204 if (!vma) 6205 goto fail; 6206 if (vma->vm_start <= addr) 6207 goto success; 6208 if (!(vma->vm_flags & VM_GROW 6209 goto fail; 6210 } 6211 6212 if (expand_stack_locked(vma, addr)) 6213 goto fail; 6214 6215 success: 6216 mmap_write_downgrade(mm); 6217 return vma; 6218 6219 fail: 6220 mmap_write_unlock(mm); 6221 return NULL; 6222 } 6223 #endif 6224 6225 #ifdef CONFIG_PER_VMA_LOCK 6226 /* 6227 * Lookup and lock a VMA under RCU protection 6228 * stable and not isolated. If the VMA is not 6229 * function returns NULL. 6230 */ 6231 struct vm_area_struct *lock_vma_under_rcu(str 6232 uns 6233 { 6234 MA_STATE(mas, &mm->mm_mt, address, ad 6235 struct vm_area_struct *vma; 6236 6237 rcu_read_lock(); 6238 retry: 6239 vma = mas_walk(&mas); 6240 if (!vma) 6241 goto inval; 6242 6243 if (!vma_start_read(vma)) 6244 goto inval; 6245 6246 /* Check if the VMA got isolated afte 6247 if (vma->detached) { 6248 vma_end_read(vma); 6249 count_vm_vma_lock_event(VMA_L 6250 /* The area was replaced with 6251 goto retry; 6252 } 6253 /* 6254 * At this point, we have a stable re 6255 * locked and we know it hasn't alrea 6256 * From here on, we can access the VM 6257 * fields are accessible for RCU read 6258 */ 6259 6260 /* Check since vm_start/vm_end might 6261 if (unlikely(address < vma->vm_start 6262 goto inval_end_read; 6263 6264 rcu_read_unlock(); 6265 return vma; 6266 6267 inval_end_read: 6268 vma_end_read(vma); 6269 inval: 6270 rcu_read_unlock(); 6271 count_vm_vma_lock_event(VMA_LOCK_ABOR 6272 return NULL; 6273 } 6274 #endif /* CONFIG_PER_VMA_LOCK */ 6275 6276 #ifndef __PAGETABLE_P4D_FOLDED 6277 /* 6278 * Allocate p4d page table. 6279 * We've already handled the fast-path in-lin 6280 */ 6281 int __p4d_alloc(struct mm_struct *mm, pgd_t * 6282 { 6283 p4d_t *new = p4d_alloc_one(mm, addres 6284 if (!new) 6285 return -ENOMEM; 6286 6287 spin_lock(&mm->page_table_lock); 6288 if (pgd_present(*pgd)) { /* An 6289 p4d_free(mm, new); 6290 } else { 6291 smp_wmb(); /* See comment in 6292 pgd_populate(mm, pgd, new); 6293 } 6294 spin_unlock(&mm->page_table_lock); 6295 return 0; 6296 } 6297 #endif /* __PAGETABLE_P4D_FOLDED */ 6298 6299 #ifndef __PAGETABLE_PUD_FOLDED 6300 /* 6301 * Allocate page upper directory. 6302 * We've already handled the fast-path in-lin 6303 */ 6304 int __pud_alloc(struct mm_struct *mm, p4d_t * 6305 { 6306 pud_t *new = pud_alloc_one(mm, addres 6307 if (!new) 6308 return -ENOMEM; 6309 6310 spin_lock(&mm->page_table_lock); 6311 if (!p4d_present(*p4d)) { 6312 mm_inc_nr_puds(mm); 6313 smp_wmb(); /* See comment in 6314 p4d_populate(mm, p4d, new); 6315 } else /* Another has populated it * 6316 pud_free(mm, new); 6317 spin_unlock(&mm->page_table_lock); 6318 return 0; 6319 } 6320 #endif /* __PAGETABLE_PUD_FOLDED */ 6321 6322 #ifndef __PAGETABLE_PMD_FOLDED 6323 /* 6324 * Allocate page middle directory. 6325 * We've already handled the fast-path in-lin 6326 */ 6327 int __pmd_alloc(struct mm_struct *mm, pud_t * 6328 { 6329 spinlock_t *ptl; 6330 pmd_t *new = pmd_alloc_one(mm, addres 6331 if (!new) 6332 return -ENOMEM; 6333 6334 ptl = pud_lock(mm, pud); 6335 if (!pud_present(*pud)) { 6336 mm_inc_nr_pmds(mm); 6337 smp_wmb(); /* See comment in 6338 pud_populate(mm, pud, new); 6339 } else { /* Another has popula 6340 pmd_free(mm, new); 6341 } 6342 spin_unlock(ptl); 6343 return 0; 6344 } 6345 #endif /* __PAGETABLE_PMD_FOLDED */ 6346 6347 static inline void pfnmap_args_setup(struct f 6348 spinlock 6349 pgprot_t 6350 unsigned 6351 bool spe 6352 { 6353 args->lock = lock; 6354 args->ptep = ptep; 6355 args->pfn = pfn_base + ((args->addres 6356 args->pgprot = pgprot; 6357 args->writable = writable; 6358 args->special = special; 6359 } 6360 6361 static inline void pfnmap_lockdep_assert(stru 6362 { 6363 #ifdef CONFIG_LOCKDEP 6364 struct file *file = vma->vm_file; 6365 struct address_space *mapping = file 6366 6367 if (mapping) 6368 lockdep_assert(lockdep_is_hel 6369 lockdep_is_hel 6370 else 6371 lockdep_assert(lockdep_is_hel 6372 #endif 6373 } 6374 6375 /** 6376 * follow_pfnmap_start() - Look up a pfn mapp 6377 * @args: Pointer to struct @follow_pfnmap_ar 6378 * 6379 * The caller needs to setup args->vma and ar 6380 * virtual address as the target of such look 6381 * the results will be put into other output 6382 * 6383 * After the caller finished using the fields 6384 * another follow_pfnmap_end() to proper rele 6385 * of such look up request. 6386 * 6387 * During the start() and end() calls, the re 6388 * as proper locks will be held. After the e 6389 * in @follow_pfnmap_args will be invalid to 6390 * use of such information after end() may re 6391 * by the caller with page table updates, oth 6392 * security bug. 6393 * 6394 * If the PTE maps a refcounted page, callers 6395 * against invalidation with MMU notifiers; o 6396 * a later point in time can trigger use-afte 6397 * 6398 * Only IO mappings and raw PFN mappings are 6399 * should be taken for read, and the mmap sem 6400 * before the end() is invoked. 6401 * 6402 * This function must not be used to modify P 6403 * 6404 * Return: zero on success, negative otherwis 6405 */ 6406 int follow_pfnmap_start(struct follow_pfnmap_ 6407 { 6408 struct vm_area_struct *vma = args->vm 6409 unsigned long address = args->address 6410 struct mm_struct *mm = vma->vm_mm; 6411 spinlock_t *lock; 6412 pgd_t *pgdp; 6413 p4d_t *p4dp, p4d; 6414 pud_t *pudp, pud; 6415 pmd_t *pmdp, pmd; 6416 pte_t *ptep, pte; 6417 6418 pfnmap_lockdep_assert(vma); 6419 6420 if (unlikely(address < vma->vm_start 6421 goto out; 6422 6423 if (!(vma->vm_flags & (VM_IO | VM_PFN 6424 goto out; 6425 retry: 6426 pgdp = pgd_offset(mm, address); 6427 if (pgd_none(*pgdp) || unlikely(pgd_b 6428 goto out; 6429 6430 p4dp = p4d_offset(pgdp, address); 6431 p4d = READ_ONCE(*p4dp); 6432 if (p4d_none(p4d) || unlikely(p4d_bad 6433 goto out; 6434 6435 pudp = pud_offset(p4dp, address); 6436 pud = READ_ONCE(*pudp); 6437 if (pud_none(pud)) 6438 goto out; 6439 if (pud_leaf(pud)) { 6440 lock = pud_lock(mm, pudp); 6441 if (!unlikely(pud_leaf(pud))) 6442 spin_unlock(lock); 6443 goto retry; 6444 } 6445 pfnmap_args_setup(args, lock, 6446 pud_pfn(pud 6447 pud_special 6448 return 0; 6449 } 6450 6451 pmdp = pmd_offset(pudp, address); 6452 pmd = pmdp_get_lockless(pmdp); 6453 if (pmd_leaf(pmd)) { 6454 lock = pmd_lock(mm, pmdp); 6455 if (!unlikely(pmd_leaf(pmd))) 6456 spin_unlock(lock); 6457 goto retry; 6458 } 6459 pfnmap_args_setup(args, lock, 6460 pmd_pfn(pmd 6461 pmd_special 6462 return 0; 6463 } 6464 6465 ptep = pte_offset_map_lock(mm, pmdp, 6466 if (!ptep) 6467 goto out; 6468 pte = ptep_get(ptep); 6469 if (!pte_present(pte)) 6470 goto unlock; 6471 pfnmap_args_setup(args, lock, ptep, p 6472 pte_pfn(pte), PAGE_ 6473 pte_special(pte)); 6474 return 0; 6475 unlock: 6476 pte_unmap_unlock(ptep, lock); 6477 out: 6478 return -EINVAL; 6479 } 6480 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6481 6482 /** 6483 * follow_pfnmap_end(): End a follow_pfnmap_s 6484 * @args: Pointer to struct @follow_pfnmap_ar 6485 * 6486 * Must be used in pair of follow_pfnmap_star 6487 * above for more information. 6488 */ 6489 void follow_pfnmap_end(struct follow_pfnmap_a 6490 { 6491 if (args->lock) 6492 spin_unlock(args->lock); 6493 if (args->ptep) 6494 pte_unmap(args->ptep); 6495 } 6496 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6497 6498 #ifdef CONFIG_HAVE_IOREMAP_PROT 6499 /** 6500 * generic_access_phys - generic implementati 6501 * @vma: the vma to access 6502 * @addr: userspace address, not relative off 6503 * @buf: buffer to read/write 6504 * @len: length of transfer 6505 * @write: set to FOLL_WRITE when writing, ot 6506 * 6507 * This is a generic implementation for &vm_o 6508 * iomem mapping. This callback is used by ac 6509 * not page based. 6510 */ 6511 int generic_access_phys(struct vm_area_struct 6512 void *buf, int len, i 6513 { 6514 resource_size_t phys_addr; 6515 unsigned long prot = 0; 6516 void __iomem *maddr; 6517 int offset = offset_in_page(addr); 6518 int ret = -EINVAL; 6519 bool writable; 6520 struct follow_pfnmap_args args = { .v 6521 6522 retry: 6523 if (follow_pfnmap_start(&args)) 6524 return -EINVAL; 6525 prot = pgprot_val(args.pgprot); 6526 phys_addr = (resource_size_t)args.pfn 6527 writable = args.writable; 6528 follow_pfnmap_end(&args); 6529 6530 if ((write & FOLL_WRITE) && !writable 6531 return -EINVAL; 6532 6533 maddr = ioremap_prot(phys_addr, PAGE_ 6534 if (!maddr) 6535 return -ENOMEM; 6536 6537 if (follow_pfnmap_start(&args)) 6538 goto out_unmap; 6539 6540 if ((prot != pgprot_val(args.pgprot)) 6541 (phys_addr != (args.pfn << PAGE_S 6542 (writable != args.writable)) { 6543 follow_pfnmap_end(&args); 6544 iounmap(maddr); 6545 goto retry; 6546 } 6547 6548 if (write) 6549 memcpy_toio(maddr + offset, b 6550 else 6551 memcpy_fromio(buf, maddr + of 6552 ret = len; 6553 follow_pfnmap_end(&args); 6554 out_unmap: 6555 iounmap(maddr); 6556 6557 return ret; 6558 } 6559 EXPORT_SYMBOL_GPL(generic_access_phys); 6560 #endif 6561 6562 /* 6563 * Access another process' address space as g 6564 */ 6565 static int __access_remote_vm(struct mm_struc 6566 void *buf, int 6567 { 6568 void *old_buf = buf; 6569 int write = gup_flags & FOLL_WRITE; 6570 6571 if (mmap_read_lock_killable(mm)) 6572 return 0; 6573 6574 /* Untag the address before looking u 6575 addr = untagged_addr_remote(mm, addr) 6576 6577 /* Avoid triggering the temporary war 6578 if (!vma_lookup(mm, addr) && !expand_ 6579 return 0; 6580 6581 /* ignore errors, just check how much 6582 while (len) { 6583 int bytes, offset; 6584 void *maddr; 6585 struct vm_area_struct *vma = 6586 struct page *page = get_user_ 6587 6588 6589 if (IS_ERR(page)) { 6590 /* We might need to e 6591 vma = vma_lookup(mm, 6592 if (!vma) { 6593 vma = expand_ 6594 6595 /* mmap_lock 6596 if (!vma) 6597 retur 6598 6599 /* Try again 6600 continue; 6601 } 6602 6603 /* 6604 * Check if this is a 6605 * we can access usin 6606 */ 6607 bytes = 0; 6608 #ifdef CONFIG_HAVE_IOREMAP_PROT 6609 if (vma->vm_ops && vm 6610 bytes = vma-> 6611 6612 #endif 6613 if (bytes <= 0) 6614 break; 6615 } else { 6616 bytes = len; 6617 offset = addr & (PAGE 6618 if (bytes > PAGE_SIZE 6619 bytes = PAGE_ 6620 6621 maddr = kmap_local_pa 6622 if (write) { 6623 copy_to_user_ 6624 6625 set_page_dirt 6626 } else { 6627 copy_from_use 6628 6629 } 6630 unmap_and_put_page(pa 6631 } 6632 len -= bytes; 6633 buf += bytes; 6634 addr += bytes; 6635 } 6636 mmap_read_unlock(mm); 6637 6638 return buf - old_buf; 6639 } 6640 6641 /** 6642 * access_remote_vm - access another process' 6643 * @mm: the mm_struct of the target a 6644 * @addr: start address to access 6645 * @buf: source or destination buffer 6646 * @len: number of bytes to transfer 6647 * @gup_flags: flags modifying lookup behavi 6648 * 6649 * The caller must hold a reference on @mm. 6650 * 6651 * Return: number of bytes copied from source 6652 */ 6653 int access_remote_vm(struct mm_struct *mm, un 6654 void *buf, int len, unsigned 6655 { 6656 return __access_remote_vm(mm, addr, b 6657 } 6658 6659 /* 6660 * Access another process' address space. 6661 * Source/target buffer must be kernel space, 6662 * Do not walk the page table directly, use g 6663 */ 6664 int access_process_vm(struct task_struct *tsk 6665 void *buf, int len, unsigned 6666 { 6667 struct mm_struct *mm; 6668 int ret; 6669 6670 mm = get_task_mm(tsk); 6671 if (!mm) 6672 return 0; 6673 6674 ret = __access_remote_vm(mm, addr, bu 6675 6676 mmput(mm); 6677 6678 return ret; 6679 } 6680 EXPORT_SYMBOL_GPL(access_process_vm); 6681 6682 /* 6683 * Print the name of a VMA. 6684 */ 6685 void print_vma_addr(char *prefix, unsigned lo 6686 { 6687 struct mm_struct *mm = current->mm; 6688 struct vm_area_struct *vma; 6689 6690 /* 6691 * we might be running from an atomic 6692 */ 6693 if (!mmap_read_trylock(mm)) 6694 return; 6695 6696 vma = vma_lookup(mm, ip); 6697 if (vma && vma->vm_file) { 6698 struct file *f = vma->vm_file 6699 ip -= vma->vm_start; 6700 ip += vma->vm_pgoff << PAGE_S 6701 printk("%s%pD[%lx,%lx+%lx]", 6702 vma->vm_start 6703 vma->vm_end - 6704 } 6705 mmap_read_unlock(mm); 6706 } 6707 6708 #if defined(CONFIG_PROVE_LOCKING) || defined( 6709 void __might_fault(const char *file, int line 6710 { 6711 if (pagefault_disabled()) 6712 return; 6713 __might_sleep(file, line); 6714 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6715 if (current->mm) 6716 might_lock_read(¤t->mm- 6717 #endif 6718 } 6719 EXPORT_SYMBOL(__might_fault); 6720 #endif 6721 6722 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || d 6723 /* 6724 * Process all subpages of the specified huge 6725 * operation. The target subpage will be pro 6726 * cache lines hot. 6727 */ 6728 static inline int process_huge_page( 6729 unsigned long addr_hint, unsigned int 6730 int (*process_subpage)(unsigned long 6731 void *arg) 6732 { 6733 int i, n, base, l, ret; 6734 unsigned long addr = addr_hint & 6735 ~(((unsigned long)nr_pages << 6736 6737 /* Process target subpage last to kee 6738 might_sleep(); 6739 n = (addr_hint - addr) / PAGE_SIZE; 6740 if (2 * n <= nr_pages) { 6741 /* If target subpage in first 6742 base = 0; 6743 l = n; 6744 /* Process subpages at the en 6745 for (i = nr_pages - 1; i >= 2 6746 cond_resched(); 6747 ret = process_subpage 6748 if (ret) 6749 return ret; 6750 } 6751 } else { 6752 /* If target subpage in secon 6753 base = nr_pages - 2 * (nr_pag 6754 l = nr_pages - n; 6755 /* Process subpages at the be 6756 for (i = 0; i < base; i++) { 6757 cond_resched(); 6758 ret = process_subpage 6759 if (ret) 6760 return ret; 6761 } 6762 } 6763 /* 6764 * Process remaining subpages in left 6765 * towards the target subpage 6766 */ 6767 for (i = 0; i < l; i++) { 6768 int left_idx = base + i; 6769 int right_idx = base + 2 * l 6770 6771 cond_resched(); 6772 ret = process_subpage(addr + 6773 if (ret) 6774 return ret; 6775 cond_resched(); 6776 ret = process_subpage(addr + 6777 if (ret) 6778 return ret; 6779 } 6780 return 0; 6781 } 6782 6783 static void clear_gigantic_page(struct folio 6784 unsigned int 6785 { 6786 int i; 6787 6788 might_sleep(); 6789 for (i = 0; i < nr_pages; i++) { 6790 cond_resched(); 6791 clear_user_highpage(folio_pag 6792 } 6793 } 6794 6795 static int clear_subpage(unsigned long addr, 6796 { 6797 struct folio *folio = arg; 6798 6799 clear_user_highpage(folio_page(folio, 6800 return 0; 6801 } 6802 6803 /** 6804 * folio_zero_user - Zero a folio which will 6805 * @folio: The folio to zero. 6806 * @addr_hint: The address will be accessed o 6807 */ 6808 void folio_zero_user(struct folio *folio, uns 6809 { 6810 unsigned int nr_pages = folio_nr_page 6811 6812 if (unlikely(nr_pages > MAX_ORDER_NR_ 6813 clear_gigantic_page(folio, ad 6814 else 6815 process_huge_page(addr_hint, 6816 } 6817 6818 static int copy_user_gigantic_page(struct fol 6819 unsigned l 6820 struct vm_ 6821 unsigned i 6822 { 6823 int i; 6824 struct page *dst_page; 6825 struct page *src_page; 6826 6827 for (i = 0; i < nr_pages; i++) { 6828 dst_page = folio_page(dst, i) 6829 src_page = folio_page(src, i) 6830 6831 cond_resched(); 6832 if (copy_mc_user_highpage(dst 6833 add 6834 return -EHWPOISON; 6835 } 6836 return 0; 6837 } 6838 6839 struct copy_subpage_arg { 6840 struct folio *dst; 6841 struct folio *src; 6842 struct vm_area_struct *vma; 6843 }; 6844 6845 static int copy_subpage(unsigned long addr, i 6846 { 6847 struct copy_subpage_arg *copy_arg = a 6848 struct page *dst = folio_page(copy_ar 6849 struct page *src = folio_page(copy_ar 6850 6851 if (copy_mc_user_highpage(dst, src, a 6852 return -EHWPOISON; 6853 return 0; 6854 } 6855 6856 int copy_user_large_folio(struct folio *dst, 6857 unsigned long addr_ 6858 { 6859 unsigned int nr_pages = folio_nr_page 6860 struct copy_subpage_arg arg = { 6861 .dst = dst, 6862 .src = src, 6863 .vma = vma, 6864 }; 6865 6866 if (unlikely(nr_pages > MAX_ORDER_NR_ 6867 return copy_user_gigantic_pag 6868 6869 return process_huge_page(addr_hint, n 6870 } 6871 6872 long copy_folio_from_user(struct folio *dst_f 6873 const void __user 6874 bool allow_pagefau 6875 { 6876 void *kaddr; 6877 unsigned long i, rc = 0; 6878 unsigned int nr_pages = folio_nr_page 6879 unsigned long ret_val = nr_pages * PA 6880 struct page *subpage; 6881 6882 for (i = 0; i < nr_pages; i++) { 6883 subpage = folio_page(dst_foli 6884 kaddr = kmap_local_page(subpa 6885 if (!allow_pagefault) 6886 pagefault_disable(); 6887 rc = copy_from_user(kaddr, us 6888 if (!allow_pagefault) 6889 pagefault_enable(); 6890 kunmap_local(kaddr); 6891 6892 ret_val -= (PAGE_SIZE - rc); 6893 if (rc) 6894 break; 6895 6896 flush_dcache_page(subpage); 6897 6898 cond_resched(); 6899 } 6900 return ret_val; 6901 } 6902 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONF 6903 6904 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLO 6905 6906 static struct kmem_cache *page_ptl_cachep; 6907 6908 void __init ptlock_cache_init(void) 6909 { 6910 page_ptl_cachep = kmem_cache_create(" 6911 SLAB_PANIC, NULL); 6912 } 6913 6914 bool ptlock_alloc(struct ptdesc *ptdesc) 6915 { 6916 spinlock_t *ptl; 6917 6918 ptl = kmem_cache_alloc(page_ptl_cache 6919 if (!ptl) 6920 return false; 6921 ptdesc->ptl = ptl; 6922 return true; 6923 } 6924 6925 void ptlock_free(struct ptdesc *ptdesc) 6926 { 6927 kmem_cache_free(page_ptl_cachep, ptde 6928 } 6929 #endif 6930 6931 void vma_pgtable_walk_begin(struct vm_area_st 6932 { 6933 if (is_vm_hugetlb_page(vma)) 6934 hugetlb_vma_lock_read(vma); 6935 } 6936 6937 void vma_pgtable_walk_end(struct vm_area_stru 6938 { 6939 if (is_vm_hugetlb_page(vma)) 6940 hugetlb_vma_unlock_read(vma); 6941 } 6942
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.