1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Lockless hierarchical page accounting & lim 3 * Lockless hierarchical page accounting & limiting 4 * 4 * 5 * Copyright (C) 2014 Red Hat, Inc., Johannes 5 * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner 6 */ 6 */ 7 7 8 #include <linux/page_counter.h> 8 #include <linux/page_counter.h> 9 #include <linux/atomic.h> 9 #include <linux/atomic.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/string.h> 11 #include <linux/string.h> 12 #include <linux/sched.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 13 #include <linux/bug.h> 14 #include <asm/page.h> 14 #include <asm/page.h> 15 15 16 static bool track_protection(struct page_count << 17 { << 18 return c->protection_support; << 19 } << 20 << 21 static void propagate_protected_usage(struct p 16 static void propagate_protected_usage(struct page_counter *c, 22 unsigned 17 unsigned long usage) 23 { 18 { 24 unsigned long protected, old_protected 19 unsigned long protected, old_protected; 25 long delta; 20 long delta; 26 21 27 if (!c->parent) 22 if (!c->parent) 28 return; 23 return; 29 24 30 protected = min(usage, READ_ONCE(c->mi !! 25 if (c->min || atomic_long_read(&c->min_usage)) { 31 old_protected = atomic_long_read(&c->m !! 26 if (usage <= c->min) 32 if (protected != old_protected) { !! 27 protected = usage; >> 28 else >> 29 protected = 0; >> 30 33 old_protected = atomic_long_xc 31 old_protected = atomic_long_xchg(&c->min_usage, protected); 34 delta = protected - old_protec 32 delta = protected - old_protected; 35 if (delta) 33 if (delta) 36 atomic_long_add(delta, 34 atomic_long_add(delta, &c->parent->children_min_usage); 37 } 35 } 38 36 39 protected = min(usage, READ_ONCE(c->lo !! 37 if (c->low || atomic_long_read(&c->low_usage)) { 40 old_protected = atomic_long_read(&c->l !! 38 if (usage <= c->low) 41 if (protected != old_protected) { !! 39 protected = usage; >> 40 else >> 41 protected = 0; >> 42 42 old_protected = atomic_long_xc 43 old_protected = atomic_long_xchg(&c->low_usage, protected); 43 delta = protected - old_protec 44 delta = protected - old_protected; 44 if (delta) 45 if (delta) 45 atomic_long_add(delta, 46 atomic_long_add(delta, &c->parent->children_low_usage); 46 } 47 } 47 } 48 } 48 49 49 /** 50 /** 50 * page_counter_cancel - take pages out of the 51 * page_counter_cancel - take pages out of the local counter 51 * @counter: counter 52 * @counter: counter 52 * @nr_pages: number of pages to cancel 53 * @nr_pages: number of pages to cancel 53 */ 54 */ 54 void page_counter_cancel(struct page_counter * 55 void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages) 55 { 56 { 56 long new; 57 long new; 57 58 58 new = atomic_long_sub_return(nr_pages, 59 new = atomic_long_sub_return(nr_pages, &counter->usage); >> 60 propagate_protected_usage(counter, new); 59 /* More uncharges than charges? */ 61 /* More uncharges than charges? */ 60 if (WARN_ONCE(new < 0, "page_counter u !! 62 WARN_ON_ONCE(new < 0); 61 new, nr_pages)) { << 62 new = 0; << 63 atomic_long_set(&counter->usag << 64 } << 65 if (track_protection(counter)) << 66 propagate_protected_usage(coun << 67 } 63 } 68 64 69 /** 65 /** 70 * page_counter_charge - hierarchically charge 66 * page_counter_charge - hierarchically charge pages 71 * @counter: counter 67 * @counter: counter 72 * @nr_pages: number of pages to charge 68 * @nr_pages: number of pages to charge 73 * 69 * 74 * NOTE: This does not consider any configured 70 * NOTE: This does not consider any configured counter limits. 75 */ 71 */ 76 void page_counter_charge(struct page_counter * 72 void page_counter_charge(struct page_counter *counter, unsigned long nr_pages) 77 { 73 { 78 struct page_counter *c; 74 struct page_counter *c; 79 bool protection = track_protection(cou << 80 75 81 for (c = counter; c; c = c->parent) { 76 for (c = counter; c; c = c->parent) { 82 long new; 77 long new; 83 78 84 new = atomic_long_add_return(n 79 new = atomic_long_add_return(nr_pages, &c->usage); 85 if (protection) !! 80 propagate_protected_usage(counter, new); 86 propagate_protected_us << 87 /* 81 /* 88 * This is indeed racy, but we 82 * This is indeed racy, but we can live with some 89 * inaccuracy in the watermark 83 * inaccuracy in the watermark. 90 * << 91 * Notably, we have two waterm << 92 * visible peak and one that c << 93 * << 94 * Since we reset both waterma << 95 * we can guarantee that water << 96 * don't need to do both compa << 97 * << 98 * On systems with branch pred << 99 * be almost free. << 100 */ 84 */ 101 if (new > READ_ONCE(c->local_w !! 85 if (new > c->watermark) 102 WRITE_ONCE(c->local_wa !! 86 c->watermark = new; 103 if (new > READ_ONCE(c- << 104 WRITE_ONCE(c-> << 105 } << 106 } 87 } 107 } 88 } 108 89 109 /** 90 /** 110 * page_counter_try_charge - try to hierarchic 91 * page_counter_try_charge - try to hierarchically charge pages 111 * @counter: counter 92 * @counter: counter 112 * @nr_pages: number of pages to charge 93 * @nr_pages: number of pages to charge 113 * @fail: points first counter to hit its limi 94 * @fail: points first counter to hit its limit, if any 114 * 95 * 115 * Returns %true on success, or %false and @fa 96 * Returns %true on success, or %false and @fail if the counter or one 116 * of its ancestors has hit its configured lim 97 * of its ancestors has hit its configured limit. 117 */ 98 */ 118 bool page_counter_try_charge(struct page_count 99 bool page_counter_try_charge(struct page_counter *counter, 119 unsigned long nr_ 100 unsigned long nr_pages, 120 struct page_count 101 struct page_counter **fail) 121 { 102 { 122 struct page_counter *c; 103 struct page_counter *c; 123 bool protection = track_protection(cou << 124 104 125 for (c = counter; c; c = c->parent) { 105 for (c = counter; c; c = c->parent) { 126 long new; 106 long new; 127 /* 107 /* 128 * Charge speculatively to avo 108 * Charge speculatively to avoid an expensive CAS. If 129 * a bigger charge fails, it m 109 * a bigger charge fails, it might falsely lock out a 130 * racing smaller charge and s 110 * racing smaller charge and send it into reclaim 131 * early, but the error is lim 111 * early, but the error is limited to the difference 132 * between the two sizes, whic 112 * between the two sizes, which is less than 2M/4M in 133 * case of a THP locking out a 113 * case of a THP locking out a regular page charge. 134 * 114 * 135 * The atomic_long_add_return( 115 * The atomic_long_add_return() implies a full memory 136 * barrier between incrementin 116 * barrier between incrementing the count and reading 137 * the limit. When racing wit !! 117 * the limit. When racing with page_counter_limit(), 138 * we either see the new limit 118 * we either see the new limit or the setter sees the 139 * counter has changed and ret 119 * counter has changed and retries. 140 */ 120 */ 141 new = atomic_long_add_return(n 121 new = atomic_long_add_return(nr_pages, &c->usage); 142 if (new > c->max) { 122 if (new > c->max) { 143 atomic_long_sub(nr_pag 123 atomic_long_sub(nr_pages, &c->usage); >> 124 propagate_protected_usage(counter, new); 144 /* 125 /* 145 * This is racy, but w 126 * This is racy, but we can live with some 146 * inaccuracy in the f !! 127 * inaccuracy in the failcnt. 147 * to report stats. << 148 */ 128 */ 149 data_race(c->failcnt++ !! 129 c->failcnt++; 150 *fail = c; 130 *fail = c; 151 goto failed; 131 goto failed; 152 } 132 } 153 if (protection) !! 133 propagate_protected_usage(counter, new); 154 propagate_protected_us !! 134 /* 155 !! 135 * Just like with failcnt, we can live with some 156 /* see comment on page_counter !! 136 * inaccuracy in the watermark. 157 if (new > READ_ONCE(c->local_w !! 137 */ 158 WRITE_ONCE(c->local_wa !! 138 if (new > c->watermark) 159 if (new > READ_ONCE(c- !! 139 c->watermark = new; 160 WRITE_ONCE(c-> << 161 } << 162 } 140 } 163 return true; 141 return true; 164 142 165 failed: 143 failed: 166 for (c = counter; c != *fail; c = c->p 144 for (c = counter; c != *fail; c = c->parent) 167 page_counter_cancel(c, nr_page 145 page_counter_cancel(c, nr_pages); 168 146 169 return false; 147 return false; 170 } 148 } 171 149 172 /** 150 /** 173 * page_counter_uncharge - hierarchically unch 151 * page_counter_uncharge - hierarchically uncharge pages 174 * @counter: counter 152 * @counter: counter 175 * @nr_pages: number of pages to uncharge 153 * @nr_pages: number of pages to uncharge 176 */ 154 */ 177 void page_counter_uncharge(struct page_counter 155 void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages) 178 { 156 { 179 struct page_counter *c; 157 struct page_counter *c; 180 158 181 for (c = counter; c; c = c->parent) 159 for (c = counter; c; c = c->parent) 182 page_counter_cancel(c, nr_page 160 page_counter_cancel(c, nr_pages); 183 } 161 } 184 162 185 /** 163 /** 186 * page_counter_set_max - set the maximum numb 164 * page_counter_set_max - set the maximum number of pages allowed 187 * @counter: counter 165 * @counter: counter 188 * @nr_pages: limit to set 166 * @nr_pages: limit to set 189 * 167 * 190 * Returns 0 on success, -EBUSY if the current 168 * Returns 0 on success, -EBUSY if the current number of pages on the 191 * counter already exceeds the specified limit 169 * counter already exceeds the specified limit. 192 * 170 * 193 * The caller must serialize invocations on th 171 * The caller must serialize invocations on the same counter. 194 */ 172 */ 195 int page_counter_set_max(struct page_counter * 173 int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages) 196 { 174 { 197 for (;;) { 175 for (;;) { 198 unsigned long old; 176 unsigned long old; 199 long usage; 177 long usage; 200 178 201 /* 179 /* 202 * Update the limit while maki 180 * Update the limit while making sure that it's not 203 * below the concurrently-chan 181 * below the concurrently-changing counter value. 204 * 182 * 205 * The xchg implies two full m 183 * The xchg implies two full memory barriers before 206 * and after, so the read-swap 184 * and after, so the read-swap-read is ordered and 207 * ensures coherency with page 185 * ensures coherency with page_counter_try_charge(): 208 * that function modifies the 186 * that function modifies the count before checking 209 * the limit, so if it sees th 187 * the limit, so if it sees the old limit, we see the 210 * modified counter and retry. 188 * modified counter and retry. 211 */ 189 */ 212 usage = page_counter_read(coun !! 190 usage = atomic_long_read(&counter->usage); 213 191 214 if (usage > nr_pages) 192 if (usage > nr_pages) 215 return -EBUSY; 193 return -EBUSY; 216 194 217 old = xchg(&counter->max, nr_p 195 old = xchg(&counter->max, nr_pages); 218 196 219 if (page_counter_read(counter) !! 197 if (atomic_long_read(&counter->usage) <= usage) 220 return 0; 198 return 0; 221 199 222 counter->max = old; 200 counter->max = old; 223 cond_resched(); 201 cond_resched(); 224 } 202 } 225 } 203 } 226 204 227 /** 205 /** 228 * page_counter_set_min - set the amount of pr 206 * page_counter_set_min - set the amount of protected memory 229 * @counter: counter 207 * @counter: counter 230 * @nr_pages: value to set 208 * @nr_pages: value to set 231 * 209 * 232 * The caller must serialize invocations on th 210 * The caller must serialize invocations on the same counter. 233 */ 211 */ 234 void page_counter_set_min(struct page_counter 212 void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages) 235 { 213 { 236 struct page_counter *c; 214 struct page_counter *c; 237 215 238 WRITE_ONCE(counter->min, nr_pages); !! 216 counter->min = nr_pages; 239 217 240 for (c = counter; c; c = c->parent) 218 for (c = counter; c; c = c->parent) 241 propagate_protected_usage(c, a 219 propagate_protected_usage(c, atomic_long_read(&c->usage)); 242 } 220 } 243 221 244 /** 222 /** 245 * page_counter_set_low - set the amount of pr 223 * page_counter_set_low - set the amount of protected memory 246 * @counter: counter 224 * @counter: counter 247 * @nr_pages: value to set 225 * @nr_pages: value to set 248 * 226 * 249 * The caller must serialize invocations on th 227 * The caller must serialize invocations on the same counter. 250 */ 228 */ 251 void page_counter_set_low(struct page_counter 229 void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages) 252 { 230 { 253 struct page_counter *c; 231 struct page_counter *c; 254 232 255 WRITE_ONCE(counter->low, nr_pages); !! 233 counter->low = nr_pages; 256 234 257 for (c = counter; c; c = c->parent) 235 for (c = counter; c; c = c->parent) 258 propagate_protected_usage(c, a 236 propagate_protected_usage(c, atomic_long_read(&c->usage)); 259 } 237 } 260 238 261 /** 239 /** 262 * page_counter_memparse - memparse() for page 240 * page_counter_memparse - memparse() for page counter limits 263 * @buf: string to parse 241 * @buf: string to parse 264 * @max: string meaning maximum possible value 242 * @max: string meaning maximum possible value 265 * @nr_pages: returns the result in number of 243 * @nr_pages: returns the result in number of pages 266 * 244 * 267 * Returns -EINVAL, or 0 and @nr_pages on succ 245 * Returns -EINVAL, or 0 and @nr_pages on success. @nr_pages will be 268 * limited to %PAGE_COUNTER_MAX. 246 * limited to %PAGE_COUNTER_MAX. 269 */ 247 */ 270 int page_counter_memparse(const char *buf, con 248 int page_counter_memparse(const char *buf, const char *max, 271 unsigned long *nr_pa 249 unsigned long *nr_pages) 272 { 250 { 273 char *end; 251 char *end; 274 u64 bytes; 252 u64 bytes; 275 253 276 if (!strcmp(buf, max)) { 254 if (!strcmp(buf, max)) { 277 *nr_pages = PAGE_COUNTER_MAX; 255 *nr_pages = PAGE_COUNTER_MAX; 278 return 0; 256 return 0; 279 } 257 } 280 258 281 bytes = memparse(buf, &end); 259 bytes = memparse(buf, &end); 282 if (*end != '\0') 260 if (*end != '\0') 283 return -EINVAL; 261 return -EINVAL; 284 262 285 *nr_pages = min(bytes / PAGE_SIZE, (u6 263 *nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX); 286 264 287 return 0; 265 return 0; 288 } 266 } 289 << 290 << 291 #ifdef CONFIG_MEMCG << 292 /* << 293 * This function calculates an individual page << 294 * protection which is derived from its own me << 295 * parent's and siblings' settings, as well as << 296 * distribution in the tree. << 297 * << 298 * The following rules apply to the effective << 299 * << 300 * 1. At the first level of reclaim, effective << 301 * the declared protection in memory.min an << 302 * << 303 * 2. To enable safe delegation of the protect << 304 * subsequent levels the effective protecti << 305 * parent's effective protection. << 306 * << 307 * 3. To make complex and dynamic subtrees eas << 308 * user is allowed to overcommit the declar << 309 * level. If that is the case, the parent's << 310 * distributed to the children in proportio << 311 * they have declared and how much of it th << 312 * << 313 * This makes distribution proportional, bu << 314 * if one counter claims much more protecti << 315 * the unused remainder is available to its << 316 * << 317 * 4. Conversely, when the declared protection << 318 * given level, the distribution of the lar << 319 * budget is NOT proportional. A counter's << 320 * is capped to its own memory.min/low sett << 321 * << 322 * 5. However, to allow protecting recursive s << 323 * without having to declare each individua << 324 * of the ancestor's claim to protection, a << 325 * "floating" - protection from up the tree << 326 * proportion to each counter's *usage*. Th << 327 * neutral wrt sibling cgroups and lets the << 328 * the shared parental protection budget, b << 329 * subtree as a whole from neighboring subt << 330 * << 331 * Note that 4. and 5. are not in conflict: 4. << 332 * against immediate siblings whereas 5. is ab << 333 * neighboring subtrees. << 334 */ << 335 static unsigned long effective_protection(unsi << 336 unsi << 337 unsi << 338 unsi << 339 unsi << 340 bool << 341 { << 342 unsigned long protected; << 343 unsigned long ep; << 344 << 345 protected = min(usage, setting); << 346 /* << 347 * If all cgroups at this level combin << 348 * protection than what the parent aff << 349 * shares in proportion to utilization << 350 * << 351 * We are using actual utilization rat << 352 * claimed protection in order to be w << 353 * but unused protection is available << 354 * otherwise get a smaller chunk than << 355 */ << 356 if (siblings_protected > parent_effect << 357 return protected * parent_effe << 358 << 359 /* << 360 * Ok, utilized protection of all chil << 361 * parent affords them, so we know wha << 362 * and utilizes is effectively protect << 363 * << 364 * If there is unprotected usage beyon << 365 * will apply pressure in proportion t << 366 * << 367 * If there is unutilized protection, << 368 * shielded from reclaim, but we do re << 369 * protection than what the group coul << 370 * is okay. With the overcommit distri << 371 * protection is always dependent on h << 372 * consumed among the siblings anyway. << 373 */ << 374 ep = protected; << 375 << 376 /* << 377 * If the children aren't claiming (al << 378 * afforded to them by the parent, dis << 379 * proportion to the (unprotected) mem << 380 * way, cgroups that aren't explicitly << 381 * other compete freely over the allow << 382 * collectively protected from neighbo << 383 * << 384 * We're using unprotected memory for << 385 * some cgroups DO claim explicit prot << 386 * the same bytes twice. << 387 * << 388 * Check both usage and parent_usage a << 389 * protected values. One should imply << 390 * aren't read atomically - make sure << 391 */ << 392 if (!recursive_protection) << 393 return ep; << 394 << 395 if (parent_effective > siblings_protec << 396 parent_usage > siblings_protected << 397 usage > protected) { << 398 unsigned long unclaimed; << 399 << 400 unclaimed = parent_effective - << 401 unclaimed *= usage - protected << 402 unclaimed /= parent_usage - si << 403 << 404 ep += unclaimed; << 405 } << 406 << 407 return ep; << 408 } << 409 << 410 << 411 /** << 412 * page_counter_calculate_protection - check i << 413 * @root: the top ancestor of the sub-tree bei << 414 * @counter: the page_counter the counter to u << 415 * @recursive_protection: Whether to use memor << 416 * << 417 * Calculates elow/emin thresholds for given p << 418 * << 419 * WARNING: This function is not stateless! It << 420 * of a top-down tree iteration, not << 421 */ << 422 void page_counter_calculate_protection(struct << 423 struct << 424 bool re << 425 { << 426 unsigned long usage, parent_usage; << 427 struct page_counter *parent = counter- << 428 << 429 /* << 430 * Effective values of the reclaim tar << 431 * can be stale. Have a look at mem_cg << 432 * details. << 433 * TODO: calculation should be more ro << 434 * that special casing. << 435 */ << 436 if (root == counter) << 437 return; << 438 << 439 usage = page_counter_read(counter); << 440 if (!usage) << 441 return; << 442 << 443 if (parent == root) { << 444 counter->emin = READ_ONCE(coun << 445 counter->elow = READ_ONCE(coun << 446 return; << 447 } << 448 << 449 parent_usage = page_counter_read(paren << 450 << 451 WRITE_ONCE(counter->emin, effective_pr << 452 READ_ONCE(counter->min << 453 READ_ONCE(parent->emin << 454 atomic_long_read(&pare << 455 recursive_protection)) << 456 << 457 WRITE_ONCE(counter->elow, effective_pr << 458 READ_ONCE(counter->low << 459 READ_ONCE(parent->elow << 460 atomic_long_read(&pare << 461 recursive_protection)) << 462 } << 463 #endif /* CONFIG_MEMCG */ << 464 267
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.