1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * mm/pgtable-generic.c 3 * mm/pgtable-generic.c 4 * 4 * 5 * Generic pgtable methods declared in linux/ !! 5 * Generic pgtable methods declared in asm-generic/pgtable.h 6 * 6 * 7 * Copyright (C) 2010 Linus Torvalds 7 * Copyright (C) 2010 Linus Torvalds 8 */ 8 */ 9 9 10 #include <linux/pagemap.h> 10 #include <linux/pagemap.h> 11 #include <linux/hugetlb.h> 11 #include <linux/hugetlb.h> 12 #include <linux/pgtable.h> << 13 #include <linux/swap.h> << 14 #include <linux/swapops.h> << 15 #include <linux/mm_inline.h> << 16 #include <asm/pgalloc.h> << 17 #include <asm/tlb.h> 12 #include <asm/tlb.h> >> 13 #include <asm-generic/pgtable.h> 18 14 19 /* 15 /* 20 * If a p?d_bad entry is found while walking p 16 * If a p?d_bad entry is found while walking page tables, report 21 * the error, before resetting entry to p?d_no 17 * the error, before resetting entry to p?d_none. Usually (but 22 * very seldom) called out from the p?d_none_o 18 * very seldom) called out from the p?d_none_or_clear_bad macros. 23 */ 19 */ 24 20 25 void pgd_clear_bad(pgd_t *pgd) 21 void pgd_clear_bad(pgd_t *pgd) 26 { 22 { 27 pgd_ERROR(*pgd); 23 pgd_ERROR(*pgd); 28 pgd_clear(pgd); 24 pgd_clear(pgd); 29 } 25 } 30 26 31 #ifndef __PAGETABLE_P4D_FOLDED << 32 void p4d_clear_bad(p4d_t *p4d) 27 void p4d_clear_bad(p4d_t *p4d) 33 { 28 { 34 p4d_ERROR(*p4d); 29 p4d_ERROR(*p4d); 35 p4d_clear(p4d); 30 p4d_clear(p4d); 36 } 31 } 37 #endif << 38 32 39 #ifndef __PAGETABLE_PUD_FOLDED << 40 void pud_clear_bad(pud_t *pud) 33 void pud_clear_bad(pud_t *pud) 41 { 34 { 42 pud_ERROR(*pud); 35 pud_ERROR(*pud); 43 pud_clear(pud); 36 pud_clear(pud); 44 } 37 } 45 #endif << 46 38 47 /* << 48 * Note that the pmd variant below can't be st << 49 * above. pmd folding is special and typically << 50 * level even when folded << 51 */ << 52 void pmd_clear_bad(pmd_t *pmd) 39 void pmd_clear_bad(pmd_t *pmd) 53 { 40 { 54 pmd_ERROR(*pmd); 41 pmd_ERROR(*pmd); 55 pmd_clear(pmd); 42 pmd_clear(pmd); 56 } 43 } 57 44 58 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 45 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 59 /* 46 /* 60 * Only sets the access flags (dirty, accessed !! 47 * Only sets the access flags (dirty, accessed), as well as write 61 * permission. Furthermore, we know it always 48 * permission. Furthermore, we know it always gets set to a "more 62 * permissive" setting, which allows most arch 49 * permissive" setting, which allows most architectures to optimize 63 * this. We return whether the PTE actually ch 50 * this. We return whether the PTE actually changed, which in turn 64 * instructs the caller to do things like upda 51 * instructs the caller to do things like update__mmu_cache. This 65 * used to be done in the caller, but sparc ne 52 * used to be done in the caller, but sparc needs minor faults to 66 * force that call on sun4c so we changed this 53 * force that call on sun4c so we changed this macro slightly 67 */ 54 */ 68 int ptep_set_access_flags(struct vm_area_struc 55 int ptep_set_access_flags(struct vm_area_struct *vma, 69 unsigned long addres 56 unsigned long address, pte_t *ptep, 70 pte_t entry, int dir 57 pte_t entry, int dirty) 71 { 58 { 72 int changed = !pte_same(ptep_get(ptep) !! 59 int changed = !pte_same(*ptep, entry); 73 if (changed) { 60 if (changed) { 74 set_pte_at(vma->vm_mm, address 61 set_pte_at(vma->vm_mm, address, ptep, entry); 75 flush_tlb_fix_spurious_fault(v !! 62 flush_tlb_fix_spurious_fault(vma, address); 76 } 63 } 77 return changed; 64 return changed; 78 } 65 } 79 #endif 66 #endif 80 67 81 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 68 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 82 int ptep_clear_flush_young(struct vm_area_stru 69 int ptep_clear_flush_young(struct vm_area_struct *vma, 83 unsigned long addre 70 unsigned long address, pte_t *ptep) 84 { 71 { 85 int young; 72 int young; 86 young = ptep_test_and_clear_young(vma, 73 young = ptep_test_and_clear_young(vma, address, ptep); 87 if (young) 74 if (young) 88 flush_tlb_page(vma, address); 75 flush_tlb_page(vma, address); 89 return young; 76 return young; 90 } 77 } 91 #endif 78 #endif 92 79 93 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 80 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 94 pte_t ptep_clear_flush(struct vm_area_struct * 81 pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, 95 pte_t *ptep) 82 pte_t *ptep) 96 { 83 { 97 struct mm_struct *mm = (vma)->vm_mm; 84 struct mm_struct *mm = (vma)->vm_mm; 98 pte_t pte; 85 pte_t pte; 99 pte = ptep_get_and_clear(mm, address, 86 pte = ptep_get_and_clear(mm, address, ptep); 100 if (pte_accessible(mm, pte)) 87 if (pte_accessible(mm, pte)) 101 flush_tlb_page(vma, address); 88 flush_tlb_page(vma, address); 102 return pte; 89 return pte; 103 } 90 } 104 #endif 91 #endif 105 92 106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 93 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 107 94 108 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 95 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 109 int pmdp_set_access_flags(struct vm_area_struc 96 int pmdp_set_access_flags(struct vm_area_struct *vma, 110 unsigned long addres 97 unsigned long address, pmd_t *pmdp, 111 pmd_t entry, int dir 98 pmd_t entry, int dirty) 112 { 99 { 113 int changed = !pmd_same(*pmdp, entry); 100 int changed = !pmd_same(*pmdp, entry); 114 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 101 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 115 if (changed) { 102 if (changed) { 116 set_pmd_at(vma->vm_mm, address 103 set_pmd_at(vma->vm_mm, address, pmdp, entry); 117 flush_pmd_tlb_range(vma, addre 104 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 118 } 105 } 119 return changed; 106 return changed; 120 } 107 } 121 #endif 108 #endif 122 109 123 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 110 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 124 int pmdp_clear_flush_young(struct vm_area_stru 111 int pmdp_clear_flush_young(struct vm_area_struct *vma, 125 unsigned long addre 112 unsigned long address, pmd_t *pmdp) 126 { 113 { 127 int young; 114 int young; 128 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 115 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 129 young = pmdp_test_and_clear_young(vma, 116 young = pmdp_test_and_clear_young(vma, address, pmdp); 130 if (young) 117 if (young) 131 flush_pmd_tlb_range(vma, addre 118 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 132 return young; 119 return young; 133 } 120 } 134 #endif 121 #endif 135 122 136 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 123 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 137 pmd_t pmdp_huge_clear_flush(struct vm_area_str 124 pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, 138 pmd_t *pmdp) 125 pmd_t *pmdp) 139 { 126 { 140 pmd_t pmd; 127 pmd_t pmd; 141 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 128 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 142 VM_BUG_ON(pmd_present(*pmdp) && !pmd_t !! 129 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 143 !pmd_devmap(*pmdp)) !! 130 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 144 pmd = pmdp_huge_get_and_clear(vma->vm_ 131 pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 145 flush_pmd_tlb_range(vma, address, addr 132 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 146 return pmd; 133 return pmd; 147 } 134 } 148 135 149 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_P 136 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 150 pud_t pudp_huge_clear_flush(struct vm_area_str 137 pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, 151 pud_t *pudp) 138 pud_t *pudp) 152 { 139 { 153 pud_t pud; 140 pud_t pud; 154 141 155 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 142 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 156 VM_BUG_ON(!pud_trans_huge(*pudp) && !p 143 VM_BUG_ON(!pud_trans_huge(*pudp) && !pud_devmap(*pudp)); 157 pud = pudp_huge_get_and_clear(vma->vm_ 144 pud = pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 158 flush_pud_tlb_range(vma, address, addr 145 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 159 return pud; 146 return pud; 160 } 147 } 161 #endif 148 #endif 162 #endif 149 #endif 163 150 164 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 151 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 165 void pgtable_trans_huge_deposit(struct mm_stru 152 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 166 pgtable_t pgta 153 pgtable_t pgtable) 167 { 154 { 168 assert_spin_locked(pmd_lockptr(mm, pmd 155 assert_spin_locked(pmd_lockptr(mm, pmdp)); 169 156 170 /* FIFO */ 157 /* FIFO */ 171 if (!pmd_huge_pte(mm, pmdp)) 158 if (!pmd_huge_pte(mm, pmdp)) 172 INIT_LIST_HEAD(&pgtable->lru); 159 INIT_LIST_HEAD(&pgtable->lru); 173 else 160 else 174 list_add(&pgtable->lru, &pmd_h 161 list_add(&pgtable->lru, &pmd_huge_pte(mm, pmdp)->lru); 175 pmd_huge_pte(mm, pmdp) = pgtable; 162 pmd_huge_pte(mm, pmdp) = pgtable; 176 } 163 } 177 #endif 164 #endif 178 165 179 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 166 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 180 /* no "address" argument so destroys page colo 167 /* no "address" argument so destroys page coloring of some arch */ 181 pgtable_t pgtable_trans_huge_withdraw(struct m 168 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 182 { 169 { 183 pgtable_t pgtable; 170 pgtable_t pgtable; 184 171 185 assert_spin_locked(pmd_lockptr(mm, pmd 172 assert_spin_locked(pmd_lockptr(mm, pmdp)); 186 173 187 /* FIFO */ 174 /* FIFO */ 188 pgtable = pmd_huge_pte(mm, pmdp); 175 pgtable = pmd_huge_pte(mm, pmdp); 189 pmd_huge_pte(mm, pmdp) = list_first_en 176 pmd_huge_pte(mm, pmdp) = list_first_entry_or_null(&pgtable->lru, 190 177 struct page, lru); 191 if (pmd_huge_pte(mm, pmdp)) 178 if (pmd_huge_pte(mm, pmdp)) 192 list_del(&pgtable->lru); 179 list_del(&pgtable->lru); 193 return pgtable; 180 return pgtable; 194 } 181 } 195 #endif 182 #endif 196 183 197 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 184 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 198 pmd_t pmdp_invalidate(struct vm_area_struct *v 185 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 199 pmd_t *pmdp) 186 pmd_t *pmdp) 200 { 187 { 201 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); !! 188 pmd_t old = pmdp_establish(vma, address, pmdp, pmd_mknotpresent(*pmdp)); 202 pmd_t old = pmdp_establish(vma, addres << 203 flush_pmd_tlb_range(vma, address, addr 189 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 204 return old; 190 return old; 205 } 191 } 206 #endif 192 #endif 207 193 208 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD << 209 pmd_t pmdp_invalidate_ad(struct vm_area_struct << 210 pmd_t *pmdp) << 211 { << 212 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); << 213 return pmdp_invalidate(vma, address, p << 214 } << 215 #endif << 216 << 217 #ifndef pmdp_collapse_flush 194 #ifndef pmdp_collapse_flush 218 pmd_t pmdp_collapse_flush(struct vm_area_struc 195 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 219 pmd_t *pmdp) 196 pmd_t *pmdp) 220 { 197 { 221 /* 198 /* 222 * pmd and hugepage pte format are sam 199 * pmd and hugepage pte format are same. So we could 223 * use the same function. 200 * use the same function. 224 */ 201 */ 225 pmd_t pmd; 202 pmd_t pmd; 226 203 227 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 204 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 228 VM_BUG_ON(pmd_trans_huge(*pmdp)); 205 VM_BUG_ON(pmd_trans_huge(*pmdp)); 229 pmd = pmdp_huge_get_and_clear(vma->vm_ 206 pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 230 207 231 /* collapse entails shooting down ptes 208 /* collapse entails shooting down ptes not pmd */ 232 flush_tlb_range(vma, address, address 209 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 233 return pmd; 210 return pmd; 234 } 211 } 235 #endif 212 #endif 236 << 237 /* arch define pte_free_defer in asm/pgalloc.h << 238 #ifndef pte_free_defer << 239 static void pte_free_now(struct rcu_head *head << 240 { << 241 struct page *page; << 242 << 243 page = container_of(head, struct page, << 244 pte_free(NULL /* mm not passed and not << 245 } << 246 << 247 void pte_free_defer(struct mm_struct *mm, pgta << 248 { << 249 struct page *page; << 250 << 251 page = pgtable; << 252 call_rcu(&page->rcu_head, pte_free_now << 253 } << 254 #endif /* pte_free_defer */ << 255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 213 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 256 << 257 #if defined(CONFIG_GUP_GET_PXX_LOW_HIGH) && \ << 258 (defined(CONFIG_SMP) || defined(CONFIG << 259 /* << 260 * See the comment above ptep_get_lockless() i << 261 * the barriers in pmdp_get_lockless() cannot << 262 * pmd_high actually belongs with the value in << 263 * off blocks the TLB flush between present up << 264 * successful __pte_offset_map() points to a p << 265 */ << 266 static unsigned long pmdp_get_lockless_start(v << 267 { << 268 unsigned long irqflags; << 269 << 270 local_irq_save(irqflags); << 271 return irqflags; << 272 } << 273 static void pmdp_get_lockless_end(unsigned lon << 274 { << 275 local_irq_restore(irqflags); << 276 } << 277 #else << 278 static unsigned long pmdp_get_lockless_start(v << 279 static void pmdp_get_lockless_end(unsigned lon << 280 #endif << 281 << 282 pte_t *__pte_offset_map(pmd_t *pmd, unsigned l << 283 { << 284 unsigned long irqflags; << 285 pmd_t pmdval; << 286 << 287 rcu_read_lock(); << 288 irqflags = pmdp_get_lockless_start(); << 289 pmdval = pmdp_get_lockless(pmd); << 290 pmdp_get_lockless_end(irqflags); << 291 << 292 if (pmdvalp) << 293 *pmdvalp = pmdval; << 294 if (unlikely(pmd_none(pmdval) || is_pm << 295 goto nomap; << 296 if (unlikely(pmd_trans_huge(pmdval) || << 297 goto nomap; << 298 if (unlikely(pmd_bad(pmdval))) { << 299 pmd_clear_bad(pmd); << 300 goto nomap; << 301 } << 302 return __pte_map(&pmdval, addr); << 303 nomap: << 304 rcu_read_unlock(); << 305 return NULL; << 306 } << 307 << 308 pte_t *pte_offset_map_nolock(struct mm_struct << 309 unsigned long add << 310 { << 311 pmd_t pmdval; << 312 pte_t *pte; << 313 << 314 pte = __pte_offset_map(pmd, addr, &pmd << 315 if (likely(pte)) << 316 *ptlp = pte_lockptr(mm, &pmdva << 317 return pte; << 318 } << 319 << 320 /* << 321 * pte_offset_map_lock(mm, pmd, addr, ptlp), a << 322 * __pte_offset_map_lock() below, is usually c << 323 * addr, reached by walking down the mm's pgd, << 324 * holding mmap_lock or vma lock for read or f << 325 * context, while holding file's i_mmap_lock o << 326 * write). In a few cases, it may be used with << 327 * copied to or constructed on the stack. << 328 * << 329 * When successful, it returns the pte pointer << 330 * kmapped if necessary (when CONFIG_HIGHPTE), << 331 * modification by software, with a pointer to << 332 * configs mm->page_table_lock, in SPLIT_PTLOC << 333 * struct page). pte_unmap_unlock(pte, ptl) t << 334 * << 335 * But it is unsuccessful, returning NULL with << 336 * page table at *pmd: if, for example, the pa << 337 * or replaced by the huge pmd of a THP. (Whe << 338 * after acquiring the ptlock, and retried int << 339 * page table can be safely removed or replace << 340 * << 341 * pte_offset_map(pmd, addr), and its internal << 342 * just returns the pte pointer for addr, its << 343 * or NULL if there is no page table at *pmd. << 344 * page table, so cannot normally be used when << 345 * or when entries read must be stable. But i << 346 * that even when page table is racily removed << 347 * and disconnected table. Until pte_unmap(pt << 348 * afterwards. << 349 * << 350 * pte_offset_map_nolock(mm, pmd, addr, ptlp), << 351 * but when successful, it also outputs a poin << 352 * pte_offset_map_lock() does, but in this cas << 353 * the caller to avoid a later pte_lockptr(mm, << 354 * act on a changed *pmd: pte_offset_map_noloc << 355 * pointer for the page table that it returns. << 356 * recheck *pmd once the lock is taken; in pra << 357 * either the mmap_lock for write, or pte_same << 358 * << 359 * Note that free_pgtables(), used after unmap << 360 * exiting the whole mm, does not take page ta << 361 * table, and may not use RCU at all: "outside << 362 * pte_offset_map() and co once the vma is det << 363 */ << 364 pte_t *__pte_offset_map_lock(struct mm_struct << 365 unsigned long add << 366 { << 367 spinlock_t *ptl; << 368 pmd_t pmdval; << 369 pte_t *pte; << 370 again: << 371 pte = __pte_offset_map(pmd, addr, &pmd << 372 if (unlikely(!pte)) << 373 return pte; << 374 ptl = pte_lockptr(mm, &pmdval); << 375 spin_lock(ptl); << 376 if (likely(pmd_same(pmdval, pmdp_get_l << 377 *ptlp = ptl; << 378 return pte; << 379 } << 380 pte_unmap_unlock(pte, ptl); << 381 goto again; << 382 } << 383 214
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.