1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * mm/pgtable-generic.c 3 * mm/pgtable-generic.c 4 * 4 * 5 * Generic pgtable methods declared in linux/ !! 5 * Generic pgtable methods declared in asm-generic/pgtable.h 6 * 6 * 7 * Copyright (C) 2010 Linus Torvalds 7 * Copyright (C) 2010 Linus Torvalds 8 */ 8 */ 9 9 10 #include <linux/pagemap.h> 10 #include <linux/pagemap.h> 11 #include <linux/hugetlb.h> << 12 #include <linux/pgtable.h> << 13 #include <linux/swap.h> << 14 #include <linux/swapops.h> << 15 #include <linux/mm_inline.h> << 16 #include <asm/pgalloc.h> << 17 #include <asm/tlb.h> 11 #include <asm/tlb.h> >> 12 #include <asm-generic/pgtable.h> 18 13 19 /* 14 /* 20 * If a p?d_bad entry is found while walking p 15 * If a p?d_bad entry is found while walking page tables, report 21 * the error, before resetting entry to p?d_no 16 * the error, before resetting entry to p?d_none. Usually (but 22 * very seldom) called out from the p?d_none_o 17 * very seldom) called out from the p?d_none_or_clear_bad macros. 23 */ 18 */ 24 19 25 void pgd_clear_bad(pgd_t *pgd) 20 void pgd_clear_bad(pgd_t *pgd) 26 { 21 { 27 pgd_ERROR(*pgd); 22 pgd_ERROR(*pgd); 28 pgd_clear(pgd); 23 pgd_clear(pgd); 29 } 24 } 30 25 31 #ifndef __PAGETABLE_P4D_FOLDED << 32 void p4d_clear_bad(p4d_t *p4d) 26 void p4d_clear_bad(p4d_t *p4d) 33 { 27 { 34 p4d_ERROR(*p4d); 28 p4d_ERROR(*p4d); 35 p4d_clear(p4d); 29 p4d_clear(p4d); 36 } 30 } 37 #endif << 38 31 39 #ifndef __PAGETABLE_PUD_FOLDED << 40 void pud_clear_bad(pud_t *pud) 32 void pud_clear_bad(pud_t *pud) 41 { 33 { 42 pud_ERROR(*pud); 34 pud_ERROR(*pud); 43 pud_clear(pud); 35 pud_clear(pud); 44 } 36 } 45 #endif << 46 37 47 /* << 48 * Note that the pmd variant below can't be st << 49 * above. pmd folding is special and typically << 50 * level even when folded << 51 */ << 52 void pmd_clear_bad(pmd_t *pmd) 38 void pmd_clear_bad(pmd_t *pmd) 53 { 39 { 54 pmd_ERROR(*pmd); 40 pmd_ERROR(*pmd); 55 pmd_clear(pmd); 41 pmd_clear(pmd); 56 } 42 } 57 43 58 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 44 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 59 /* 45 /* 60 * Only sets the access flags (dirty, accessed !! 46 * Only sets the access flags (dirty, accessed), as well as write 61 * permission. Furthermore, we know it always 47 * permission. Furthermore, we know it always gets set to a "more 62 * permissive" setting, which allows most arch 48 * permissive" setting, which allows most architectures to optimize 63 * this. We return whether the PTE actually ch 49 * this. We return whether the PTE actually changed, which in turn 64 * instructs the caller to do things like upda 50 * instructs the caller to do things like update__mmu_cache. This 65 * used to be done in the caller, but sparc ne 51 * used to be done in the caller, but sparc needs minor faults to 66 * force that call on sun4c so we changed this 52 * force that call on sun4c so we changed this macro slightly 67 */ 53 */ 68 int ptep_set_access_flags(struct vm_area_struc 54 int ptep_set_access_flags(struct vm_area_struct *vma, 69 unsigned long addres 55 unsigned long address, pte_t *ptep, 70 pte_t entry, int dir 56 pte_t entry, int dirty) 71 { 57 { 72 int changed = !pte_same(ptep_get(ptep) !! 58 int changed = !pte_same(*ptep, entry); 73 if (changed) { 59 if (changed) { 74 set_pte_at(vma->vm_mm, address 60 set_pte_at(vma->vm_mm, address, ptep, entry); 75 flush_tlb_fix_spurious_fault(v !! 61 flush_tlb_fix_spurious_fault(vma, address); 76 } 62 } 77 return changed; 63 return changed; 78 } 64 } 79 #endif 65 #endif 80 66 81 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 67 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 82 int ptep_clear_flush_young(struct vm_area_stru 68 int ptep_clear_flush_young(struct vm_area_struct *vma, 83 unsigned long addre 69 unsigned long address, pte_t *ptep) 84 { 70 { 85 int young; 71 int young; 86 young = ptep_test_and_clear_young(vma, 72 young = ptep_test_and_clear_young(vma, address, ptep); 87 if (young) 73 if (young) 88 flush_tlb_page(vma, address); 74 flush_tlb_page(vma, address); 89 return young; 75 return young; 90 } 76 } 91 #endif 77 #endif 92 78 93 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 79 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 94 pte_t ptep_clear_flush(struct vm_area_struct * 80 pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, 95 pte_t *ptep) 81 pte_t *ptep) 96 { 82 { 97 struct mm_struct *mm = (vma)->vm_mm; 83 struct mm_struct *mm = (vma)->vm_mm; 98 pte_t pte; 84 pte_t pte; 99 pte = ptep_get_and_clear(mm, address, 85 pte = ptep_get_and_clear(mm, address, ptep); 100 if (pte_accessible(mm, pte)) 86 if (pte_accessible(mm, pte)) 101 flush_tlb_page(vma, address); 87 flush_tlb_page(vma, address); 102 return pte; 88 return pte; 103 } 89 } 104 #endif 90 #endif 105 91 106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 92 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 107 93 108 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 94 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 109 int pmdp_set_access_flags(struct vm_area_struc 95 int pmdp_set_access_flags(struct vm_area_struct *vma, 110 unsigned long addres 96 unsigned long address, pmd_t *pmdp, 111 pmd_t entry, int dir 97 pmd_t entry, int dirty) 112 { 98 { 113 int changed = !pmd_same(*pmdp, entry); 99 int changed = !pmd_same(*pmdp, entry); 114 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 100 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 115 if (changed) { 101 if (changed) { 116 set_pmd_at(vma->vm_mm, address 102 set_pmd_at(vma->vm_mm, address, pmdp, entry); 117 flush_pmd_tlb_range(vma, addre 103 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 118 } 104 } 119 return changed; 105 return changed; 120 } 106 } 121 #endif 107 #endif 122 108 123 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 109 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 124 int pmdp_clear_flush_young(struct vm_area_stru 110 int pmdp_clear_flush_young(struct vm_area_struct *vma, 125 unsigned long addre 111 unsigned long address, pmd_t *pmdp) 126 { 112 { 127 int young; 113 int young; 128 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 114 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 129 young = pmdp_test_and_clear_young(vma, 115 young = pmdp_test_and_clear_young(vma, address, pmdp); 130 if (young) 116 if (young) 131 flush_pmd_tlb_range(vma, addre 117 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 132 return young; 118 return young; 133 } 119 } 134 #endif 120 #endif 135 121 136 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 122 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 137 pmd_t pmdp_huge_clear_flush(struct vm_area_str 123 pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, 138 pmd_t *pmdp) 124 pmd_t *pmdp) 139 { 125 { 140 pmd_t pmd; 126 pmd_t pmd; 141 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 127 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 142 VM_BUG_ON(pmd_present(*pmdp) && !pmd_t !! 128 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 143 !pmd_devmap(*pmdp)) !! 129 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 144 pmd = pmdp_huge_get_and_clear(vma->vm_ 130 pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 145 flush_pmd_tlb_range(vma, address, addr 131 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 146 return pmd; 132 return pmd; 147 } 133 } 148 134 149 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_P 135 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 150 pud_t pudp_huge_clear_flush(struct vm_area_str 136 pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, 151 pud_t *pudp) 137 pud_t *pudp) 152 { 138 { 153 pud_t pud; 139 pud_t pud; 154 140 155 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 141 VM_BUG_ON(address & ~HPAGE_PUD_MASK); 156 VM_BUG_ON(!pud_trans_huge(*pudp) && !p 142 VM_BUG_ON(!pud_trans_huge(*pudp) && !pud_devmap(*pudp)); 157 pud = pudp_huge_get_and_clear(vma->vm_ 143 pud = pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 158 flush_pud_tlb_range(vma, address, addr 144 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 159 return pud; 145 return pud; 160 } 146 } 161 #endif 147 #endif 162 #endif 148 #endif 163 149 164 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 150 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 165 void pgtable_trans_huge_deposit(struct mm_stru 151 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 166 pgtable_t pgta 152 pgtable_t pgtable) 167 { 153 { 168 assert_spin_locked(pmd_lockptr(mm, pmd 154 assert_spin_locked(pmd_lockptr(mm, pmdp)); 169 155 170 /* FIFO */ 156 /* FIFO */ 171 if (!pmd_huge_pte(mm, pmdp)) 157 if (!pmd_huge_pte(mm, pmdp)) 172 INIT_LIST_HEAD(&pgtable->lru); 158 INIT_LIST_HEAD(&pgtable->lru); 173 else 159 else 174 list_add(&pgtable->lru, &pmd_h 160 list_add(&pgtable->lru, &pmd_huge_pte(mm, pmdp)->lru); 175 pmd_huge_pte(mm, pmdp) = pgtable; 161 pmd_huge_pte(mm, pmdp) = pgtable; 176 } 162 } 177 #endif 163 #endif 178 164 179 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 165 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 180 /* no "address" argument so destroys page colo 166 /* no "address" argument so destroys page coloring of some arch */ 181 pgtable_t pgtable_trans_huge_withdraw(struct m 167 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 182 { 168 { 183 pgtable_t pgtable; 169 pgtable_t pgtable; 184 170 185 assert_spin_locked(pmd_lockptr(mm, pmd 171 assert_spin_locked(pmd_lockptr(mm, pmdp)); 186 172 187 /* FIFO */ 173 /* FIFO */ 188 pgtable = pmd_huge_pte(mm, pmdp); 174 pgtable = pmd_huge_pte(mm, pmdp); 189 pmd_huge_pte(mm, pmdp) = list_first_en 175 pmd_huge_pte(mm, pmdp) = list_first_entry_or_null(&pgtable->lru, 190 176 struct page, lru); 191 if (pmd_huge_pte(mm, pmdp)) 177 if (pmd_huge_pte(mm, pmdp)) 192 list_del(&pgtable->lru); 178 list_del(&pgtable->lru); 193 return pgtable; 179 return pgtable; 194 } 180 } 195 #endif 181 #endif 196 182 197 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 183 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 198 pmd_t pmdp_invalidate(struct vm_area_struct *v 184 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 199 pmd_t *pmdp) 185 pmd_t *pmdp) 200 { 186 { 201 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); !! 187 pmd_t old = pmdp_establish(vma, address, pmdp, pmd_mknotpresent(*pmdp)); 202 pmd_t old = pmdp_establish(vma, addres << 203 flush_pmd_tlb_range(vma, address, addr 188 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 204 return old; 189 return old; 205 } 190 } 206 #endif 191 #endif 207 192 208 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD << 209 pmd_t pmdp_invalidate_ad(struct vm_area_struct << 210 pmd_t *pmdp) << 211 { << 212 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); << 213 return pmdp_invalidate(vma, address, p << 214 } << 215 #endif << 216 << 217 #ifndef pmdp_collapse_flush 193 #ifndef pmdp_collapse_flush 218 pmd_t pmdp_collapse_flush(struct vm_area_struc 194 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 219 pmd_t *pmdp) 195 pmd_t *pmdp) 220 { 196 { 221 /* 197 /* 222 * pmd and hugepage pte format are sam 198 * pmd and hugepage pte format are same. So we could 223 * use the same function. 199 * use the same function. 224 */ 200 */ 225 pmd_t pmd; 201 pmd_t pmd; 226 202 227 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 203 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 228 VM_BUG_ON(pmd_trans_huge(*pmdp)); 204 VM_BUG_ON(pmd_trans_huge(*pmdp)); 229 pmd = pmdp_huge_get_and_clear(vma->vm_ 205 pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 230 206 231 /* collapse entails shooting down ptes 207 /* collapse entails shooting down ptes not pmd */ 232 flush_tlb_range(vma, address, address 208 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 233 return pmd; 209 return pmd; 234 } 210 } 235 #endif 211 #endif 236 << 237 /* arch define pte_free_defer in asm/pgalloc.h << 238 #ifndef pte_free_defer << 239 static void pte_free_now(struct rcu_head *head << 240 { << 241 struct page *page; << 242 << 243 page = container_of(head, struct page, << 244 pte_free(NULL /* mm not passed and not << 245 } << 246 << 247 void pte_free_defer(struct mm_struct *mm, pgta << 248 { << 249 struct page *page; << 250 << 251 page = pgtable; << 252 call_rcu(&page->rcu_head, pte_free_now << 253 } << 254 #endif /* pte_free_defer */ << 255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 212 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 256 << 257 #if defined(CONFIG_GUP_GET_PXX_LOW_HIGH) && \ << 258 (defined(CONFIG_SMP) || defined(CONFIG << 259 /* << 260 * See the comment above ptep_get_lockless() i << 261 * the barriers in pmdp_get_lockless() cannot << 262 * pmd_high actually belongs with the value in << 263 * off blocks the TLB flush between present up << 264 * successful __pte_offset_map() points to a p << 265 */ << 266 static unsigned long pmdp_get_lockless_start(v << 267 { << 268 unsigned long irqflags; << 269 << 270 local_irq_save(irqflags); << 271 return irqflags; << 272 } << 273 static void pmdp_get_lockless_end(unsigned lon << 274 { << 275 local_irq_restore(irqflags); << 276 } << 277 #else << 278 static unsigned long pmdp_get_lockless_start(v << 279 static void pmdp_get_lockless_end(unsigned lon << 280 #endif << 281 << 282 pte_t *__pte_offset_map(pmd_t *pmd, unsigned l << 283 { << 284 unsigned long irqflags; << 285 pmd_t pmdval; << 286 << 287 rcu_read_lock(); << 288 irqflags = pmdp_get_lockless_start(); << 289 pmdval = pmdp_get_lockless(pmd); << 290 pmdp_get_lockless_end(irqflags); << 291 << 292 if (pmdvalp) << 293 *pmdvalp = pmdval; << 294 if (unlikely(pmd_none(pmdval) || is_pm << 295 goto nomap; << 296 if (unlikely(pmd_trans_huge(pmdval) || << 297 goto nomap; << 298 if (unlikely(pmd_bad(pmdval))) { << 299 pmd_clear_bad(pmd); << 300 goto nomap; << 301 } << 302 return __pte_map(&pmdval, addr); << 303 nomap: << 304 rcu_read_unlock(); << 305 return NULL; << 306 } << 307 << 308 pte_t *pte_offset_map_nolock(struct mm_struct << 309 unsigned long add << 310 { << 311 pmd_t pmdval; << 312 pte_t *pte; << 313 << 314 pte = __pte_offset_map(pmd, addr, &pmd << 315 if (likely(pte)) << 316 *ptlp = pte_lockptr(mm, &pmdva << 317 return pte; << 318 } << 319 << 320 /* << 321 * pte_offset_map_lock(mm, pmd, addr, ptlp), a << 322 * __pte_offset_map_lock() below, is usually c << 323 * addr, reached by walking down the mm's pgd, << 324 * holding mmap_lock or vma lock for read or f << 325 * context, while holding file's i_mmap_lock o << 326 * write). In a few cases, it may be used with << 327 * copied to or constructed on the stack. << 328 * << 329 * When successful, it returns the pte pointer << 330 * kmapped if necessary (when CONFIG_HIGHPTE), << 331 * modification by software, with a pointer to << 332 * configs mm->page_table_lock, in SPLIT_PTLOC << 333 * struct page). pte_unmap_unlock(pte, ptl) t << 334 * << 335 * But it is unsuccessful, returning NULL with << 336 * page table at *pmd: if, for example, the pa << 337 * or replaced by the huge pmd of a THP. (Whe << 338 * after acquiring the ptlock, and retried int << 339 * page table can be safely removed or replace << 340 * << 341 * pte_offset_map(pmd, addr), and its internal << 342 * just returns the pte pointer for addr, its << 343 * or NULL if there is no page table at *pmd. << 344 * page table, so cannot normally be used when << 345 * or when entries read must be stable. But i << 346 * that even when page table is racily removed << 347 * and disconnected table. Until pte_unmap(pt << 348 * afterwards. << 349 * << 350 * pte_offset_map_nolock(mm, pmd, addr, ptlp), << 351 * but when successful, it also outputs a poin << 352 * pte_offset_map_lock() does, but in this cas << 353 * the caller to avoid a later pte_lockptr(mm, << 354 * act on a changed *pmd: pte_offset_map_noloc << 355 * pointer for the page table that it returns. << 356 * recheck *pmd once the lock is taken; in pra << 357 * either the mmap_lock for write, or pte_same << 358 * << 359 * Note that free_pgtables(), used after unmap << 360 * exiting the whole mm, does not take page ta << 361 * table, and may not use RCU at all: "outside << 362 * pte_offset_map() and co once the vma is det << 363 */ << 364 pte_t *__pte_offset_map_lock(struct mm_struct << 365 unsigned long add << 366 { << 367 spinlock_t *ptl; << 368 pmd_t pmdval; << 369 pte_t *pte; << 370 again: << 371 pte = __pte_offset_map(pmd, addr, &pmd << 372 if (unlikely(!pte)) << 373 return pte; << 374 ptl = pte_lockptr(mm, &pmdval); << 375 spin_lock(ptl); << 376 if (likely(pmd_same(pmdval, pmdp_get_l << 377 *ptlp = ptl; << 378 return pte; << 379 } << 380 pte_unmap_unlock(pte, ptl); << 381 goto again; << 382 } << 383 213
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.