1 /* 1 /* 2 * mm/rmap.c - physical to virtual reverse map 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiv 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License ( 5 * Released under the General Public License (GPL). 6 * 6 * 7 * Simple, low overhead reverse mapping scheme 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as 8 * Please try to keep this thing as modular as possible. 9 * 9 * 10 * Provides methods for unmapping each kind of 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to a 12 * the file methods track pages belonging to an inode. 13 * 13 * 14 * Original design by Rik van Riel <riel@conec 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ib 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andr 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 18 */ 19 19 20 /* 20 /* 21 * Lock ordering in mm: 21 * Lock ordering in mm: 22 * 22 * 23 * inode->i_rwsem (while writing or trun 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fa 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock !! 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write !! 28 * mapping->i_mmap_rwsem 29 * mapping->i_mmap_rwsem !! 29 * anon_vma->rwsem 30 * anon_vma->rwsem !! 30 * mm->page_table_lock or pte_lock 31 * mm->page_table_lock or pte_ !! 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * swap_lock (in swap_duplic !! 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mmlist_lock (in mmput, !! 33 * mapping->private_lock (in block_dirty_folio) 34 * mapping->private_lock ( !! 34 * folio_lock_memcg move_lock (in block_dirty_folio) 35 * folio_lock_memcg move !! 35 * i_pages lock (widely used) 36 * i_pages lock (widel !! 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * lruvec->lru_lock !! 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * inode->i_lock (in set_p !! 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in s !! 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * sb_lock (within inode !! 40 * i_pages lock (widely used, in set_page_dirty, 41 * i_pages lock (widely !! 41 * in arch-dependent flush_dcache_mmap_lock, 42 * in arch-dep !! 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * within bdi. << 44 * 43 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (me 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 45 * ->tasklist_lock 47 * pte map lock 46 * pte map lock 48 * 47 * 49 * hugetlbfs PageHuge() take locks in this ord 48 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific p 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd 50 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * folio_lock !! 52 * page->flags PG_locked (lock_page) 54 */ 53 */ 55 54 56 #include <linux/mm.h> 55 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 56 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 57 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 58 #include <linux/pagemap.h> 60 #include <linux/swap.h> 59 #include <linux/swap.h> 61 #include <linux/swapops.h> 60 #include <linux/swapops.h> 62 #include <linux/slab.h> 61 #include <linux/slab.h> 63 #include <linux/init.h> 62 #include <linux/init.h> 64 #include <linux/ksm.h> 63 #include <linux/ksm.h> 65 #include <linux/rmap.h> 64 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 65 #include <linux/rcupdate.h> 67 #include <linux/export.h> 66 #include <linux/export.h> 68 #include <linux/memcontrol.h> 67 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 68 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 69 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 70 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 71 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 72 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 73 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 74 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 75 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 76 #include <linux/mm_inline.h> 78 #include <linux/oom.h> << 79 77 80 #include <asm/tlbflush.h> 78 #include <asm/tlbflush.h> 81 79 82 #define CREATE_TRACE_POINTS 80 #define CREATE_TRACE_POINTS 83 #include <trace/events/tlb.h> 81 #include <trace/events/tlb.h> 84 #include <trace/events/migrate.h> 82 #include <trace/events/migrate.h> 85 83 86 #include "internal.h" 84 #include "internal.h" 87 85 88 static struct kmem_cache *anon_vma_cachep; 86 static struct kmem_cache *anon_vma_cachep; 89 static struct kmem_cache *anon_vma_chain_cache 87 static struct kmem_cache *anon_vma_chain_cachep; 90 88 91 static inline struct anon_vma *anon_vma_alloc( 89 static inline struct anon_vma *anon_vma_alloc(void) 92 { 90 { 93 struct anon_vma *anon_vma; 91 struct anon_vma *anon_vma; 94 92 95 anon_vma = kmem_cache_alloc(anon_vma_c 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 96 if (anon_vma) { 94 if (anon_vma) { 97 atomic_set(&anon_vma->refcount 95 atomic_set(&anon_vma->refcount, 1); 98 anon_vma->num_children = 0; 96 anon_vma->num_children = 0; 99 anon_vma->num_active_vmas = 0; 97 anon_vma->num_active_vmas = 0; 100 anon_vma->parent = anon_vma; 98 anon_vma->parent = anon_vma; 101 /* 99 /* 102 * Initialise the anon_vma roo 100 * Initialise the anon_vma root to point to itself. If called 103 * from fork, the root will be 101 * from fork, the root will be reset to the parents anon_vma. 104 */ 102 */ 105 anon_vma->root = anon_vma; 103 anon_vma->root = anon_vma; 106 } 104 } 107 105 108 return anon_vma; 106 return anon_vma; 109 } 107 } 110 108 111 static inline void anon_vma_free(struct anon_v 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 112 { 110 { 113 VM_BUG_ON(atomic_read(&anon_vma->refco 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 114 112 115 /* 113 /* 116 * Synchronize against folio_lock_anon 114 * Synchronize against folio_lock_anon_vma_read() such that 117 * we can safely hold the lock without 115 * we can safely hold the lock without the anon_vma getting 118 * freed. 116 * freed. 119 * 117 * 120 * Relies on the full mb implied by th 118 * Relies on the full mb implied by the atomic_dec_and_test() from 121 * put_anon_vma() against the acquire 119 * put_anon_vma() against the acquire barrier implied by 122 * down_read_trylock() from folio_lock 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 123 * 121 * 124 * folio_lock_anon_vma_read() VS 122 * folio_lock_anon_vma_read() VS put_anon_vma() 125 * down_read_trylock() 123 * down_read_trylock() atomic_dec_and_test() 126 * LOCK 124 * LOCK MB 127 * atomic_read() 125 * atomic_read() rwsem_is_locked() 128 * 126 * 129 * LOCK should suffice since the actua 127 * LOCK should suffice since the actual taking of the lock must 130 * happen _before_ what follows. 128 * happen _before_ what follows. 131 */ 129 */ 132 might_sleep(); 130 might_sleep(); 133 if (rwsem_is_locked(&anon_vma->root->r 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 134 anon_vma_lock_write(anon_vma); 132 anon_vma_lock_write(anon_vma); 135 anon_vma_unlock_write(anon_vma 133 anon_vma_unlock_write(anon_vma); 136 } 134 } 137 135 138 kmem_cache_free(anon_vma_cachep, anon_ 136 kmem_cache_free(anon_vma_cachep, anon_vma); 139 } 137 } 140 138 141 static inline struct anon_vma_chain *anon_vma_ 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 142 { 140 { 143 return kmem_cache_alloc(anon_vma_chain 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 144 } 142 } 145 143 146 static void anon_vma_chain_free(struct anon_vm 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 147 { 145 { 148 kmem_cache_free(anon_vma_chain_cachep, 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 149 } 147 } 150 148 151 static void anon_vma_chain_link(struct vm_area 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 152 struct anon_vm 150 struct anon_vma_chain *avc, 153 struct anon_vm 151 struct anon_vma *anon_vma) 154 { 152 { 155 avc->vma = vma; 153 avc->vma = vma; 156 avc->anon_vma = anon_vma; 154 avc->anon_vma = anon_vma; 157 list_add(&avc->same_vma, &vma->anon_vm 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 158 anon_vma_interval_tree_insert(avc, &an 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 159 } 157 } 160 158 161 /** 159 /** 162 * __anon_vma_prepare - attach an anon_vma to 160 * __anon_vma_prepare - attach an anon_vma to a memory region 163 * @vma: the memory region in question 161 * @vma: the memory region in question 164 * 162 * 165 * This makes sure the memory mapping describe 163 * This makes sure the memory mapping described by 'vma' has 166 * an 'anon_vma' attached to it, so that we ca 164 * an 'anon_vma' attached to it, so that we can associate the 167 * anonymous pages mapped into it with that an 165 * anonymous pages mapped into it with that anon_vma. 168 * 166 * 169 * The common case will be that we already hav 167 * The common case will be that we already have one, which 170 * is handled inline by anon_vma_prepare(). Bu 168 * is handled inline by anon_vma_prepare(). But if 171 * not we either need to find an adjacent mapp 169 * not we either need to find an adjacent mapping that we 172 * can re-use the anon_vma from (very common w 170 * can re-use the anon_vma from (very common when the only 173 * reason for splitting a vma has been mprotec 171 * reason for splitting a vma has been mprotect()), or we 174 * allocate a new one. 172 * allocate a new one. 175 * 173 * 176 * Anon-vma allocations are very subtle, becau 174 * Anon-vma allocations are very subtle, because we may have 177 * optimistically looked up an anon_vma in fol 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 178 * and that may actually touch the rwsem even 176 * and that may actually touch the rwsem even in the newly 179 * allocated vma (it depends on RCU to make su 177 * allocated vma (it depends on RCU to make sure that the 180 * anon_vma isn't actually destroyed). 178 * anon_vma isn't actually destroyed). 181 * 179 * 182 * As a result, we need to do proper anon_vma 180 * As a result, we need to do proper anon_vma locking even 183 * for the new allocation. At the same time, w 181 * for the new allocation. At the same time, we do not want 184 * to do any locking for the common case of al 182 * to do any locking for the common case of already having 185 * an anon_vma. 183 * an anon_vma. >> 184 * >> 185 * This must be called with the mmap_lock held for reading. 186 */ 186 */ 187 int __anon_vma_prepare(struct vm_area_struct * 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 188 { 189 struct mm_struct *mm = vma->vm_mm; 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 191 struct anon_vma_chain *avc; 192 192 193 mmap_assert_locked(mm); << 194 might_sleep(); 193 might_sleep(); 195 194 196 avc = anon_vma_chain_alloc(GFP_KERNEL) 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 196 if (!avc) 198 goto out_enomem; 197 goto out_enomem; 199 198 200 anon_vma = find_mergeable_anon_vma(vma 199 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 200 allocated = NULL; 202 if (!anon_vma) { 201 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 202 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 203 if (unlikely(!anon_vma)) 205 goto out_enomem_free_a 204 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* s 205 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 206 allocated = anon_vma; 208 } 207 } 209 208 210 anon_vma_lock_write(anon_vma); 209 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against 210 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 211 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 212 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 213 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, 214 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 215 anon_vma->num_active_vmas++; 217 allocated = NULL; 216 allocated = NULL; 218 avc = NULL; 217 avc = NULL; 219 } 218 } 220 spin_unlock(&mm->page_table_lock); 219 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 220 anon_vma_unlock_write(anon_vma); 222 221 223 if (unlikely(allocated)) 222 if (unlikely(allocated)) 224 put_anon_vma(allocated); 223 put_anon_vma(allocated); 225 if (unlikely(avc)) 224 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 225 anon_vma_chain_free(avc); 227 226 228 return 0; 227 return 0; 229 228 230 out_enomem_free_avc: 229 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 230 anon_vma_chain_free(avc); 232 out_enomem: 231 out_enomem: 233 return -ENOMEM; 232 return -ENOMEM; 234 } 233 } 235 234 236 /* 235 /* 237 * This is a useful helper function for lockin 236 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, loopin 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 238 * have the same vma. 240 * 239 * 241 * Such anon_vma's should have the same root, 240 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole trav 241 * just a single mutex_lock for the whole traversal. 243 */ 242 */ 244 static inline struct anon_vma *lock_anon_vma_r 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 244 { 246 struct anon_vma *new_root = anon_vma-> 245 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 246 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 247 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem) 248 up_write(&root->rwsem); 250 root = new_root; 249 root = new_root; 251 down_write(&root->rwsem); 250 down_write(&root->rwsem); 252 } 251 } 253 return root; 252 return root; 254 } 253 } 255 254 256 static inline void unlock_anon_vma_root(struct 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 256 { 258 if (root) 257 if (root) 259 up_write(&root->rwsem); 258 up_write(&root->rwsem); 260 } 259 } 261 260 262 /* 261 /* 263 * Attach the anon_vmas from src to dst. 262 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 263 * Returns 0 on success, -ENOMEM on failure. 265 * 264 * 266 * anon_vma_clone() is called by vma_expand(), !! 265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 267 * copy_vma() and anon_vma_fork(). The first f !! 266 * anon_vma_fork(). The first three want an exact copy of src, while the last 268 * while the last one, anon_vma_fork(), may tr !! 267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 269 * prevent endless growth of anon_vma. Since d !! 268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 270 * call, we can identify this case by checking !! 269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 271 * src->anon_vma). << 272 * 270 * 273 * If (!dst->anon_vma && src->anon_vma) is tru 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vm 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hiera 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the oth 274 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there w 275 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanni 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 277 * searches where page is mapped. 280 */ 278 */ 281 int anon_vma_clone(struct vm_area_struct *dst, 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 280 { 283 struct anon_vma_chain *avc, *pavc; 281 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 282 struct anon_vma *root = NULL; 285 283 286 list_for_each_entry_reverse(pavc, &src 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 285 struct anon_vma *anon_vma; 288 286 289 avc = anon_vma_chain_alloc(GFP 287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 288 if (unlikely(!avc)) { 291 unlock_anon_vma_root(r 289 unlock_anon_vma_root(root); 292 root = NULL; 290 root = NULL; 293 avc = anon_vma_chain_a 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 292 if (!avc) 295 goto enomem_fa 293 goto enomem_failure; 296 } 294 } 297 anon_vma = pavc->anon_vma; 295 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root 296 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, 297 anon_vma_chain_link(dst, avc, anon_vma); 300 298 301 /* 299 /* 302 * Reuse existing anon_vma if 300 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 301 * anon_vma child. 304 * 302 * 305 * Root anon_vma is never reus 303 * Root anon_vma is never reused: 306 * it has self-parent referenc 304 * it has self-parent reference and at least one child. 307 */ 305 */ 308 if (!dst->anon_vma && src->ano 306 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 307 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas 308 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_v 309 dst->anon_vma = anon_vma; 312 } 310 } 313 if (dst->anon_vma) 311 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas 312 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 313 unlock_anon_vma_root(root); 316 return 0; 314 return 0; 317 315 318 enomem_failure: 316 enomem_failure: 319 /* 317 /* 320 * dst->anon_vma is dropped here other 318 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlin 319 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because calle 320 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clo 321 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 322 */ 325 dst->anon_vma = NULL; 323 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 324 unlink_anon_vmas(dst); 327 return -ENOMEM; 325 return -ENOMEM; 328 } 326 } 329 327 330 /* 328 /* 331 * Attach vma to its own anon_vma, as well as 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process 330 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 331 * Returns 0 on success, non-zero on failure. 334 */ 332 */ 335 int anon_vma_fork(struct vm_area_struct *vma, 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 334 { 337 struct anon_vma_chain *avc; 335 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 336 struct anon_vma *anon_vma; 339 int error; 337 int error; 340 338 341 /* Don't bother if the parent process 339 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 340 if (!pvma->anon_vma) 343 return 0; 341 return 0; 344 342 345 /* Drop inherited anon_vma, we'll reus 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 344 vma->anon_vma = NULL; 347 345 348 /* 346 /* 349 * First, attach the new VMA to the pa 347 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in 348 * so rmap can find non-COWed pages in child processes. 351 */ 349 */ 352 error = anon_vma_clone(vma, pvma); 350 error = anon_vma_clone(vma, pvma); 353 if (error) 351 if (error) 354 return error; 352 return error; 355 353 356 /* An existing anon_vma has been reuse 354 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 355 if (vma->anon_vma) 358 return 0; 356 return 0; 359 357 360 /* Then add our own anon_vma. */ 358 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 359 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 360 if (!anon_vma) 363 goto out_error; 361 goto out_error; 364 anon_vma->num_active_vmas++; 362 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL) 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 364 if (!avc) 367 goto out_error_free_anon_vma; 365 goto out_error_free_anon_vma; 368 366 369 /* 367 /* 370 * The root anon_vma's rwsem is the lo 368 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this a 369 * lock any of the anon_vmas in this anon_vma tree. 372 */ 370 */ 373 anon_vma->root = pvma->anon_vma->root; 371 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 372 anon_vma->parent = pvma->anon_vma; 375 /* 373 /* 376 * With refcounts, an anon_vma can sta 374 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root ano 375 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the 376 * this anon_vma is freed, because the lock lives in the root. 379 */ 377 */ 380 get_anon_vma(anon_vma->root); 378 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 380 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 381 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma 382 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 383 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 384 anon_vma_unlock_write(anon_vma); 387 385 388 return 0; 386 return 0; 389 387 390 out_error_free_anon_vma: 388 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 389 put_anon_vma(anon_vma); 392 out_error: 390 out_error: 393 unlink_anon_vmas(vma); 391 unlink_anon_vmas(vma); 394 return -ENOMEM; 392 return -ENOMEM; 395 } 393 } 396 394 397 void unlink_anon_vmas(struct vm_area_struct *v 395 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 396 { 399 struct anon_vma_chain *avc, *next; 397 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 398 struct anon_vma *root = NULL; 401 399 402 /* 400 /* 403 * Unlink each anon_vma chained to the 401 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 403 */ 406 list_for_each_entry_safe(avc, next, &v 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = av 405 struct anon_vma *anon_vma = avc->anon_vma; 408 406 409 root = lock_anon_vma_root(root 407 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove( 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 409 412 /* 410 /* 413 * Leave empty anon_vmas on th 411 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lo 412 * to free them outside the lock. 415 */ 413 */ 416 if (RB_EMPTY_ROOT(&anon_vma->r 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_ 415 anon_vma->parent->num_children--; 418 continue; 416 continue; 419 } 417 } 420 418 421 list_del(&avc->same_vma); 419 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 420 anon_vma_chain_free(avc); 423 } 421 } 424 if (vma->anon_vma) { 422 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas 423 vma->anon_vma->num_active_vmas--; 426 424 427 /* 425 /* 428 * vma would still be needed a 426 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 427 * when handle fault. 430 */ 428 */ 431 vma->anon_vma = NULL; 429 vma->anon_vma = NULL; 432 } 430 } 433 unlock_anon_vma_root(root); 431 unlock_anon_vma_root(root); 434 432 435 /* 433 /* 436 * Iterate the list once more, it now 434 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_v 436 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 437 */ 440 list_for_each_entry_safe(avc, next, &v 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = av 439 struct anon_vma *anon_vma = avc->anon_vma; 442 440 443 VM_WARN_ON(anon_vma->num_child 441 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_activ 442 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 443 put_anon_vma(anon_vma); 446 444 447 list_del(&avc->same_vma); 445 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 446 anon_vma_chain_free(avc); 449 } 447 } 450 } 448 } 451 449 452 static void anon_vma_ctor(void *data) 450 static void anon_vma_ctor(void *data) 453 { 451 { 454 struct anon_vma *anon_vma = data; 452 struct anon_vma *anon_vma = data; 455 453 456 init_rwsem(&anon_vma->rwsem); 454 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 455 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 456 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 457 } 460 458 461 void __init anon_vma_init(void) 459 void __init anon_vma_init(void) 462 { 460 { 463 anon_vma_cachep = kmem_cache_create("a 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RC 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 463 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(ano 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUN 465 SLAB_PANIC|SLAB_ACCOUNT); 468 } 466 } 469 467 470 /* 468 /* 471 * Getting a lock on a stable anon_vma from a 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 470 * 473 * Since there is no serialization what so eve !! 471 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a r 472 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 473 * that might have been relevant to this page. 476 * 474 * 477 * The page might have been remapped to a diff 475 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reu 476 * returned may already be freed (and even reused). 479 * 477 * 480 * In case it was remapped to a different anon 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the 480 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence al 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 482 * 485 * All users of this function must be very car 483 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question 484 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vm 485 * [ something equivalent to page_mapped_in_vma() ]. 488 * 486 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_R 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * folio_remove_rmap_*() that the anon_vma poi !! 488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference 489 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 490 * those. 493 * << 494 * NOTE: the caller should normally hold folio << 495 * not, the caller needs to double check the a << 496 * taking the anon_vma lock for either read or << 497 * concurrently without folio lock protection) << 498 * which has already covered that, and comment << 499 */ 491 */ 500 struct anon_vma *folio_get_anon_vma(struct fol 492 struct anon_vma *folio_get_anon_vma(struct folio *folio) 501 { 493 { 502 struct anon_vma *anon_vma = NULL; 494 struct anon_vma *anon_vma = NULL; 503 unsigned long anon_mapping; 495 unsigned long anon_mapping; 504 496 505 rcu_read_lock(); 497 rcu_read_lock(); 506 anon_mapping = (unsigned long)READ_ONC 498 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 507 if ((anon_mapping & PAGE_MAPPING_FLAGS 499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 508 goto out; 500 goto out; 509 if (!folio_mapped(folio)) 501 if (!folio_mapped(folio)) 510 goto out; 502 goto out; 511 503 512 anon_vma = (struct anon_vma *) (anon_m 504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 513 if (!atomic_inc_not_zero(&anon_vma->re 505 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 514 anon_vma = NULL; 506 anon_vma = NULL; 515 goto out; 507 goto out; 516 } 508 } 517 509 518 /* 510 /* 519 * If this folio is still mapped, then 511 * If this folio is still mapped, then its anon_vma cannot have been 520 * freed. But if it has been unmapped 512 * freed. But if it has been unmapped, we have no security against the 521 * anon_vma structure being freed and 513 * anon_vma structure being freed and reused (for another anon_vma: 522 * SLAB_TYPESAFE_BY_RCU guarantees tha 514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 523 * above cannot corrupt). 515 * above cannot corrupt). 524 */ 516 */ 525 if (!folio_mapped(folio)) { 517 if (!folio_mapped(folio)) { 526 rcu_read_unlock(); 518 rcu_read_unlock(); 527 put_anon_vma(anon_vma); 519 put_anon_vma(anon_vma); 528 return NULL; 520 return NULL; 529 } 521 } 530 out: 522 out: 531 rcu_read_unlock(); 523 rcu_read_unlock(); 532 524 533 return anon_vma; 525 return anon_vma; 534 } 526 } 535 527 536 /* 528 /* 537 * Similar to folio_get_anon_vma() except it l 529 * Similar to folio_get_anon_vma() except it locks the anon_vma. 538 * 530 * 539 * Its a little more complex as it tries to ke 531 * Its a little more complex as it tries to keep the fast path to a single 540 * atomic op -- the trylock. If we fail the tr 532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 541 * reference like with folio_get_anon_vma() an 533 * reference like with folio_get_anon_vma() and then block on the mutex 542 * on !rwc->try_lock case. 534 * on !rwc->try_lock case. 543 */ 535 */ 544 struct anon_vma *folio_lock_anon_vma_read(stru 536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 545 stru 537 struct rmap_walk_control *rwc) 546 { 538 { 547 struct anon_vma *anon_vma = NULL; 539 struct anon_vma *anon_vma = NULL; 548 struct anon_vma *root_anon_vma; 540 struct anon_vma *root_anon_vma; 549 unsigned long anon_mapping; 541 unsigned long anon_mapping; 550 542 551 retry: << 552 rcu_read_lock(); 543 rcu_read_lock(); 553 anon_mapping = (unsigned long)READ_ONC 544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 554 if ((anon_mapping & PAGE_MAPPING_FLAGS 545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 555 goto out; 546 goto out; 556 if (!folio_mapped(folio)) 547 if (!folio_mapped(folio)) 557 goto out; 548 goto out; 558 549 559 anon_vma = (struct anon_vma *) (anon_m 550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 560 root_anon_vma = READ_ONCE(anon_vma->ro 551 root_anon_vma = READ_ONCE(anon_vma->root); 561 if (down_read_trylock(&root_anon_vma-> 552 if (down_read_trylock(&root_anon_vma->rwsem)) { 562 /* 553 /* 563 * folio_move_anon_rmap() migh << 564 * might not hold the folio lo << 565 */ << 566 if (unlikely((unsigned long)RE << 567 anon_mapping)) { << 568 up_read(&root_anon_vma << 569 rcu_read_unlock(); << 570 goto retry; << 571 } << 572 << 573 /* << 574 * If the folio is still mappe 554 * If the folio is still mapped, then this anon_vma is still 575 * its anon_vma, and holding t 555 * its anon_vma, and holding the mutex ensures that it will 576 * not go away, see anon_vma_f 556 * not go away, see anon_vma_free(). 577 */ 557 */ 578 if (!folio_mapped(folio)) { 558 if (!folio_mapped(folio)) { 579 up_read(&root_anon_vma 559 up_read(&root_anon_vma->rwsem); 580 anon_vma = NULL; 560 anon_vma = NULL; 581 } 561 } 582 goto out; 562 goto out; 583 } 563 } 584 564 585 if (rwc && rwc->try_lock) { 565 if (rwc && rwc->try_lock) { 586 anon_vma = NULL; 566 anon_vma = NULL; 587 rwc->contended = true; 567 rwc->contended = true; 588 goto out; 568 goto out; 589 } 569 } 590 570 591 /* trylock failed, we got to sleep */ 571 /* trylock failed, we got to sleep */ 592 if (!atomic_inc_not_zero(&anon_vma->re 572 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 593 anon_vma = NULL; 573 anon_vma = NULL; 594 goto out; 574 goto out; 595 } 575 } 596 576 597 if (!folio_mapped(folio)) { 577 if (!folio_mapped(folio)) { 598 rcu_read_unlock(); 578 rcu_read_unlock(); 599 put_anon_vma(anon_vma); 579 put_anon_vma(anon_vma); 600 return NULL; 580 return NULL; 601 } 581 } 602 582 603 /* we pinned the anon_vma, its safe to 583 /* we pinned the anon_vma, its safe to sleep */ 604 rcu_read_unlock(); 584 rcu_read_unlock(); 605 anon_vma_lock_read(anon_vma); 585 anon_vma_lock_read(anon_vma); 606 586 607 /* << 608 * folio_move_anon_rmap() might have c << 609 * not hold the folio lock here. << 610 */ << 611 if (unlikely((unsigned long)READ_ONCE( << 612 anon_mapping)) { << 613 anon_vma_unlock_read(anon_vma) << 614 put_anon_vma(anon_vma); << 615 anon_vma = NULL; << 616 goto retry; << 617 } << 618 << 619 if (atomic_dec_and_test(&anon_vma->ref 587 if (atomic_dec_and_test(&anon_vma->refcount)) { 620 /* 588 /* 621 * Oops, we held the last refc 589 * Oops, we held the last refcount, release the lock 622 * and bail -- can't simply us 590 * and bail -- can't simply use put_anon_vma() because 623 * we'll deadlock on the anon_ 591 * we'll deadlock on the anon_vma_lock_write() recursion. 624 */ 592 */ 625 anon_vma_unlock_read(anon_vma) 593 anon_vma_unlock_read(anon_vma); 626 __put_anon_vma(anon_vma); 594 __put_anon_vma(anon_vma); 627 anon_vma = NULL; 595 anon_vma = NULL; 628 } 596 } 629 597 630 return anon_vma; 598 return anon_vma; 631 599 632 out: 600 out: 633 rcu_read_unlock(); 601 rcu_read_unlock(); 634 return anon_vma; 602 return anon_vma; 635 } 603 } 636 604 637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUS 605 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 638 /* 606 /* 639 * Flush TLB entries for recently unmapped pag 607 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 640 * important if a PTE was dirty when it was un 608 * important if a PTE was dirty when it was unmapped that it's flushed 641 * before any IO is initiated on the page to p 609 * before any IO is initiated on the page to prevent lost writes. Similarly, 642 * it must be flushed before freeing to preven 610 * it must be flushed before freeing to prevent data leakage. 643 */ 611 */ 644 void try_to_unmap_flush(void) 612 void try_to_unmap_flush(void) 645 { 613 { 646 struct tlbflush_unmap_batch *tlb_ubc = 614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 647 615 648 if (!tlb_ubc->flush_required) 616 if (!tlb_ubc->flush_required) 649 return; 617 return; 650 618 651 arch_tlbbatch_flush(&tlb_ubc->arch); 619 arch_tlbbatch_flush(&tlb_ubc->arch); 652 tlb_ubc->flush_required = false; 620 tlb_ubc->flush_required = false; 653 tlb_ubc->writable = false; 621 tlb_ubc->writable = false; 654 } 622 } 655 623 656 /* Flush iff there are potentially writable TL 624 /* Flush iff there are potentially writable TLB entries that can race with IO */ 657 void try_to_unmap_flush_dirty(void) 625 void try_to_unmap_flush_dirty(void) 658 { 626 { 659 struct tlbflush_unmap_batch *tlb_ubc = 627 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 660 628 661 if (tlb_ubc->writable) 629 if (tlb_ubc->writable) 662 try_to_unmap_flush(); 630 try_to_unmap_flush(); 663 } 631 } 664 632 665 /* 633 /* 666 * Bits 0-14 of mm->tlb_flush_batched record p 634 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 667 * Bits 16-30 of mm->tlb_flush_batched bit rec 635 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 668 */ 636 */ 669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 637 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 670 #define TLB_FLUSH_BATCH_PENDING_MASK 638 #define TLB_FLUSH_BATCH_PENDING_MASK \ 671 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT 639 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 672 #define TLB_FLUSH_BATCH_PENDING_LARGE 640 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 673 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 641 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 674 642 675 static void set_tlb_ubc_flush_pending(struct m !! 643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 676 unsigned << 677 { 644 { 678 struct tlbflush_unmap_batch *tlb_ubc = 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 679 int batch; !! 646 int batch, nbatch; 680 bool writable = pte_dirty(pteval); << 681 << 682 if (!pte_accessible(mm, pteval)) << 683 return; << 684 647 685 arch_tlbbatch_add_pending(&tlb_ubc->ar !! 648 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 686 tlb_ubc->flush_required = true; 649 tlb_ubc->flush_required = true; 687 650 688 /* 651 /* 689 * Ensure compiler does not re-order t 652 * Ensure compiler does not re-order the setting of tlb_flush_batched 690 * before the PTE is cleared. 653 * before the PTE is cleared. 691 */ 654 */ 692 barrier(); 655 barrier(); 693 batch = atomic_read(&mm->tlb_flush_bat 656 batch = atomic_read(&mm->tlb_flush_batched); 694 retry: 657 retry: 695 if ((batch & TLB_FLUSH_BATCH_PENDING_M 658 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 696 /* 659 /* 697 * Prevent `pending' from catc 660 * Prevent `pending' from catching up with `flushed' because of 698 * overflow. Reset `pending' 661 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 699 * `pending' becomes large. 662 * `pending' becomes large. 700 */ 663 */ 701 if (!atomic_try_cmpxchg(&mm->t !! 664 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); >> 665 if (nbatch != batch) { >> 666 batch = nbatch; 702 goto retry; 667 goto retry; >> 668 } 703 } else { 669 } else { 704 atomic_inc(&mm->tlb_flush_batc 670 atomic_inc(&mm->tlb_flush_batched); 705 } 671 } 706 672 707 /* 673 /* 708 * If the PTE was dirty then it's best 674 * If the PTE was dirty then it's best to assume it's writable. The 709 * caller must use try_to_unmap_flush_ 675 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 710 * before the page is queued for IO. 676 * before the page is queued for IO. 711 */ 677 */ 712 if (writable) 678 if (writable) 713 tlb_ubc->writable = true; 679 tlb_ubc->writable = true; 714 } 680 } 715 681 716 /* 682 /* 717 * Returns true if the TLB flush should be def 683 * Returns true if the TLB flush should be deferred to the end of a batch of 718 * unmap operations to reduce IPIs. 684 * unmap operations to reduce IPIs. 719 */ 685 */ 720 static bool should_defer_flush(struct mm_struc 686 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 721 { 687 { >> 688 bool should_defer = false; >> 689 722 if (!(flags & TTU_BATCH_FLUSH)) 690 if (!(flags & TTU_BATCH_FLUSH)) 723 return false; 691 return false; 724 692 725 return arch_tlbbatch_should_defer(mm); !! 693 /* If remote CPUs need to be flushed then defer batch the flush */ >> 694 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) >> 695 should_defer = true; >> 696 put_cpu(); >> 697 >> 698 return should_defer; 726 } 699 } 727 700 728 /* 701 /* 729 * Reclaim unmaps pages under the PTL but do n 702 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 730 * releasing the PTL if TLB flushes are batche 703 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 731 * operation such as mprotect or munmap to rac 704 * operation such as mprotect or munmap to race between reclaim unmapping 732 * the page and flushing the page. If this rac 705 * the page and flushing the page. If this race occurs, it potentially allows 733 * access to data via a stale TLB entry. Track 706 * access to data via a stale TLB entry. Tracking all mm's that have TLB 734 * batching in flight would be expensive durin 707 * batching in flight would be expensive during reclaim so instead track 735 * whether TLB batching occurred in the past a 708 * whether TLB batching occurred in the past and if so then do a flush here 736 * if required. This will cost one additional 709 * if required. This will cost one additional flush per reclaim cycle paid 737 * by the first operation at risk such as mpro 710 * by the first operation at risk such as mprotect and mumap. 738 * 711 * 739 * This must be called under the PTL so that a 712 * This must be called under the PTL so that an access to tlb_flush_batched 740 * that is potentially a "reclaim vs mprotect/ 713 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 741 * via the PTL. 714 * via the PTL. 742 */ 715 */ 743 void flush_tlb_batched_pending(struct mm_struc 716 void flush_tlb_batched_pending(struct mm_struct *mm) 744 { 717 { 745 int batch = atomic_read(&mm->tlb_flush 718 int batch = atomic_read(&mm->tlb_flush_batched); 746 int pending = batch & TLB_FLUSH_BATCH_ 719 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 747 int flushed = batch >> TLB_FLUSH_BATCH 720 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 748 721 749 if (pending != flushed) { 722 if (pending != flushed) { 750 arch_flush_tlb_batched_pending !! 723 flush_tlb_mm(mm); 751 /* 724 /* 752 * If the new TLB flushing is 725 * If the new TLB flushing is pending during flushing, leave 753 * mm->tlb_flush_batched as is 726 * mm->tlb_flush_batched as is, to avoid losing flushing. 754 */ 727 */ 755 atomic_cmpxchg(&mm->tlb_flush_ 728 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 756 pending | (pend 729 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 757 } 730 } 758 } 731 } 759 #else 732 #else 760 static void set_tlb_ubc_flush_pending(struct m !! 733 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 761 unsigned << 762 { 734 { 763 } 735 } 764 736 765 static bool should_defer_flush(struct mm_struc 737 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 766 { 738 { 767 return false; 739 return false; 768 } 740 } 769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_F 741 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 770 742 771 /* 743 /* 772 * At what user virtual address is page expect 744 * At what user virtual address is page expected in vma? 773 * Caller should check the page is actually pa 745 * Caller should check the page is actually part of the vma. 774 */ 746 */ 775 unsigned long page_address_in_vma(struct page 747 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 776 { 748 { 777 struct folio *folio = page_folio(page) 749 struct folio *folio = page_folio(page); 778 pgoff_t pgoff; << 779 << 780 if (folio_test_anon(folio)) { 750 if (folio_test_anon(folio)) { 781 struct anon_vma *page__anon_vm 751 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 782 /* 752 /* 783 * Note: swapoff's unuse_vma() 753 * Note: swapoff's unuse_vma() is more efficient with this 784 * check, and needs it to matc 754 * check, and needs it to match anon_vma when KSM is active. 785 */ 755 */ 786 if (!vma->anon_vma || !page__a 756 if (!vma->anon_vma || !page__anon_vma || 787 vma->anon_vma->root != pag 757 vma->anon_vma->root != page__anon_vma->root) 788 return -EFAULT; 758 return -EFAULT; 789 } else if (!vma->vm_file) { 759 } else if (!vma->vm_file) { 790 return -EFAULT; 760 return -EFAULT; 791 } else if (vma->vm_file->f_mapping != 761 } else if (vma->vm_file->f_mapping != folio->mapping) { 792 return -EFAULT; 762 return -EFAULT; 793 } 763 } 794 764 795 /* The !page__anon_vma above handles K !! 765 return vma_address(page, vma); 796 pgoff = folio->index + folio_page_idx( << 797 return vma_address(vma, pgoff, 1); << 798 } 766 } 799 767 800 /* 768 /* 801 * Returns the actual pmd_t* where we expect ' 769 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 802 * NULL if it doesn't exist. No guarantees / 770 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 803 * represents. 771 * represents. 804 */ 772 */ 805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsig 773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 806 { 774 { 807 pgd_t *pgd; 775 pgd_t *pgd; 808 p4d_t *p4d; 776 p4d_t *p4d; 809 pud_t *pud; 777 pud_t *pud; 810 pmd_t *pmd = NULL; 778 pmd_t *pmd = NULL; 811 779 812 pgd = pgd_offset(mm, address); 780 pgd = pgd_offset(mm, address); 813 if (!pgd_present(*pgd)) 781 if (!pgd_present(*pgd)) 814 goto out; 782 goto out; 815 783 816 p4d = p4d_offset(pgd, address); 784 p4d = p4d_offset(pgd, address); 817 if (!p4d_present(*p4d)) 785 if (!p4d_present(*p4d)) 818 goto out; 786 goto out; 819 787 820 pud = pud_offset(p4d, address); 788 pud = pud_offset(p4d, address); 821 if (!pud_present(*pud)) 789 if (!pud_present(*pud)) 822 goto out; 790 goto out; 823 791 824 pmd = pmd_offset(pud, address); 792 pmd = pmd_offset(pud, address); 825 out: 793 out: 826 return pmd; 794 return pmd; 827 } 795 } 828 796 829 struct folio_referenced_arg { 797 struct folio_referenced_arg { 830 int mapcount; 798 int mapcount; 831 int referenced; 799 int referenced; 832 unsigned long vm_flags; 800 unsigned long vm_flags; 833 struct mem_cgroup *memcg; 801 struct mem_cgroup *memcg; 834 }; 802 }; 835 << 836 /* 803 /* 837 * arg: folio_referenced_arg will be passed 804 * arg: folio_referenced_arg will be passed 838 */ 805 */ 839 static bool folio_referenced_one(struct folio 806 static bool folio_referenced_one(struct folio *folio, 840 struct vm_area_struct *vma, un 807 struct vm_area_struct *vma, unsigned long address, void *arg) 841 { 808 { 842 struct folio_referenced_arg *pra = arg 809 struct folio_referenced_arg *pra = arg; 843 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma 810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 844 int referenced = 0; 811 int referenced = 0; 845 unsigned long start = address, ptes = << 846 812 847 while (page_vma_mapped_walk(&pvmw)) { 813 while (page_vma_mapped_walk(&pvmw)) { 848 address = pvmw.address; 814 address = pvmw.address; 849 815 850 if (vma->vm_flags & VM_LOCKED) !! 816 if ((vma->vm_flags & VM_LOCKED) && 851 if (!folio_test_large( !! 817 (!folio_test_large(folio) || !pvmw.pte)) { 852 /* Restore the !! 818 /* Restore the mlock which got missed */ 853 mlock_vma_foli !! 819 mlock_vma_folio(folio, vma, !pvmw.pte); 854 page_vma_mappe << 855 pra->vm_flags << 856 return false; << 857 } << 858 /* << 859 * For large folio ful << 860 * be handled after th << 861 * << 862 * For large folio cro << 863 * expected to be pick << 864 * should skip referen << 865 * the range of VM_LOC << 866 * should just count t << 867 * the range of VM_LOC << 868 */ << 869 ptes++; << 870 pra->mapcount--; << 871 continue; << 872 } << 873 << 874 /* << 875 * Skip the non-shared swapbac << 876 * the exiting or OOM-reaped p << 877 * swap-out followed by an imm << 878 */ << 879 if ((!atomic_read(&vma->vm_mm- << 880 check_stable_address_space << 881 folio_test_anon(folio) && << 882 !folio_likely_mapped_share << 883 pra->referenced = -1; << 884 page_vma_mapped_walk_d 820 page_vma_mapped_walk_done(&pvmw); 885 return false; !! 821 pra->vm_flags |= VM_LOCKED; >> 822 return false; /* To break the loop */ 886 } 823 } 887 824 888 if (lru_gen_enabled() && pvmw. !! 825 if (pvmw.pte) { 889 if (lru_gen_look_aroun !! 826 if (lru_gen_enabled() && pte_young(*pvmw.pte) && >> 827 !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) { >> 828 lru_gen_look_around(&pvmw); 890 referenced++; 829 referenced++; 891 } else if (pvmw.pte) { !! 830 } >> 831 892 if (ptep_clear_flush_y 832 if (ptep_clear_flush_young_notify(vma, address, 893 !! 833 pvmw.pte)) { 894 referenced++; !! 834 /* >> 835 * Don't treat a reference through >> 836 * a sequentially read mapping as such. >> 837 * If the folio has been used in another mapping, >> 838 * we will catch it; if this other mapping is >> 839 * already gone, the unmap path will have set >> 840 * the referenced flag or activated the folio. >> 841 */ >> 842 if (likely(!(vma->vm_flags & VM_SEQ_READ))) >> 843 referenced++; >> 844 } 895 } else if (IS_ENABLED(CONFIG_T 845 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 896 if (pmdp_clear_flush_y 846 if (pmdp_clear_flush_young_notify(vma, address, 897 847 pvmw.pmd)) 898 referenced++; 848 referenced++; 899 } else { 849 } else { 900 /* unexpected pmd-mapp 850 /* unexpected pmd-mapped folio? */ 901 WARN_ON_ONCE(1); 851 WARN_ON_ONCE(1); 902 } 852 } 903 853 904 pra->mapcount--; 854 pra->mapcount--; 905 } 855 } 906 856 907 if ((vma->vm_flags & VM_LOCKED) && << 908 folio_test_large(folio << 909 folio_within_vma(folio << 910 unsigned long s_align, e_align << 911 << 912 s_align = ALIGN_DOWN(start, PM << 913 e_align = ALIGN_DOWN(start + f << 914 << 915 /* folio doesn't cross page ta << 916 if ((s_align == e_align) && (p << 917 /* Restore the mlock w << 918 mlock_vma_folio(folio, << 919 pra->vm_flags |= VM_LO << 920 return false; /* To br << 921 } << 922 } << 923 << 924 if (referenced) 857 if (referenced) 925 folio_clear_idle(folio); 858 folio_clear_idle(folio); 926 if (folio_test_clear_young(folio)) 859 if (folio_test_clear_young(folio)) 927 referenced++; 860 referenced++; 928 861 929 if (referenced) { 862 if (referenced) { 930 pra->referenced++; 863 pra->referenced++; 931 pra->vm_flags |= vma->vm_flags 864 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 932 } 865 } 933 866 934 if (!pra->mapcount) 867 if (!pra->mapcount) 935 return false; /* To break the 868 return false; /* To break the loop */ 936 869 937 return true; 870 return true; 938 } 871 } 939 872 940 static bool invalid_folio_referenced_vma(struc 873 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 941 { 874 { 942 struct folio_referenced_arg *pra = arg 875 struct folio_referenced_arg *pra = arg; 943 struct mem_cgroup *memcg = pra->memcg; 876 struct mem_cgroup *memcg = pra->memcg; 944 877 945 /* !! 878 if (!mm_match_cgroup(vma->vm_mm, memcg)) 946 * Ignore references from this mapping << 947 * folio has been used in another mapp << 948 * other mapping is already gone, the << 949 * referenced flag or activated the fo << 950 */ << 951 if (!vma_has_recency(vma)) << 952 return true; << 953 << 954 /* << 955 * If we are reclaiming on behalf of a << 956 * of references from different cgroup << 957 */ << 958 if (memcg && !mm_match_cgroup(vma->vm_ << 959 return true; 879 return true; 960 880 961 return false; 881 return false; 962 } 882 } 963 883 964 /** 884 /** 965 * folio_referenced() - Test if the folio was 885 * folio_referenced() - Test if the folio was referenced. 966 * @folio: The folio to test. 886 * @folio: The folio to test. 967 * @is_locked: Caller holds lock on the folio. 887 * @is_locked: Caller holds lock on the folio. 968 * @memcg: target memory cgroup 888 * @memcg: target memory cgroup 969 * @vm_flags: A combination of all the vma->vm 889 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 970 * 890 * 971 * Quick test_and_clear_referenced for all map 891 * Quick test_and_clear_referenced for all mappings of a folio, 972 * 892 * 973 * Return: The number of mappings which refere 893 * Return: The number of mappings which referenced the folio. Return -1 if 974 * the function bailed out due to rmap lock co 894 * the function bailed out due to rmap lock contention. 975 */ 895 */ 976 int folio_referenced(struct folio *folio, int 896 int folio_referenced(struct folio *folio, int is_locked, 977 struct mem_cgroup *memcg, 897 struct mem_cgroup *memcg, unsigned long *vm_flags) 978 { 898 { 979 bool we_locked = false; !! 899 int we_locked = 0; 980 struct folio_referenced_arg pra = { 900 struct folio_referenced_arg pra = { 981 .mapcount = folio_mapcount(fol 901 .mapcount = folio_mapcount(folio), 982 .memcg = memcg, 902 .memcg = memcg, 983 }; 903 }; 984 struct rmap_walk_control rwc = { 904 struct rmap_walk_control rwc = { 985 .rmap_one = folio_referenced_o 905 .rmap_one = folio_referenced_one, 986 .arg = (void *)&pra, 906 .arg = (void *)&pra, 987 .anon_lock = folio_lock_anon_v 907 .anon_lock = folio_lock_anon_vma_read, 988 .try_lock = true, 908 .try_lock = true, 989 .invalid_vma = invalid_folio_r << 990 }; 909 }; 991 910 992 *vm_flags = 0; 911 *vm_flags = 0; 993 if (!pra.mapcount) 912 if (!pra.mapcount) 994 return 0; 913 return 0; 995 914 996 if (!folio_raw_mapping(folio)) 915 if (!folio_raw_mapping(folio)) 997 return 0; 916 return 0; 998 917 999 if (!is_locked && (!folio_test_anon(fo 918 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1000 we_locked = folio_trylock(fol 919 we_locked = folio_trylock(folio); 1001 if (!we_locked) 920 if (!we_locked) 1002 return 1; 921 return 1; 1003 } 922 } 1004 923 >> 924 /* >> 925 * If we are reclaiming on behalf of a cgroup, skip >> 926 * counting on behalf of references from different >> 927 * cgroups >> 928 */ >> 929 if (memcg) { >> 930 rwc.invalid_vma = invalid_folio_referenced_vma; >> 931 } >> 932 1005 rmap_walk(folio, &rwc); 933 rmap_walk(folio, &rwc); 1006 *vm_flags = pra.vm_flags; 934 *vm_flags = pra.vm_flags; 1007 935 1008 if (we_locked) 936 if (we_locked) 1009 folio_unlock(folio); 937 folio_unlock(folio); 1010 938 1011 return rwc.contended ? -1 : pra.refer 939 return rwc.contended ? -1 : pra.referenced; 1012 } 940 } 1013 941 1014 static int page_vma_mkclean_one(struct page_v 942 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1015 { 943 { 1016 int cleaned = 0; 944 int cleaned = 0; 1017 struct vm_area_struct *vma = pvmw->vm 945 struct vm_area_struct *vma = pvmw->vma; 1018 struct mmu_notifier_range range; 946 struct mmu_notifier_range range; 1019 unsigned long address = pvmw->address 947 unsigned long address = pvmw->address; 1020 948 1021 /* 949 /* 1022 * We have to assume the worse case i 950 * We have to assume the worse case ie pmd for invalidation. Note that 1023 * the folio can not be freed from th 951 * the folio can not be freed from this function. 1024 */ 952 */ 1025 mmu_notifier_range_init(&range, MMU_N !! 953 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1026 vma->vm_mm, a !! 954 0, vma, vma->vm_mm, address, >> 955 vma_address_end(pvmw)); 1027 mmu_notifier_invalidate_range_start(& 956 mmu_notifier_invalidate_range_start(&range); 1028 957 1029 while (page_vma_mapped_walk(pvmw)) { 958 while (page_vma_mapped_walk(pvmw)) { 1030 int ret = 0; 959 int ret = 0; 1031 960 1032 address = pvmw->address; 961 address = pvmw->address; 1033 if (pvmw->pte) { 962 if (pvmw->pte) { >> 963 pte_t entry; 1034 pte_t *pte = pvmw->pt 964 pte_t *pte = pvmw->pte; 1035 pte_t entry = ptep_ge << 1036 965 1037 if (!pte_dirty(entry) !! 966 if (!pte_dirty(*pte) && !pte_write(*pte)) 1038 continue; 967 continue; 1039 968 1040 flush_cache_page(vma, !! 969 flush_cache_page(vma, address, pte_pfn(*pte)); 1041 entry = ptep_clear_fl 970 entry = ptep_clear_flush(vma, address, pte); 1042 entry = pte_wrprotect 971 entry = pte_wrprotect(entry); 1043 entry = pte_mkclean(e 972 entry = pte_mkclean(entry); 1044 set_pte_at(vma->vm_mm 973 set_pte_at(vma->vm_mm, address, pte, entry); 1045 ret = 1; 974 ret = 1; 1046 } else { 975 } else { 1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1048 pmd_t *pmd = pvmw->pm 977 pmd_t *pmd = pvmw->pmd; 1049 pmd_t entry; 978 pmd_t entry; 1050 979 1051 if (!pmd_dirty(*pmd) 980 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1052 continue; 981 continue; 1053 982 1054 flush_cache_range(vma 983 flush_cache_range(vma, address, 1055 add 984 address + HPAGE_PMD_SIZE); 1056 entry = pmdp_invalida 985 entry = pmdp_invalidate(vma, address, pmd); 1057 entry = pmd_wrprotect 986 entry = pmd_wrprotect(entry); 1058 entry = pmd_mkclean(e 987 entry = pmd_mkclean(entry); 1059 set_pmd_at(vma->vm_mm 988 set_pmd_at(vma->vm_mm, address, pmd, entry); 1060 ret = 1; 989 ret = 1; 1061 #else 990 #else 1062 /* unexpected pmd-map 991 /* unexpected pmd-mapped folio? */ 1063 WARN_ON_ONCE(1); 992 WARN_ON_ONCE(1); 1064 #endif 993 #endif 1065 } 994 } 1066 995 >> 996 /* >> 997 * No need to call mmu_notifier_invalidate_range() as we are >> 998 * downgrading page table protection not changing it to point >> 999 * to a new page. >> 1000 * >> 1001 * See Documentation/mm/mmu_notifier.rst >> 1002 */ 1067 if (ret) 1003 if (ret) 1068 cleaned++; 1004 cleaned++; 1069 } 1005 } 1070 1006 1071 mmu_notifier_invalidate_range_end(&ra 1007 mmu_notifier_invalidate_range_end(&range); 1072 1008 1073 return cleaned; 1009 return cleaned; 1074 } 1010 } 1075 1011 1076 static bool page_mkclean_one(struct folio *fo 1012 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1077 unsigned long ad 1013 unsigned long address, void *arg) 1078 { 1014 { 1079 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vm 1015 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1080 int *cleaned = arg; 1016 int *cleaned = arg; 1081 1017 1082 *cleaned += page_vma_mkclean_one(&pvm 1018 *cleaned += page_vma_mkclean_one(&pvmw); 1083 1019 1084 return true; 1020 return true; 1085 } 1021 } 1086 1022 1087 static bool invalid_mkclean_vma(struct vm_are 1023 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1088 { 1024 { 1089 if (vma->vm_flags & VM_SHARED) 1025 if (vma->vm_flags & VM_SHARED) 1090 return false; 1026 return false; 1091 1027 1092 return true; 1028 return true; 1093 } 1029 } 1094 1030 1095 int folio_mkclean(struct folio *folio) 1031 int folio_mkclean(struct folio *folio) 1096 { 1032 { 1097 int cleaned = 0; 1033 int cleaned = 0; 1098 struct address_space *mapping; 1034 struct address_space *mapping; 1099 struct rmap_walk_control rwc = { 1035 struct rmap_walk_control rwc = { 1100 .arg = (void *)&cleaned, 1036 .arg = (void *)&cleaned, 1101 .rmap_one = page_mkclean_one, 1037 .rmap_one = page_mkclean_one, 1102 .invalid_vma = invalid_mkclea 1038 .invalid_vma = invalid_mkclean_vma, 1103 }; 1039 }; 1104 1040 1105 BUG_ON(!folio_test_locked(folio)); 1041 BUG_ON(!folio_test_locked(folio)); 1106 1042 1107 if (!folio_mapped(folio)) 1043 if (!folio_mapped(folio)) 1108 return 0; 1044 return 0; 1109 1045 1110 mapping = folio_mapping(folio); 1046 mapping = folio_mapping(folio); 1111 if (!mapping) 1047 if (!mapping) 1112 return 0; 1048 return 0; 1113 1049 1114 rmap_walk(folio, &rwc); 1050 rmap_walk(folio, &rwc); 1115 1051 1116 return cleaned; 1052 return cleaned; 1117 } 1053 } 1118 EXPORT_SYMBOL_GPL(folio_mkclean); 1054 EXPORT_SYMBOL_GPL(folio_mkclean); 1119 1055 1120 /** 1056 /** 1121 * pfn_mkclean_range - Cleans the PTEs (inclu 1057 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1122 * [@pfn, @pfn + @nr_page 1058 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1123 * within the @vma of sha 1059 * within the @vma of shared mappings. And since clean PTEs 1124 * should also be readonl 1060 * should also be readonly, write protects them too. 1125 * @pfn: start pfn. 1061 * @pfn: start pfn. 1126 * @nr_pages: number of physically contiguous 1062 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1127 * @pgoff: page offset that the @pfn mapped w 1063 * @pgoff: page offset that the @pfn mapped with. 1128 * @vma: vma that @pfn mapped within. 1064 * @vma: vma that @pfn mapped within. 1129 * 1065 * 1130 * Returns the number of cleaned PTEs (includ 1066 * Returns the number of cleaned PTEs (including PMDs). 1131 */ 1067 */ 1132 int pfn_mkclean_range(unsigned long pfn, unsi 1068 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1133 struct vm_area_struct * 1069 struct vm_area_struct *vma) 1134 { 1070 { 1135 struct page_vma_mapped_walk pvmw = { 1071 struct page_vma_mapped_walk pvmw = { 1136 .pfn = pfn, 1072 .pfn = pfn, 1137 .nr_pages = nr_pages, 1073 .nr_pages = nr_pages, 1138 .pgoff = pgoff, 1074 .pgoff = pgoff, 1139 .vma = vma, 1075 .vma = vma, 1140 .flags = PVMW_SYNC, 1076 .flags = PVMW_SYNC, 1141 }; 1077 }; 1142 1078 1143 if (invalid_mkclean_vma(vma, NULL)) 1079 if (invalid_mkclean_vma(vma, NULL)) 1144 return 0; 1080 return 0; 1145 1081 1146 pvmw.address = vma_address(vma, pgoff !! 1082 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1147 VM_BUG_ON_VMA(pvmw.address == -EFAULT 1083 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1148 1084 1149 return page_vma_mkclean_one(&pvmw); 1085 return page_vma_mkclean_one(&pvmw); 1150 } 1086 } 1151 1087 1152 static __always_inline unsigned int __folio_a !! 1088 int total_compound_mapcount(struct page *head) 1153 struct page *page, int nr_pag !! 1089 { 1154 int *nr_pmdmapped) !! 1090 int mapcount = head_compound_mapcount(head); 1155 { !! 1091 int nr_subpages; 1156 atomic_t *mapped = &folio->_nr_pages_ !! 1092 int i; 1157 const int orig_nr_pages = nr_pages; !! 1093 1158 int first = 0, nr = 0; !! 1094 /* In the common case, avoid the loop when no subpages mapped by PTE */ 1159 !! 1095 if (head_subpages_mapcount(head) == 0) 1160 __folio_rmap_sanity_checks(folio, pag !! 1096 return mapcount; 1161 !! 1097 /* 1162 switch (level) { !! 1098 * Add all the PTE mappings of those subpages mapped by PTE. 1163 case RMAP_LEVEL_PTE: !! 1099 * Limit the loop, knowing that only subpages_mapcount are mapped? 1164 if (!folio_test_large(folio)) !! 1100 * Perhaps: given all the raciness, that may be a good or a bad idea. 1165 nr = atomic_inc_and_t !! 1101 */ 1166 break; !! 1102 nr_subpages = thp_nr_pages(head); 1167 } !! 1103 for (i = 0; i < nr_subpages; i++) 1168 !! 1104 mapcount += atomic_read(&head[i]._mapcount); 1169 do { !! 1105 1170 first += atomic_inc_a !! 1106 /* But each of those _mapcounts was based on -1 */ 1171 } while (page++, --nr_pages > !! 1107 mapcount += nr_subpages; 1172 !! 1108 return mapcount; 1173 if (first && << 1174 atomic_add_return_relaxed << 1175 nr = first; << 1176 << 1177 atomic_add(orig_nr_pages, &fo << 1178 break; << 1179 case RMAP_LEVEL_PMD: << 1180 first = atomic_inc_and_test(& << 1181 if (first) { << 1182 nr = atomic_add_retur << 1183 if (likely(nr < ENTIR << 1184 *nr_pmdmapped << 1185 nr = *nr_pmdm << 1186 /* Raced ahea << 1187 if (unlikely( << 1188 nr = << 1189 } else { << 1190 /* Raced ahea << 1191 nr = 0; << 1192 } << 1193 } << 1194 atomic_inc(&folio->_large_map << 1195 break; << 1196 } << 1197 return nr; << 1198 } 1109 } 1199 1110 1200 /** 1111 /** 1201 * folio_move_anon_rmap - move a folio to our !! 1112 * page_move_anon_rmap - move a page to our anon_vma 1202 * @folio: The folio to move to our anon !! 1113 * @page: the page to move to our anon_vma 1203 * @vma: The vma the folio belongs to !! 1114 * @vma: the vma the page belongs to 1204 * !! 1115 * 1205 * When a folio belongs exclusively to one pr !! 1116 * When a page belongs exclusively to one process after a COW event, 1206 * that folio can be moved into the anon_vma !! 1117 * that page can be moved into the anon_vma that belongs to just that 1207 * process, so the rmap code will not search !! 1118 * process, so the rmap code will not search the parent or sibling >> 1119 * processes. 1208 */ 1120 */ 1209 void folio_move_anon_rmap(struct folio *folio !! 1121 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1210 { 1122 { 1211 void *anon_vma = vma->anon_vma; 1123 void *anon_vma = vma->anon_vma; >> 1124 struct folio *folio = page_folio(page); 1212 1125 1213 VM_BUG_ON_FOLIO(!folio_test_locked(fo 1126 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1214 VM_BUG_ON_VMA(!anon_vma, vma); 1127 VM_BUG_ON_VMA(!anon_vma, vma); 1215 1128 1216 anon_vma += PAGE_MAPPING_ANON; 1129 anon_vma += PAGE_MAPPING_ANON; 1217 /* 1130 /* 1218 * Ensure that anon_vma and the PAGE_ 1131 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1219 * simultaneously, so a concurrent re 1132 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1220 * folio_test_anon()) will not see on 1133 * folio_test_anon()) will not see one without the other. 1221 */ 1134 */ 1222 WRITE_ONCE(folio->mapping, anon_vma); 1135 WRITE_ONCE(folio->mapping, anon_vma); >> 1136 SetPageAnonExclusive(page); 1223 } 1137 } 1224 1138 1225 /** 1139 /** 1226 * __folio_set_anon - set up a new anonymous !! 1140 * __page_set_anon_rmap - set up new anonymous rmap 1227 * @folio: The folio to set up the new a !! 1141 * @page: Page or Hugepage to add to rmap 1228 * @vma: VM area to add the folio to. !! 1142 * @vma: VM area to add page to. 1229 * @address: User virtual address of the m !! 1143 * @address: User virtual address of the mapping 1230 * @exclusive: Whether the folio is exclusiv !! 1144 * @exclusive: the page is exclusively owned by the current process 1231 */ 1145 */ 1232 static void __folio_set_anon(struct folio *fo !! 1146 static void __page_set_anon_rmap(struct page *page, 1233 unsigned long ad !! 1147 struct vm_area_struct *vma, unsigned long address, int exclusive) 1234 { 1148 { 1235 struct anon_vma *anon_vma = vma->anon 1149 struct anon_vma *anon_vma = vma->anon_vma; 1236 1150 1237 BUG_ON(!anon_vma); 1151 BUG_ON(!anon_vma); 1238 1152 >> 1153 if (PageAnon(page)) >> 1154 goto out; >> 1155 1239 /* 1156 /* 1240 * If the folio isn't exclusive to th !! 1157 * If the page isn't exclusively mapped into this vma, 1241 * possible anon_vma for the folio ma !! 1158 * we must use the _oldest_ possible anon_vma for the >> 1159 * page mapping! 1242 */ 1160 */ 1243 if (!exclusive) 1161 if (!exclusive) 1244 anon_vma = anon_vma->root; 1162 anon_vma = anon_vma->root; 1245 1163 1246 /* 1164 /* 1247 * page_idle does a lockless/optimist !! 1165 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1248 * Make sure the compiler doesn't spl 1166 * Make sure the compiler doesn't split the stores of anon_vma and 1249 * the PAGE_MAPPING_ANON type identif 1167 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1250 * could mistake the mapping for a st 1168 * could mistake the mapping for a struct address_space and crash. 1251 */ 1169 */ 1252 anon_vma = (void *) anon_vma + PAGE_M 1170 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1253 WRITE_ONCE(folio->mapping, (struct ad !! 1171 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1254 folio->index = linear_page_index(vma, !! 1172 page->index = linear_page_index(vma, address); >> 1173 out: >> 1174 if (exclusive) >> 1175 SetPageAnonExclusive(page); 1255 } 1176 } 1256 1177 1257 /** 1178 /** 1258 * __page_check_anon_rmap - sanity check anon 1179 * __page_check_anon_rmap - sanity check anonymous rmap addition 1259 * @folio: The folio containing @page. !! 1180 * @page: the page to add the mapping to 1260 * @page: the page to check the mapping << 1261 * @vma: the vm area in which the mapp 1181 * @vma: the vm area in which the mapping is added 1262 * @address: the user virtual address mapp 1182 * @address: the user virtual address mapped 1263 */ 1183 */ 1264 static void __page_check_anon_rmap(struct fol !! 1184 static void __page_check_anon_rmap(struct page *page, 1265 struct vm_area_struct *vma, unsigned 1185 struct vm_area_struct *vma, unsigned long address) 1266 { 1186 { >> 1187 struct folio *folio = page_folio(page); 1267 /* 1188 /* 1268 * The page's anon-rmap details (mapp 1189 * The page's anon-rmap details (mapping and index) are guaranteed to 1269 * be set up correctly at this point. 1190 * be set up correctly at this point. 1270 * 1191 * 1271 * We have exclusion against folio_ad !! 1192 * We have exclusion against page_add_anon_rmap because the caller 1272 * always holds the page locked. 1193 * always holds the page locked. 1273 * 1194 * 1274 * We have exclusion against folio_ad !! 1195 * We have exclusion against page_add_new_anon_rmap because those pages 1275 * are initially only visible via the 1196 * are initially only visible via the pagetables, and the pte is locked 1276 * over the call to folio_add_new_ano !! 1197 * over the call to page_add_new_anon_rmap. 1277 */ 1198 */ 1278 VM_BUG_ON_FOLIO(folio_anon_vma(folio) 1199 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1279 folio); 1200 folio); 1280 VM_BUG_ON_PAGE(page_to_pgoff(page) != 1201 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1281 page); 1202 page); 1282 } 1203 } 1283 1204 1284 static void __folio_mod_stat(struct folio *fo !! 1205 /** >> 1206 * page_add_anon_rmap - add pte mapping to an anonymous page >> 1207 * @page: the page to add the mapping to >> 1208 * @vma: the vm area in which the mapping is added >> 1209 * @address: the user virtual address mapped >> 1210 * @flags: the rmap flags >> 1211 * >> 1212 * The caller needs to hold the pte lock, and the page must be locked in >> 1213 * the anon_vma case: to serialize mapping,index checking after setting, >> 1214 * and to ensure that PageAnon is not being upgraded racily to PageKsm >> 1215 * (but PageKsm is never downgraded to PageAnon). >> 1216 */ >> 1217 void page_add_anon_rmap(struct page *page, >> 1218 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1285 { 1219 { 1286 int idx; !! 1220 atomic_t *mapped; 1287 !! 1221 int nr = 0, nr_pmdmapped = 0; 1288 if (nr) { !! 1222 bool compound = flags & RMAP_COMPOUND; 1289 idx = folio_test_anon(folio) !! 1223 bool first = true; 1290 __lruvec_stat_mod_folio(folio !! 1224 1291 } !! 1225 if (unlikely(PageKsm(page))) 1292 if (nr_pmdmapped) { !! 1226 lock_page_memcg(page); 1293 if (folio_test_anon(folio)) { !! 1227 1294 idx = NR_ANON_THPS; !! 1228 /* Is page being mapped by PTE? Is this its first map to be added? */ 1295 __lruvec_stat_mod_fol !! 1229 if (likely(!compound)) { 1296 } else { !! 1230 first = atomic_inc_and_test(&page->_mapcount); 1297 /* NR_*_PMDMAPPED are !! 1231 nr = first; 1298 idx = folio_test_swap !! 1232 if (first && PageCompound(page)) { 1299 NR_SHMEM_PMDM !! 1233 mapped = subpages_mapcount_ptr(compound_head(page)); 1300 __mod_node_page_state !! 1234 nr = atomic_inc_return_relaxed(mapped); 1301 !! 1235 nr = (nr < COMPOUND_MAPPED); 1302 } 1236 } 1303 } !! 1237 } else if (PageTransHuge(page)) { 1304 } !! 1238 /* That test is redundant: it's for safety or to optimize out */ 1305 << 1306 static __always_inline void __folio_add_anon_ << 1307 struct page *page, int nr_pag << 1308 unsigned long address, rmap_t << 1309 { << 1310 int i, nr, nr_pmdmapped = 0; << 1311 << 1312 VM_WARN_ON_FOLIO(!folio_test_anon(fol << 1313 << 1314 nr = __folio_add_rmap(folio, page, nr << 1315 << 1316 if (likely(!folio_test_ksm(folio))) << 1317 __page_check_anon_rmap(folio, << 1318 1239 1319 __folio_mod_stat(folio, nr, nr_pmdmap !! 1240 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1320 !! 1241 if (first) { 1321 if (flags & RMAP_EXCLUSIVE) { !! 1242 mapped = subpages_mapcount_ptr(page); 1322 switch (level) { !! 1243 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1323 case RMAP_LEVEL_PTE: !! 1244 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1324 for (i = 0; i < nr_pa !! 1245 nr_pmdmapped = thp_nr_pages(page); 1325 SetPageAnonEx !! 1246 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED); 1326 break; !! 1247 /* Raced ahead of a remove and another add? */ 1327 case RMAP_LEVEL_PMD: !! 1248 if (unlikely(nr < 0)) 1328 SetPageAnonExclusive( !! 1249 nr = 0; 1329 break; !! 1250 } else { >> 1251 /* Raced ahead of a remove of COMPOUND_MAPPED */ >> 1252 nr = 0; >> 1253 } 1330 } 1254 } 1331 } 1255 } 1332 for (i = 0; i < nr_pages; i++) { << 1333 struct page *cur_page = page << 1334 1256 1335 /* While PTE-mapping a THP we !! 1257 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1336 VM_WARN_ON_FOLIO((atomic_read !! 1258 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1337 (folio_test << 1338 folio_enti << 1339 PageAnonExcl << 1340 } << 1341 1259 1342 /* !! 1260 if (nr_pmdmapped) 1343 * For large folio, only mlock it if !! 1261 __mod_lruvec_page_state(page, NR_ANON_THPS, nr_pmdmapped); 1344 * not easy to check whether the larg !! 1262 if (nr) 1345 * here. Only mlock normal 4K folio a !! 1263 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1346 * large folio. !! 1264 1347 */ !! 1265 if (unlikely(PageKsm(page))) 1348 if (!folio_test_large(folio)) !! 1266 unlock_page_memcg(page); 1349 mlock_vma_folio(folio, vma); !! 1267 1350 } !! 1268 /* address might be in next vma when migration races vma_adjust */ 1351 !! 1269 else if (first) 1352 /** !! 1270 __page_set_anon_rmap(page, vma, address, 1353 * folio_add_anon_rmap_ptes - add PTE mapping !! 1271 !!(flags & RMAP_EXCLUSIVE)); 1354 * @folio: The folio to add the mappings !! 1272 else 1355 * @page: The first page to add !! 1273 __page_check_anon_rmap(page, vma, address); 1356 * @nr_pages: The number of pages which wil << 1357 * @vma: The vm area in which the mapp << 1358 * @address: The user virtual address of t << 1359 * @flags: The rmap flags << 1360 * << 1361 * The page range of folio is defined by [fir << 1362 * << 1363 * The caller needs to hold the page table lo << 1364 * the anon_vma case: to serialize mapping,in << 1365 * and to ensure that an anon folio is not be << 1366 * (but KSM folios are never downgraded). << 1367 */ << 1368 void folio_add_anon_rmap_ptes(struct folio *f << 1369 int nr_pages, struct vm_area_ << 1370 rmap_t flags) << 1371 { << 1372 __folio_add_anon_rmap(folio, page, nr << 1373 RMAP_LEVEL_PTE) << 1374 } << 1375 1274 1376 /** !! 1275 mlock_vma_page(page, vma, compound); 1377 * folio_add_anon_rmap_pmd - add a PMD mappin << 1378 * @folio: The folio to add the mapping << 1379 * @page: The first page to add << 1380 * @vma: The vm area in which the mapp << 1381 * @address: The user virtual address of t << 1382 * @flags: The rmap flags << 1383 * << 1384 * The page range of folio is defined by [fir << 1385 * << 1386 * The caller needs to hold the page table lo << 1387 * the anon_vma case: to serialize mapping,in << 1388 */ << 1389 void folio_add_anon_rmap_pmd(struct folio *fo << 1390 struct vm_area_struct *vma, u << 1391 { << 1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 1393 __folio_add_anon_rmap(folio, page, HP << 1394 RMAP_LEVEL_PMD) << 1395 #else << 1396 WARN_ON_ONCE(true); << 1397 #endif << 1398 } 1276 } 1399 1277 1400 /** 1278 /** 1401 * folio_add_new_anon_rmap - Add mapping to a !! 1279 * page_add_new_anon_rmap - add mapping to a new anonymous page 1402 * @folio: The folio to add the mapping !! 1280 * @page: the page to add the mapping to 1403 * @vma: the vm area in which the mapp 1281 * @vma: the vm area in which the mapping is added 1404 * @address: the user virtual address mapp 1282 * @address: the user virtual address mapped 1405 * @flags: The rmap flags << 1406 * 1283 * 1407 * Like folio_add_anon_rmap_*() but must only !! 1284 * If it's a compound page, it is accounted as a compound page. As the page 1408 * This means the inc-and-test can be bypasse !! 1285 * is new, it's assume to get mapped exclusively by a single process. 1409 * The folio doesn't necessarily need to be l << 1410 * unless two threads map it concurrently. Ho << 1411 * locked if it's shared. << 1412 * 1286 * 1413 * If the folio is pmd-mappable, it is accoun !! 1287 * Same as page_add_anon_rmap but must only be called on *new* pages. >> 1288 * This means the inc-and-test can be bypassed. >> 1289 * Page does not have to be locked. 1414 */ 1290 */ 1415 void folio_add_new_anon_rmap(struct folio *fo !! 1291 void page_add_new_anon_rmap(struct page *page, 1416 unsigned long address, rmap_t !! 1292 struct vm_area_struct *vma, unsigned long address) 1417 { 1293 { 1418 const int nr = folio_nr_pages(folio); !! 1294 int nr; 1419 const bool exclusive = flags & RMAP_E << 1420 int nr_pmdmapped = 0; << 1421 << 1422 VM_WARN_ON_FOLIO(folio_test_hugetlb(f << 1423 VM_WARN_ON_FOLIO(!exclusive && !folio << 1424 VM_BUG_ON_VMA(address < vma->vm_start << 1425 address + (nr << PAGE << 1426 << 1427 /* << 1428 * VM_DROPPABLE mappings don't swap; << 1429 * under memory pressure. << 1430 */ << 1431 if (!folio_test_swapbacked(folio) && << 1432 __folio_set_swapbacked(folio) << 1433 __folio_set_anon(folio, vma, address, << 1434 1295 1435 if (likely(!folio_test_large(folio))) !! 1296 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1436 /* increment count (starts at !! 1297 __SetPageSwapBacked(page); 1437 atomic_set(&folio->_mapcount, << 1438 if (exclusive) << 1439 SetPageAnonExclusive( << 1440 } else if (!folio_test_pmd_mappable(f << 1441 int i; << 1442 << 1443 for (i = 0; i < nr; i++) { << 1444 struct page *page = f << 1445 << 1446 /* increment count (s << 1447 atomic_set(&page->_ma << 1448 if (exclusive) << 1449 SetPageAnonEx << 1450 } << 1451 1298 >> 1299 if (likely(!PageCompound(page))) { 1452 /* increment count (starts at 1300 /* increment count (starts at -1) */ 1453 atomic_set(&folio->_large_map !! 1301 atomic_set(&page->_mapcount, 0); 1454 atomic_set(&folio->_nr_pages_ !! 1302 nr = 1; 1455 } else { 1303 } else { >> 1304 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1456 /* increment count (starts at 1305 /* increment count (starts at -1) */ 1457 atomic_set(&folio->_entire_ma !! 1306 atomic_set(compound_mapcount_ptr(page), 0); 1458 /* increment count (starts at !! 1307 atomic_set(subpages_mapcount_ptr(page), COMPOUND_MAPPED); 1459 atomic_set(&folio->_large_map !! 1308 nr = thp_nr_pages(page); 1460 atomic_set(&folio->_nr_pages_ !! 1309 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1461 if (exclusive) << 1462 SetPageAnonExclusive( << 1463 nr_pmdmapped = nr; << 1464 } 1310 } 1465 1311 1466 __folio_mod_stat(folio, nr, nr_pmdmap !! 1312 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1467 mod_mthp_stat(folio_order(folio), MTH !! 1313 __page_set_anon_rmap(page, vma, address, 1); 1468 } 1314 } 1469 1315 1470 static __always_inline void __folio_add_file_ !! 1316 /** 1471 struct page *page, int nr_pag !! 1317 * page_add_file_rmap - add pte mapping to a file page 1472 enum rmap_level level) !! 1318 * @page: the page to add the mapping to >> 1319 * @vma: the vm area in which the mapping is added >> 1320 * @compound: charge the page as compound or small page >> 1321 * >> 1322 * The caller needs to hold the pte lock. >> 1323 */ >> 1324 void page_add_file_rmap(struct page *page, >> 1325 struct vm_area_struct *vma, bool compound) 1473 { 1326 { 1474 int nr, nr_pmdmapped = 0; !! 1327 atomic_t *mapped; >> 1328 int nr = 0, nr_pmdmapped = 0; >> 1329 bool first; 1475 1330 1476 VM_WARN_ON_FOLIO(folio_test_anon(foli !! 1331 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); >> 1332 lock_page_memcg(page); 1477 1333 1478 nr = __folio_add_rmap(folio, page, nr !! 1334 /* Is page being mapped by PTE? Is this its first map to be added? */ 1479 __folio_mod_stat(folio, nr, nr_pmdmap !! 1335 if (likely(!compound)) { >> 1336 first = atomic_inc_and_test(&page->_mapcount); >> 1337 nr = first; >> 1338 if (first && PageCompound(page)) { >> 1339 mapped = subpages_mapcount_ptr(compound_head(page)); >> 1340 nr = atomic_inc_return_relaxed(mapped); >> 1341 nr = (nr < COMPOUND_MAPPED); >> 1342 } >> 1343 } else if (PageTransHuge(page)) { >> 1344 /* That test is redundant: it's for safety or to optimize out */ 1480 1345 1481 /* See comments in folio_add_anon_rma !! 1346 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1482 if (!folio_test_large(folio)) !! 1347 if (first) { 1483 mlock_vma_folio(folio, vma); !! 1348 mapped = subpages_mapcount_ptr(page); 1484 } !! 1349 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); >> 1350 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { >> 1351 nr_pmdmapped = thp_nr_pages(page); >> 1352 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED); >> 1353 /* Raced ahead of a remove and another add? */ >> 1354 if (unlikely(nr < 0)) >> 1355 nr = 0; >> 1356 } else { >> 1357 /* Raced ahead of a remove of COMPOUND_MAPPED */ >> 1358 nr = 0; >> 1359 } >> 1360 } >> 1361 } 1485 1362 1486 /** !! 1363 if (nr_pmdmapped) 1487 * folio_add_file_rmap_ptes - add PTE mapping !! 1364 __mod_lruvec_page_state(page, PageSwapBacked(page) ? 1488 * @folio: The folio to add the mappings !! 1365 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1489 * @page: The first page to add !! 1366 if (nr) 1490 * @nr_pages: The number of pages that will !! 1367 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1491 * @vma: The vm area in which the mapp !! 1368 unlock_page_memcg(page); 1492 * !! 1369 1493 * The page range of the folio is defined by !! 1370 mlock_vma_page(page, vma, compound); 1494 * << 1495 * The caller needs to hold the page table lo << 1496 */ << 1497 void folio_add_file_rmap_ptes(struct folio *f << 1498 int nr_pages, struct vm_area_ << 1499 { << 1500 __folio_add_file_rmap(folio, page, nr << 1501 } 1371 } 1502 1372 1503 /** 1373 /** 1504 * folio_add_file_rmap_pmd - add a PMD mappin !! 1374 * page_remove_rmap - take down pte mapping from a page 1505 * @folio: The folio to add the mapping !! 1375 * @page: page to remove mapping from 1506 * @page: The first page to add !! 1376 * @vma: the vm area from which the mapping is removed 1507 * @vma: The vm area in which the mapp !! 1377 * @compound: uncharge the page as compound or small page 1508 * !! 1378 * 1509 * The page range of the folio is defined by !! 1379 * The caller needs to hold the pte lock. 1510 * !! 1380 */ 1511 * The caller needs to hold the page table lo !! 1381 void page_remove_rmap(struct page *page, 1512 */ !! 1382 struct vm_area_struct *vma, bool compound) 1513 void folio_add_file_rmap_pmd(struct folio *fo !! 1383 { 1514 struct vm_area_struct *vma) !! 1384 atomic_t *mapped; 1515 { !! 1385 int nr = 0, nr_pmdmapped = 0; 1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE !! 1386 bool last; 1517 __folio_add_file_rmap(folio, page, HP !! 1387 1518 #else !! 1388 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1519 WARN_ON_ONCE(true); !! 1389 1520 #endif !! 1390 /* Hugetlb pages are not counted in NR_*MAPPED */ 1521 } !! 1391 if (unlikely(PageHuge(page))) { >> 1392 /* hugetlb pages are always mapped with pmds */ >> 1393 atomic_dec(compound_mapcount_ptr(page)); >> 1394 return; >> 1395 } 1522 1396 1523 static __always_inline void __folio_remove_rm !! 1397 lock_page_memcg(page); 1524 struct page *page, int nr_pag !! 1398 1525 enum rmap_level level) !! 1399 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1526 { !! 1400 if (likely(!compound)) { 1527 atomic_t *mapped = &folio->_nr_pages_ !! 1401 last = atomic_add_negative(-1, &page->_mapcount); 1528 int last = 0, nr = 0, nr_pmdmapped = !! 1402 nr = last; 1529 bool partially_mapped = false; !! 1403 if (last && PageCompound(page)) { 1530 !! 1404 mapped = subpages_mapcount_ptr(compound_head(page)); 1531 __folio_rmap_sanity_checks(folio, pag !! 1405 nr = atomic_dec_return_relaxed(mapped); 1532 !! 1406 nr = (nr < COMPOUND_MAPPED); 1533 switch (level) { << 1534 case RMAP_LEVEL_PTE: << 1535 if (!folio_test_large(folio)) << 1536 nr = atomic_add_negat << 1537 break; << 1538 } 1407 } >> 1408 } else if (PageTransHuge(page)) { >> 1409 /* That test is redundant: it's for safety or to optimize out */ 1539 1410 1540 atomic_sub(nr_pages, &folio-> !! 1411 last = atomic_add_negative(-1, compound_mapcount_ptr(page)); 1541 do { << 1542 last += atomic_add_ne << 1543 } while (page++, --nr_pages > << 1544 << 1545 if (last && << 1546 atomic_sub_return_relaxed << 1547 nr = last; << 1548 << 1549 partially_mapped = nr && atom << 1550 break; << 1551 case RMAP_LEVEL_PMD: << 1552 atomic_dec(&folio->_large_map << 1553 last = atomic_add_negative(-1 << 1554 if (last) { 1412 if (last) { 1555 nr = atomic_sub_retur !! 1413 mapped = subpages_mapcount_ptr(page); 1556 if (likely(nr < ENTIR !! 1414 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1557 nr_pmdmapped !! 1415 if (likely(nr < COMPOUND_MAPPED)) { 1558 nr = nr_pmdma !! 1416 nr_pmdmapped = thp_nr_pages(page); >> 1417 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED); 1559 /* Raced ahea 1418 /* Raced ahead of another remove and an add? */ 1560 if (unlikely( 1419 if (unlikely(nr < 0)) 1561 nr = 1420 nr = 0; 1562 } else { 1421 } else { 1563 /* An add of !! 1422 /* An add of COMPOUND_MAPPED raced ahead */ 1564 nr = 0; 1423 nr = 0; 1565 } 1424 } 1566 } 1425 } 1567 << 1568 partially_mapped = nr && nr < << 1569 break; << 1570 } 1426 } 1571 1427 1572 /* !! 1428 if (nr_pmdmapped) { 1573 * Queue anon large folio for deferre !! 1429 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_THPS : 1574 * the folio is unmapped and at least !! 1430 (PageSwapBacked(page) ? NR_SHMEM_PMDMAPPED : 1575 * !! 1431 NR_FILE_PMDMAPPED), -nr_pmdmapped); 1576 * Check partially_mapped first to en !! 1432 } 1577 */ !! 1433 if (nr) { 1578 if (partially_mapped && folio_test_an !! 1434 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_MAPPED : 1579 !folio_test_partially_mapped(foli !! 1435 NR_FILE_MAPPED, -nr); 1580 deferred_split_folio(folio, t !! 1436 /* 1581 !! 1437 * Queue anon THP for deferred split if at least one small 1582 __folio_mod_stat(folio, -nr, -nr_pmdm !! 1438 * page of the compound page is unmapped, but at least one >> 1439 * small page is still mapped. >> 1440 */ >> 1441 if (PageTransCompound(page) && PageAnon(page)) >> 1442 if (!compound || nr < nr_pmdmapped) >> 1443 deferred_split_huge_page(compound_head(page)); >> 1444 } 1583 1445 1584 /* 1446 /* 1585 * It would be tidy to reset folio_te !! 1447 * It would be tidy to reset PageAnon mapping when fully unmapped, 1586 * unmapped, but that might overwrite !! 1448 * but that might overwrite a racing page_add_anon_rmap 1587 * which increments mapcount after us !! 1449 * which increments mapcount after us but sets mapping 1588 * so leave the reset to free_pages_p !! 1450 * before us: so leave the reset to free_pages_prepare, 1589 * it's only reliable while mapped. !! 1451 * and remember that it's only reliable while mapped. 1590 */ 1452 */ 1591 1453 1592 munlock_vma_folio(folio, vma); !! 1454 unlock_page_memcg(page); 1593 } << 1594 << 1595 /** << 1596 * folio_remove_rmap_ptes - remove PTE mappin << 1597 * @folio: The folio to remove the mappi << 1598 * @page: The first page to remove << 1599 * @nr_pages: The number of pages that will << 1600 * @vma: The vm area from which the ma << 1601 * << 1602 * The page range of the folio is defined by << 1603 * << 1604 * The caller needs to hold the page table lo << 1605 */ << 1606 void folio_remove_rmap_ptes(struct folio *fol << 1607 int nr_pages, struct vm_area_ << 1608 { << 1609 __folio_remove_rmap(folio, page, nr_p << 1610 } << 1611 1455 1612 /** !! 1456 munlock_vma_page(page, vma, compound); 1613 * folio_remove_rmap_pmd - remove a PMD mappi << 1614 * @folio: The folio to remove the mappi << 1615 * @page: The first page to remove << 1616 * @vma: The vm area from which the ma << 1617 * << 1618 * The page range of the folio is defined by << 1619 * << 1620 * The caller needs to hold the page table lo << 1621 */ << 1622 void folio_remove_rmap_pmd(struct folio *foli << 1623 struct vm_area_struct *vma) << 1624 { << 1625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE << 1626 __folio_remove_rmap(folio, page, HPAG << 1627 #else << 1628 WARN_ON_ONCE(true); << 1629 #endif << 1630 } 1457 } 1631 1458 1632 /* 1459 /* 1633 * @arg: enum ttu_flags will be passed to thi 1460 * @arg: enum ttu_flags will be passed to this argument 1634 */ 1461 */ 1635 static bool try_to_unmap_one(struct folio *fo 1462 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1636 unsigned long address, v 1463 unsigned long address, void *arg) 1637 { 1464 { 1638 struct mm_struct *mm = vma->vm_mm; 1465 struct mm_struct *mm = vma->vm_mm; 1639 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vm 1466 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1640 pte_t pteval; 1467 pte_t pteval; 1641 struct page *subpage; 1468 struct page *subpage; 1642 bool anon_exclusive, ret = true; 1469 bool anon_exclusive, ret = true; 1643 struct mmu_notifier_range range; 1470 struct mmu_notifier_range range; 1644 enum ttu_flags flags = (enum ttu_flag 1471 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1645 unsigned long pfn; << 1646 unsigned long hsz = 0; << 1647 1472 1648 /* 1473 /* 1649 * When racing against e.g. zap_pte_r 1474 * When racing against e.g. zap_pte_range() on another cpu, 1650 * in between its ptep_get_and_clear_ !! 1475 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1651 * try_to_unmap() may return before p 1476 * try_to_unmap() may return before page_mapped() has become false, 1652 * if page table locking is skipped: 1477 * if page table locking is skipped: use TTU_SYNC to wait for that. 1653 */ 1478 */ 1654 if (flags & TTU_SYNC) 1479 if (flags & TTU_SYNC) 1655 pvmw.flags = PVMW_SYNC; 1480 pvmw.flags = PVMW_SYNC; 1656 1481 >> 1482 if (flags & TTU_SPLIT_HUGE_PMD) >> 1483 split_huge_pmd_address(vma, address, false, folio); >> 1484 1657 /* 1485 /* 1658 * For THP, we have to assume the wor 1486 * For THP, we have to assume the worse case ie pmd for invalidation. 1659 * For hugetlb, it could be much wors 1487 * For hugetlb, it could be much worse if we need to do pud 1660 * invalidation in the case of pmd sh 1488 * invalidation in the case of pmd sharing. 1661 * 1489 * 1662 * Note that the folio can not be fre 1490 * Note that the folio can not be freed in this function as call of 1663 * try_to_unmap() must hold a referen 1491 * try_to_unmap() must hold a reference on the folio. 1664 */ 1492 */ 1665 range.end = vma_address_end(&pvmw); 1493 range.end = vma_address_end(&pvmw); 1666 mmu_notifier_range_init(&range, MMU_N !! 1494 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1667 address, rang 1495 address, range.end); 1668 if (folio_test_hugetlb(folio)) { 1496 if (folio_test_hugetlb(folio)) { 1669 /* 1497 /* 1670 * If sharing is possible, st 1498 * If sharing is possible, start and end will be adjusted 1671 * accordingly. 1499 * accordingly. 1672 */ 1500 */ 1673 adjust_range_if_pmd_sharing_p 1501 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1674 1502 &range.end); 1675 << 1676 /* We need the huge page size << 1677 hsz = huge_page_size(hstate_v << 1678 } 1503 } 1679 mmu_notifier_invalidate_range_start(& 1504 mmu_notifier_invalidate_range_start(&range); 1680 1505 1681 while (page_vma_mapped_walk(&pvmw)) { 1506 while (page_vma_mapped_walk(&pvmw)) { >> 1507 /* Unexpected PMD-mapped THP? */ >> 1508 VM_BUG_ON_FOLIO(!pvmw.pte, folio); >> 1509 1682 /* 1510 /* 1683 * If the folio is in an mloc 1511 * If the folio is in an mlock()d vma, we must not swap it out. 1684 */ 1512 */ 1685 if (!(flags & TTU_IGNORE_MLOC 1513 if (!(flags & TTU_IGNORE_MLOCK) && 1686 (vma->vm_flags & VM_LOCKE 1514 (vma->vm_flags & VM_LOCKED)) { 1687 /* Restore the mlock 1515 /* Restore the mlock which got missed */ 1688 if (!folio_test_large !! 1516 mlock_vma_folio(folio, vma, false); 1689 mlock_vma_fol !! 1517 page_vma_mapped_walk_done(&pvmw); 1690 goto walk_abort; !! 1518 ret = false; 1691 } !! 1519 break; 1692 << 1693 if (!pvmw.pte) { << 1694 if (unmap_huge_pmd_lo << 1695 << 1696 goto walk_don << 1697 << 1698 if (flags & TTU_SPLIT << 1699 /* << 1700 * We tempora << 1701 * restart so << 1702 */ << 1703 split_huge_pm << 1704 << 1705 flags &= ~TTU << 1706 page_vma_mapp << 1707 continue; << 1708 } << 1709 } 1520 } 1710 1521 1711 /* Unexpected PMD-mapped THP? !! 1522 subpage = folio_page(folio, 1712 VM_BUG_ON_FOLIO(!pvmw.pte, fo !! 1523 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1713 << 1714 pfn = pte_pfn(ptep_get(pvmw.p << 1715 subpage = folio_page(folio, p << 1716 address = pvmw.address; 1524 address = pvmw.address; 1717 anon_exclusive = folio_test_a 1525 anon_exclusive = folio_test_anon(folio) && 1718 PageAnonExcl 1526 PageAnonExclusive(subpage); 1719 1527 1720 if (folio_test_hugetlb(folio) 1528 if (folio_test_hugetlb(folio)) { 1721 bool anon = folio_tes 1529 bool anon = folio_test_anon(folio); 1722 1530 1723 /* 1531 /* 1724 * The try_to_unmap() 1532 * The try_to_unmap() is only passed a hugetlb page 1725 * in the case where 1533 * in the case where the hugetlb page is poisoned. 1726 */ 1534 */ 1727 VM_BUG_ON_PAGE(!PageH 1535 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1728 /* 1536 /* 1729 * huge_pmd_unshare m 1537 * huge_pmd_unshare may unmap an entire PMD page. 1730 * There is no way of 1538 * There is no way of knowing exactly which PMDs may 1731 * be cached for this 1539 * be cached for this mm, so we must flush them all. 1732 * start/end were alr 1540 * start/end were already adjusted above to cover this 1733 * range. 1541 * range. 1734 */ 1542 */ 1735 flush_cache_range(vma 1543 flush_cache_range(vma, range.start, range.end); 1736 1544 1737 /* 1545 /* 1738 * To call huge_pmd_u 1546 * To call huge_pmd_unshare, i_mmap_rwsem must be 1739 * held in write mode 1547 * held in write mode. Caller needs to explicitly 1740 * do this outside rm 1548 * do this outside rmap routines. 1741 * 1549 * 1742 * We also must hold 1550 * We also must hold hugetlb vma_lock in write mode. 1743 * Lock order dictate 1551 * Lock order dictates acquiring vma_lock BEFORE 1744 * i_mmap_rwsem. We 1552 * i_mmap_rwsem. We can only try lock here and fail 1745 * if unsuccessful. 1553 * if unsuccessful. 1746 */ 1554 */ 1747 if (!anon) { 1555 if (!anon) { 1748 VM_BUG_ON(!(f 1556 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1749 if (!hugetlb_ !! 1557 if (!hugetlb_vma_trylock_write(vma)) { 1750 goto !! 1558 page_vma_mapped_walk_done(&pvmw); >> 1559 ret = false; >> 1560 break; >> 1561 } 1751 if (huge_pmd_ 1562 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1752 huget 1563 hugetlb_vma_unlock_write(vma); 1753 flush 1564 flush_tlb_range(vma, 1754 1565 range.start, range.end); >> 1566 mmu_notifier_invalidate_range(mm, >> 1567 range.start, range.end); 1755 /* 1568 /* 1756 * Th 1569 * The ref count of the PMD page was 1757 * dr 1570 * dropped which is part of the way map 1758 * co 1571 * counting is done for shared PMDs. 1759 * Re 1572 * Return 'true' here. When there is 1760 * no 1573 * no other sharing, huge_pmd_unshare 1761 * re 1574 * returns false and we will unmap the 1762 * ac 1575 * actual page and drop map count 1763 * to 1576 * to zero. 1764 */ 1577 */ 1765 goto !! 1578 page_vma_mapped_walk_done(&pvmw); >> 1579 break; 1766 } 1580 } 1767 hugetlb_vma_u 1581 hugetlb_vma_unlock_write(vma); 1768 } 1582 } 1769 pteval = huge_ptep_cl 1583 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1770 } else { 1584 } else { 1771 flush_cache_page(vma, !! 1585 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1772 /* Nuke the page tabl 1586 /* Nuke the page table entry. */ 1773 if (should_defer_flus 1587 if (should_defer_flush(mm, flags)) { 1774 /* 1588 /* 1775 * We clear t 1589 * We clear the PTE but do not flush so potentially 1776 * a remote C 1590 * a remote CPU could still be writing to the folio. 1777 * If the ent 1591 * If the entry was previously clean then the 1778 * architectu 1592 * architecture must guarantee that a clear->dirty 1779 * transition 1593 * transition on a cached TLB entry is written through 1780 * and traps 1594 * and traps if the PTE is unmapped. 1781 */ 1595 */ 1782 pteval = ptep 1596 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1783 1597 1784 set_tlb_ubc_f !! 1598 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1785 } else { 1599 } else { 1786 pteval = ptep 1600 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1787 } 1601 } 1788 } 1602 } 1789 1603 1790 /* 1604 /* 1791 * Now the pte is cleared. If 1605 * Now the pte is cleared. If this pte was uffd-wp armed, 1792 * we may want to replace a n 1606 * we may want to replace a none pte with a marker pte if 1793 * it's file-backed, so we do 1607 * it's file-backed, so we don't lose the tracking info. 1794 */ 1608 */ 1795 pte_install_uffd_wp_if_needed 1609 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1796 1610 1797 /* Set the dirty flag on the 1611 /* Set the dirty flag on the folio now the pte is gone. */ 1798 if (pte_dirty(pteval)) 1612 if (pte_dirty(pteval)) 1799 folio_mark_dirty(foli 1613 folio_mark_dirty(folio); 1800 1614 1801 /* Update high watermark befo 1615 /* Update high watermark before we lower rss */ 1802 update_hiwater_rss(mm); 1616 update_hiwater_rss(mm); 1803 1617 1804 if (PageHWPoison(subpage) && 1618 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1805 pteval = swp_entry_to 1619 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1806 if (folio_test_hugetl 1620 if (folio_test_hugetlb(folio)) { 1807 hugetlb_count 1621 hugetlb_count_sub(folio_nr_pages(folio), mm); 1808 set_huge_pte_ !! 1622 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1809 << 1810 } else { 1623 } else { 1811 dec_mm_counte !! 1624 dec_mm_counter(mm, mm_counter(&folio->page)); 1812 set_pte_at(mm 1625 set_pte_at(mm, address, pvmw.pte, pteval); 1813 } 1626 } 1814 1627 1815 } else if (pte_unused(pteval) 1628 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1816 /* 1629 /* 1817 * The guest indicate 1630 * The guest indicated that the page content is of no 1818 * interest anymore. 1631 * interest anymore. Simply discard the pte, vmscan 1819 * will take care of 1632 * will take care of the rest. 1820 * A future reference 1633 * A future reference will then fault in a new zero 1821 * page. When userfau 1634 * page. When userfaultfd is active, we must not drop 1822 * this page though, 1635 * this page though, as its main user (postcopy 1823 * migration) will no 1636 * migration) will not expect userfaults on already 1824 * copied pages. 1637 * copied pages. 1825 */ 1638 */ 1826 dec_mm_counter(mm, mm !! 1639 dec_mm_counter(mm, mm_counter(&folio->page)); >> 1640 /* We have to invalidate as we cleared the pte */ >> 1641 mmu_notifier_invalidate_range(mm, address, >> 1642 address + PAGE_SIZE); 1827 } else if (folio_test_anon(fo 1643 } else if (folio_test_anon(folio)) { 1828 swp_entry_t entry = p !! 1644 swp_entry_t entry = { .val = page_private(subpage) }; 1829 pte_t swp_pte; 1645 pte_t swp_pte; 1830 /* 1646 /* 1831 * Store the swap loc 1647 * Store the swap location in the pte. 1832 * See handle_pte_fau 1648 * See handle_pte_fault() ... 1833 */ 1649 */ 1834 if (unlikely(folio_te 1650 if (unlikely(folio_test_swapbacked(folio) != 1835 folio 1651 folio_test_swapcache(folio))) { 1836 WARN_ON_ONCE( 1652 WARN_ON_ONCE(1); 1837 goto walk_abo !! 1653 ret = false; >> 1654 /* We have to invalidate as we cleared the pte */ >> 1655 mmu_notifier_invalidate_range(mm, address, >> 1656 address + PAGE_SIZE); >> 1657 page_vma_mapped_walk_done(&pvmw); >> 1658 break; 1838 } 1659 } 1839 1660 1840 /* MADV_FREE page che 1661 /* MADV_FREE page check */ 1841 if (!folio_test_swapb 1662 if (!folio_test_swapbacked(folio)) { 1842 int ref_count 1663 int ref_count, map_count; 1843 1664 1844 /* 1665 /* 1845 * Synchroniz 1666 * Synchronize with gup_pte_range(): 1846 * - clear PT 1667 * - clear PTE; barrier; read refcount 1847 * - inc refc 1668 * - inc refcount; barrier; read PTE 1848 */ 1669 */ 1849 smp_mb(); 1670 smp_mb(); 1850 1671 1851 ref_count = f 1672 ref_count = folio_ref_count(folio); 1852 map_count = f 1673 map_count = folio_mapcount(folio); 1853 1674 1854 /* 1675 /* 1855 * Order read 1676 * Order reads for page refcount and dirty flag 1856 * (see comme 1677 * (see comments in __remove_mapping()). 1857 */ 1678 */ 1858 smp_rmb(); 1679 smp_rmb(); 1859 1680 1860 /* 1681 /* 1861 * The only p 1682 * The only page refs must be one from isolation 1862 * plus the r 1683 * plus the rmap(s) (dropped by discard:). 1863 */ 1684 */ 1864 if (ref_count 1685 if (ref_count == 1 + map_count && 1865 (!folio_t !! 1686 !folio_test_dirty(folio)) { 1866 /* !! 1687 /* Invalidate as we cleared the pte */ 1867 * Unlik !! 1688 mmu_notifier_invalidate_range(mm, 1868 * ones !! 1689 address, address + PAGE_SIZE); 1869 * been << 1870 */ << 1871 (vma->vm << 1872 dec_m 1690 dec_mm_counter(mm, MM_ANONPAGES); 1873 goto 1691 goto discard; 1874 } 1692 } 1875 1693 1876 /* 1694 /* 1877 * If the fol 1695 * If the folio was redirtied, it cannot be 1878 * discarded. 1696 * discarded. Remap the page to page table. 1879 */ 1697 */ 1880 set_pte_at(mm 1698 set_pte_at(mm, address, pvmw.pte, pteval); 1881 /* !! 1699 folio_set_swapbacked(folio); 1882 * Unlike MAD !! 1700 ret = false; 1883 * never get !! 1701 page_vma_mapped_walk_done(&pvmw); 1884 */ !! 1702 break; 1885 if (!(vma->vm << 1886 folio << 1887 goto walk_abo << 1888 } 1703 } 1889 1704 1890 if (swap_duplicate(en 1705 if (swap_duplicate(entry) < 0) { 1891 set_pte_at(mm 1706 set_pte_at(mm, address, pvmw.pte, pteval); 1892 goto walk_abo !! 1707 ret = false; >> 1708 page_vma_mapped_walk_done(&pvmw); >> 1709 break; 1893 } 1710 } 1894 if (arch_unmap_one(mm 1711 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1895 swap_free(ent 1712 swap_free(entry); 1896 set_pte_at(mm 1713 set_pte_at(mm, address, pvmw.pte, pteval); 1897 goto walk_abo !! 1714 ret = false; >> 1715 page_vma_mapped_walk_done(&pvmw); >> 1716 break; 1898 } 1717 } 1899 1718 1900 /* See folio_try_shar !! 1719 /* See page_try_share_anon_rmap(): clear PTE first. */ 1901 if (anon_exclusive && 1720 if (anon_exclusive && 1902 folio_try_share_a !! 1721 page_try_share_anon_rmap(subpage)) { 1903 swap_free(ent 1722 swap_free(entry); 1904 set_pte_at(mm 1723 set_pte_at(mm, address, pvmw.pte, pteval); 1905 goto walk_abo !! 1724 ret = false; >> 1725 page_vma_mapped_walk_done(&pvmw); >> 1726 break; 1906 } 1727 } >> 1728 /* >> 1729 * Note: We *don't* remember if the page was mapped >> 1730 * exclusively in the swap pte if the architecture >> 1731 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In >> 1732 * that case, swapin code has to re-determine that >> 1733 * manually and might detect the page as possibly >> 1734 * shared, for example, if there are other references on >> 1735 * the page or if the page is under writeback. We made >> 1736 * sure that there are no GUP pins on the page that >> 1737 * would rely on it, so for GUP pins this is fine. >> 1738 */ 1907 if (list_empty(&mm->m 1739 if (list_empty(&mm->mmlist)) { 1908 spin_lock(&mm 1740 spin_lock(&mmlist_lock); 1909 if (list_empt 1741 if (list_empty(&mm->mmlist)) 1910 list_ 1742 list_add(&mm->mmlist, &init_mm.mmlist); 1911 spin_unlock(& 1743 spin_unlock(&mmlist_lock); 1912 } 1744 } 1913 dec_mm_counter(mm, MM 1745 dec_mm_counter(mm, MM_ANONPAGES); 1914 inc_mm_counter(mm, MM 1746 inc_mm_counter(mm, MM_SWAPENTS); 1915 swp_pte = swp_entry_t 1747 swp_pte = swp_entry_to_pte(entry); 1916 if (anon_exclusive) 1748 if (anon_exclusive) 1917 swp_pte = pte 1749 swp_pte = pte_swp_mkexclusive(swp_pte); 1918 if (pte_soft_dirty(pt 1750 if (pte_soft_dirty(pteval)) 1919 swp_pte = pte 1751 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1920 if (pte_uffd_wp(pteva 1752 if (pte_uffd_wp(pteval)) 1921 swp_pte = pte 1753 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1922 set_pte_at(mm, addres 1754 set_pte_at(mm, address, pvmw.pte, swp_pte); >> 1755 /* Invalidate as we cleared the pte */ >> 1756 mmu_notifier_invalidate_range(mm, address, >> 1757 address + PAGE_SIZE); 1923 } else { 1758 } else { 1924 /* 1759 /* 1925 * This is a locked f 1760 * This is a locked file-backed folio, 1926 * so it cannot be re 1761 * so it cannot be removed from the page 1927 * cache and replaced 1762 * cache and replaced by a new folio before 1928 * mmu_notifier_inval 1763 * mmu_notifier_invalidate_range_end, so no 1929 * concurrent thread 1764 * concurrent thread might update its page table 1930 * to point at a new 1765 * to point at a new folio while a device is 1931 * still using this f 1766 * still using this folio. 1932 * 1767 * 1933 * See Documentation/ 1768 * See Documentation/mm/mmu_notifier.rst 1934 */ 1769 */ 1935 dec_mm_counter(mm, mm !! 1770 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1936 } 1771 } 1937 discard: 1772 discard: 1938 if (unlikely(folio_test_huget !! 1773 /* 1939 hugetlb_remove_rmap(f !! 1774 * No need to call mmu_notifier_invalidate_range() it has be 1940 else !! 1775 * done above for all cases requiring it to happen under page 1941 folio_remove_rmap_pte !! 1776 * table lock before mmu_notifier_invalidate_range_end() >> 1777 * >> 1778 * See Documentation/mm/mmu_notifier.rst >> 1779 */ >> 1780 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1942 if (vma->vm_flags & VM_LOCKED 1781 if (vma->vm_flags & VM_LOCKED) 1943 mlock_drain_local(); !! 1782 mlock_page_drain_local(); 1944 folio_put(folio); 1783 folio_put(folio); 1945 continue; << 1946 walk_abort: << 1947 ret = false; << 1948 walk_done: << 1949 page_vma_mapped_walk_done(&pv << 1950 break; << 1951 } 1784 } 1952 1785 1953 mmu_notifier_invalidate_range_end(&ra 1786 mmu_notifier_invalidate_range_end(&range); 1954 1787 1955 return ret; 1788 return ret; 1956 } 1789 } 1957 1790 1958 static bool invalid_migration_vma(struct vm_a 1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1959 { 1792 { 1960 return vma_is_temporary_stack(vma); 1793 return vma_is_temporary_stack(vma); 1961 } 1794 } 1962 1795 1963 static int folio_not_mapped(struct folio *fol 1796 static int folio_not_mapped(struct folio *folio) 1964 { 1797 { 1965 return !folio_mapped(folio); 1798 return !folio_mapped(folio); 1966 } 1799 } 1967 1800 1968 /** 1801 /** 1969 * try_to_unmap - Try to remove all page tabl 1802 * try_to_unmap - Try to remove all page table mappings to a folio. 1970 * @folio: The folio to unmap. 1803 * @folio: The folio to unmap. 1971 * @flags: action and flags 1804 * @flags: action and flags 1972 * 1805 * 1973 * Tries to remove all the page table entries 1806 * Tries to remove all the page table entries which are mapping this 1974 * folio. It is the caller's responsibility 1807 * folio. It is the caller's responsibility to check if the folio is 1975 * still mapped if needed (use TTU_SYNC to pr 1808 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1976 * 1809 * 1977 * Context: Caller must hold the folio lock. 1810 * Context: Caller must hold the folio lock. 1978 */ 1811 */ 1979 void try_to_unmap(struct folio *folio, enum t 1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1980 { 1813 { 1981 struct rmap_walk_control rwc = { 1814 struct rmap_walk_control rwc = { 1982 .rmap_one = try_to_unmap_one, 1815 .rmap_one = try_to_unmap_one, 1983 .arg = (void *)flags, 1816 .arg = (void *)flags, 1984 .done = folio_not_mapped, 1817 .done = folio_not_mapped, 1985 .anon_lock = folio_lock_anon_ 1818 .anon_lock = folio_lock_anon_vma_read, 1986 }; 1819 }; 1987 1820 1988 if (flags & TTU_RMAP_LOCKED) 1821 if (flags & TTU_RMAP_LOCKED) 1989 rmap_walk_locked(folio, &rwc) 1822 rmap_walk_locked(folio, &rwc); 1990 else 1823 else 1991 rmap_walk(folio, &rwc); 1824 rmap_walk(folio, &rwc); 1992 } 1825 } 1993 1826 1994 /* 1827 /* 1995 * @arg: enum ttu_flags will be passed to thi 1828 * @arg: enum ttu_flags will be passed to this argument. 1996 * 1829 * 1997 * If TTU_SPLIT_HUGE_PMD is specified any PMD 1830 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1998 * containing migration entries. 1831 * containing migration entries. 1999 */ 1832 */ 2000 static bool try_to_migrate_one(struct folio * 1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2001 unsigned long address, v 1834 unsigned long address, void *arg) 2002 { 1835 { 2003 struct mm_struct *mm = vma->vm_mm; 1836 struct mm_struct *mm = vma->vm_mm; 2004 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vm 1837 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2005 pte_t pteval; 1838 pte_t pteval; 2006 struct page *subpage; 1839 struct page *subpage; 2007 bool anon_exclusive, ret = true; 1840 bool anon_exclusive, ret = true; 2008 struct mmu_notifier_range range; 1841 struct mmu_notifier_range range; 2009 enum ttu_flags flags = (enum ttu_flag 1842 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2010 unsigned long pfn; << 2011 unsigned long hsz = 0; << 2012 1843 2013 /* 1844 /* 2014 * When racing against e.g. zap_pte_r 1845 * When racing against e.g. zap_pte_range() on another cpu, 2015 * in between its ptep_get_and_clear_ !! 1846 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 2016 * try_to_migrate() may return before 1847 * try_to_migrate() may return before page_mapped() has become false, 2017 * if page table locking is skipped: 1848 * if page table locking is skipped: use TTU_SYNC to wait for that. 2018 */ 1849 */ 2019 if (flags & TTU_SYNC) 1850 if (flags & TTU_SYNC) 2020 pvmw.flags = PVMW_SYNC; 1851 pvmw.flags = PVMW_SYNC; 2021 1852 2022 /* 1853 /* 2023 * unmap_page() in mm/huge_memory.c i 1854 * unmap_page() in mm/huge_memory.c is the only user of migration with 2024 * TTU_SPLIT_HUGE_PMD and it wants to 1855 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2025 */ 1856 */ 2026 if (flags & TTU_SPLIT_HUGE_PMD) 1857 if (flags & TTU_SPLIT_HUGE_PMD) 2027 split_huge_pmd_address(vma, a 1858 split_huge_pmd_address(vma, address, true, folio); 2028 1859 2029 /* 1860 /* 2030 * For THP, we have to assume the wor 1861 * For THP, we have to assume the worse case ie pmd for invalidation. 2031 * For hugetlb, it could be much wors 1862 * For hugetlb, it could be much worse if we need to do pud 2032 * invalidation in the case of pmd sh 1863 * invalidation in the case of pmd sharing. 2033 * 1864 * 2034 * Note that the page can not be free 1865 * Note that the page can not be free in this function as call of 2035 * try_to_unmap() must hold a referen 1866 * try_to_unmap() must hold a reference on the page. 2036 */ 1867 */ 2037 range.end = vma_address_end(&pvmw); 1868 range.end = vma_address_end(&pvmw); 2038 mmu_notifier_range_init(&range, MMU_N !! 1869 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2039 address, rang 1870 address, range.end); 2040 if (folio_test_hugetlb(folio)) { 1871 if (folio_test_hugetlb(folio)) { 2041 /* 1872 /* 2042 * If sharing is possible, st 1873 * If sharing is possible, start and end will be adjusted 2043 * accordingly. 1874 * accordingly. 2044 */ 1875 */ 2045 adjust_range_if_pmd_sharing_p 1876 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2046 1877 &range.end); 2047 << 2048 /* We need the huge page size << 2049 hsz = huge_page_size(hstate_v << 2050 } 1878 } 2051 mmu_notifier_invalidate_range_start(& 1879 mmu_notifier_invalidate_range_start(&range); 2052 1880 2053 while (page_vma_mapped_walk(&pvmw)) { 1881 while (page_vma_mapped_walk(&pvmw)) { 2054 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2055 /* PMD-mapped THP migration e 1883 /* PMD-mapped THP migration entry */ 2056 if (!pvmw.pte) { 1884 if (!pvmw.pte) { 2057 subpage = folio_page( 1885 subpage = folio_page(folio, 2058 pmd_pfn(*pvmw 1886 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2059 VM_BUG_ON_FOLIO(folio 1887 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2060 !foli 1888 !folio_test_pmd_mappable(folio), folio); 2061 1889 2062 if (set_pmd_migration 1890 if (set_pmd_migration_entry(&pvmw, subpage)) { 2063 ret = false; 1891 ret = false; 2064 page_vma_mapp 1892 page_vma_mapped_walk_done(&pvmw); 2065 break; 1893 break; 2066 } 1894 } 2067 continue; 1895 continue; 2068 } 1896 } 2069 #endif 1897 #endif 2070 1898 2071 /* Unexpected PMD-mapped THP? 1899 /* Unexpected PMD-mapped THP? */ 2072 VM_BUG_ON_FOLIO(!pvmw.pte, fo 1900 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2073 1901 2074 pfn = pte_pfn(ptep_get(pvmw.p << 2075 << 2076 if (folio_is_zone_device(foli 1902 if (folio_is_zone_device(folio)) { 2077 /* 1903 /* 2078 * Our PTE is a non-p 1904 * Our PTE is a non-present device exclusive entry and 2079 * calculating the su 1905 * calculating the subpage as for the common case would 2080 * result in an inval 1906 * result in an invalid pointer. 2081 * 1907 * 2082 * Since only PAGE_SI 1908 * Since only PAGE_SIZE pages can currently be 2083 * migrated, just set 1909 * migrated, just set it to page. This will need to be 2084 * changed when hugep 1910 * changed when hugepage migrations to device private 2085 * memory are support 1911 * memory are supported. 2086 */ 1912 */ 2087 VM_BUG_ON_FOLIO(folio 1913 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2088 subpage = &folio->pag 1914 subpage = &folio->page; 2089 } else { 1915 } else { 2090 subpage = folio_page( !! 1916 subpage = folio_page(folio, >> 1917 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2091 } 1918 } 2092 address = pvmw.address; 1919 address = pvmw.address; 2093 anon_exclusive = folio_test_a 1920 anon_exclusive = folio_test_anon(folio) && 2094 PageAnonExcl 1921 PageAnonExclusive(subpage); 2095 1922 2096 if (folio_test_hugetlb(folio) 1923 if (folio_test_hugetlb(folio)) { 2097 bool anon = folio_tes 1924 bool anon = folio_test_anon(folio); 2098 1925 2099 /* 1926 /* 2100 * huge_pmd_unshare m 1927 * huge_pmd_unshare may unmap an entire PMD page. 2101 * There is no way of 1928 * There is no way of knowing exactly which PMDs may 2102 * be cached for this 1929 * be cached for this mm, so we must flush them all. 2103 * start/end were alr 1930 * start/end were already adjusted above to cover this 2104 * range. 1931 * range. 2105 */ 1932 */ 2106 flush_cache_range(vma 1933 flush_cache_range(vma, range.start, range.end); 2107 1934 2108 /* 1935 /* 2109 * To call huge_pmd_u 1936 * To call huge_pmd_unshare, i_mmap_rwsem must be 2110 * held in write mode 1937 * held in write mode. Caller needs to explicitly 2111 * do this outside rm 1938 * do this outside rmap routines. 2112 * 1939 * 2113 * We also must hold 1940 * We also must hold hugetlb vma_lock in write mode. 2114 * Lock order dictate 1941 * Lock order dictates acquiring vma_lock BEFORE 2115 * i_mmap_rwsem. We 1942 * i_mmap_rwsem. We can only try lock here and 2116 * fail if unsuccessf 1943 * fail if unsuccessful. 2117 */ 1944 */ 2118 if (!anon) { 1945 if (!anon) { 2119 VM_BUG_ON(!(f 1946 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2120 if (!hugetlb_ 1947 if (!hugetlb_vma_trylock_write(vma)) { 2121 page_ 1948 page_vma_mapped_walk_done(&pvmw); 2122 ret = 1949 ret = false; 2123 break 1950 break; 2124 } 1951 } 2125 if (huge_pmd_ 1952 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2126 huget 1953 hugetlb_vma_unlock_write(vma); 2127 flush 1954 flush_tlb_range(vma, 2128 1955 range.start, range.end); >> 1956 mmu_notifier_invalidate_range(mm, >> 1957 range.start, range.end); 2129 1958 2130 /* 1959 /* 2131 * Th 1960 * The ref count of the PMD page was 2132 * dr 1961 * dropped which is part of the way map 2133 * co 1962 * counting is done for shared PMDs. 2134 * Re 1963 * Return 'true' here. When there is 2135 * no 1964 * no other sharing, huge_pmd_unshare 2136 * re 1965 * returns false and we will unmap the 2137 * ac 1966 * actual page and drop map count 2138 * to 1967 * to zero. 2139 */ 1968 */ 2140 page_ 1969 page_vma_mapped_walk_done(&pvmw); 2141 break 1970 break; 2142 } 1971 } 2143 hugetlb_vma_u 1972 hugetlb_vma_unlock_write(vma); 2144 } 1973 } 2145 /* Nuke the hugetlb p 1974 /* Nuke the hugetlb page table entry */ 2146 pteval = huge_ptep_cl 1975 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2147 } else { 1976 } else { 2148 flush_cache_page(vma, !! 1977 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2149 /* Nuke the page tabl 1978 /* Nuke the page table entry. */ 2150 if (should_defer_flus !! 1979 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2151 /* << 2152 * We clear t << 2153 * a remote C << 2154 * If the ent << 2155 * architectu << 2156 * transition << 2157 * and traps << 2158 */ << 2159 pteval = ptep << 2160 << 2161 set_tlb_ubc_f << 2162 } else { << 2163 pteval = ptep << 2164 } << 2165 } 1980 } 2166 1981 2167 /* Set the dirty flag on the 1982 /* Set the dirty flag on the folio now the pte is gone. */ 2168 if (pte_dirty(pteval)) 1983 if (pte_dirty(pteval)) 2169 folio_mark_dirty(foli 1984 folio_mark_dirty(folio); 2170 1985 2171 /* Update high watermark befo 1986 /* Update high watermark before we lower rss */ 2172 update_hiwater_rss(mm); 1987 update_hiwater_rss(mm); 2173 1988 2174 if (folio_is_device_private(f 1989 if (folio_is_device_private(folio)) { 2175 unsigned long pfn = f 1990 unsigned long pfn = folio_pfn(folio); 2176 swp_entry_t entry; 1991 swp_entry_t entry; 2177 pte_t swp_pte; 1992 pte_t swp_pte; 2178 1993 2179 if (anon_exclusive) 1994 if (anon_exclusive) 2180 WARN_ON_ONCE( !! 1995 BUG_ON(page_try_share_anon_rmap(subpage)); 2181 << 2182 1996 2183 /* 1997 /* 2184 * Store the pfn of t 1998 * Store the pfn of the page in a special migration 2185 * pte. do_swap_page( 1999 * pte. do_swap_page() will wait until the migration 2186 * pte is removed and 2000 * pte is removed and then restart fault handling. 2187 */ 2001 */ 2188 entry = pte_to_swp_en 2002 entry = pte_to_swp_entry(pteval); 2189 if (is_writable_devic 2003 if (is_writable_device_private_entry(entry)) 2190 entry = make_ 2004 entry = make_writable_migration_entry(pfn); 2191 else if (anon_exclusi 2005 else if (anon_exclusive) 2192 entry = make_ 2006 entry = make_readable_exclusive_migration_entry(pfn); 2193 else 2007 else 2194 entry = make_ 2008 entry = make_readable_migration_entry(pfn); 2195 swp_pte = swp_entry_t 2009 swp_pte = swp_entry_to_pte(entry); 2196 2010 2197 /* 2011 /* 2198 * pteval maps a zone 2012 * pteval maps a zone device page and is therefore 2199 * a swap pte. 2013 * a swap pte. 2200 */ 2014 */ 2201 if (pte_swp_soft_dirt 2015 if (pte_swp_soft_dirty(pteval)) 2202 swp_pte = pte 2016 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2203 if (pte_swp_uffd_wp(p 2017 if (pte_swp_uffd_wp(pteval)) 2204 swp_pte = pte 2018 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2205 set_pte_at(mm, pvmw.a 2019 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2206 trace_set_migration_p 2020 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2207 !! 2021 compound_order(&folio->page)); 2208 /* 2022 /* 2209 * No need to invalid 2023 * No need to invalidate here it will synchronize on 2210 * against the specia 2024 * against the special swap migration pte. 2211 */ 2025 */ 2212 } else if (PageHWPoison(subpa 2026 } else if (PageHWPoison(subpage)) { 2213 pteval = swp_entry_to 2027 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2214 if (folio_test_hugetl 2028 if (folio_test_hugetlb(folio)) { 2215 hugetlb_count 2029 hugetlb_count_sub(folio_nr_pages(folio), mm); 2216 set_huge_pte_ !! 2030 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2217 << 2218 } else { 2031 } else { 2219 dec_mm_counte !! 2032 dec_mm_counter(mm, mm_counter(&folio->page)); 2220 set_pte_at(mm 2033 set_pte_at(mm, address, pvmw.pte, pteval); 2221 } 2034 } 2222 2035 2223 } else if (pte_unused(pteval) 2036 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2224 /* 2037 /* 2225 * The guest indicate 2038 * The guest indicated that the page content is of no 2226 * interest anymore. 2039 * interest anymore. Simply discard the pte, vmscan 2227 * will take care of 2040 * will take care of the rest. 2228 * A future reference 2041 * A future reference will then fault in a new zero 2229 * page. When userfau 2042 * page. When userfaultfd is active, we must not drop 2230 * this page though, 2043 * this page though, as its main user (postcopy 2231 * migration) will no 2044 * migration) will not expect userfaults on already 2232 * copied pages. 2045 * copied pages. 2233 */ 2046 */ 2234 dec_mm_counter(mm, mm !! 2047 dec_mm_counter(mm, mm_counter(&folio->page)); >> 2048 /* We have to invalidate as we cleared the pte */ >> 2049 mmu_notifier_invalidate_range(mm, address, >> 2050 address + PAGE_SIZE); 2235 } else { 2051 } else { 2236 swp_entry_t entry; 2052 swp_entry_t entry; 2237 pte_t swp_pte; 2053 pte_t swp_pte; 2238 2054 2239 if (arch_unmap_one(mm 2055 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2240 if (folio_tes 2056 if (folio_test_hugetlb(folio)) 2241 set_h !! 2057 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2242 << 2243 else 2058 else 2244 set_p 2059 set_pte_at(mm, address, pvmw.pte, pteval); 2245 ret = false; 2060 ret = false; 2246 page_vma_mapp 2061 page_vma_mapped_walk_done(&pvmw); 2247 break; 2062 break; 2248 } 2063 } 2249 VM_BUG_ON_PAGE(pte_wr 2064 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2250 !anon_ 2065 !anon_exclusive, subpage); 2251 2066 2252 /* See folio_try_shar !! 2067 /* See page_try_share_anon_rmap(): clear PTE first. */ 2253 if (folio_test_hugetl !! 2068 if (anon_exclusive && 2254 if (anon_excl !! 2069 page_try_share_anon_rmap(subpage)) { 2255 hugetlb_t !! 2070 if (folio_test_hugetlb(folio)) 2256 set_h !! 2071 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2257 !! 2072 else 2258 ret = !! 2073 set_pte_at(mm, address, pvmw.pte, pteval); 2259 page_ << 2260 break << 2261 } << 2262 } else if (anon_exclu << 2263 folio_try_ << 2264 set_pte_at(mm << 2265 ret = false; 2074 ret = false; 2266 page_vma_mapp 2075 page_vma_mapped_walk_done(&pvmw); 2267 break; 2076 break; 2268 } 2077 } 2269 2078 2270 /* 2079 /* 2271 * Store the pfn of t 2080 * Store the pfn of the page in a special migration 2272 * pte. do_swap_page( 2081 * pte. do_swap_page() will wait until the migration 2273 * pte is removed and 2082 * pte is removed and then restart fault handling. 2274 */ 2083 */ 2275 if (pte_write(pteval) 2084 if (pte_write(pteval)) 2276 entry = make_ 2085 entry = make_writable_migration_entry( 2277 2086 page_to_pfn(subpage)); 2278 else if (anon_exclusi 2087 else if (anon_exclusive) 2279 entry = make_ 2088 entry = make_readable_exclusive_migration_entry( 2280 2089 page_to_pfn(subpage)); 2281 else 2090 else 2282 entry = make_ 2091 entry = make_readable_migration_entry( 2283 2092 page_to_pfn(subpage)); 2284 if (pte_young(pteval) 2093 if (pte_young(pteval)) 2285 entry = make_ 2094 entry = make_migration_entry_young(entry); 2286 if (pte_dirty(pteval) 2095 if (pte_dirty(pteval)) 2287 entry = make_ 2096 entry = make_migration_entry_dirty(entry); 2288 swp_pte = swp_entry_t 2097 swp_pte = swp_entry_to_pte(entry); 2289 if (pte_soft_dirty(pt 2098 if (pte_soft_dirty(pteval)) 2290 swp_pte = pte 2099 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2291 if (pte_uffd_wp(pteva 2100 if (pte_uffd_wp(pteval)) 2292 swp_pte = pte 2101 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2293 if (folio_test_hugetl 2102 if (folio_test_hugetlb(folio)) 2294 set_huge_pte_ !! 2103 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2295 << 2296 else 2104 else 2297 set_pte_at(mm 2105 set_pte_at(mm, address, pvmw.pte, swp_pte); 2298 trace_set_migration_p 2106 trace_set_migration_pte(address, pte_val(swp_pte), 2299 !! 2107 compound_order(&folio->page)); 2300 /* 2108 /* 2301 * No need to invalid 2109 * No need to invalidate here it will synchronize on 2302 * against the specia 2110 * against the special swap migration pte. 2303 */ 2111 */ 2304 } 2112 } 2305 2113 2306 if (unlikely(folio_test_huget !! 2114 /* 2307 hugetlb_remove_rmap(f !! 2115 * No need to call mmu_notifier_invalidate_range() it has be 2308 else !! 2116 * done above for all cases requiring it to happen under page 2309 folio_remove_rmap_pte !! 2117 * table lock before mmu_notifier_invalidate_range_end() >> 2118 * >> 2119 * See Documentation/mm/mmu_notifier.rst >> 2120 */ >> 2121 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2310 if (vma->vm_flags & VM_LOCKED 2122 if (vma->vm_flags & VM_LOCKED) 2311 mlock_drain_local(); !! 2123 mlock_page_drain_local(); 2312 folio_put(folio); 2124 folio_put(folio); 2313 } 2125 } 2314 2126 2315 mmu_notifier_invalidate_range_end(&ra 2127 mmu_notifier_invalidate_range_end(&range); 2316 2128 2317 return ret; 2129 return ret; 2318 } 2130 } 2319 2131 2320 /** 2132 /** 2321 * try_to_migrate - try to replace all page t 2133 * try_to_migrate - try to replace all page table mappings with swap entries 2322 * @folio: the folio to replace page table en 2134 * @folio: the folio to replace page table entries for 2323 * @flags: action and flags 2135 * @flags: action and flags 2324 * 2136 * 2325 * Tries to remove all the page table entries 2137 * Tries to remove all the page table entries which are mapping this folio and 2326 * replace them with special swap entries. Ca 2138 * replace them with special swap entries. Caller must hold the folio lock. 2327 */ 2139 */ 2328 void try_to_migrate(struct folio *folio, enum 2140 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2329 { 2141 { 2330 struct rmap_walk_control rwc = { 2142 struct rmap_walk_control rwc = { 2331 .rmap_one = try_to_migrate_on 2143 .rmap_one = try_to_migrate_one, 2332 .arg = (void *)flags, 2144 .arg = (void *)flags, 2333 .done = folio_not_mapped, 2145 .done = folio_not_mapped, 2334 .anon_lock = folio_lock_anon_ 2146 .anon_lock = folio_lock_anon_vma_read, 2335 }; 2147 }; 2336 2148 2337 /* 2149 /* 2338 * Migration always ignores mlock and 2150 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2339 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and !! 2151 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 2340 */ 2152 */ 2341 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_L 2153 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2342 TTU_S !! 2154 TTU_SYNC))) 2343 return; 2155 return; 2344 2156 2345 if (folio_is_zone_device(folio) && 2157 if (folio_is_zone_device(folio) && 2346 (!folio_is_device_private(folio) 2158 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2347 return; 2159 return; 2348 2160 2349 /* 2161 /* 2350 * During exec, a temporary VMA is se 2162 * During exec, a temporary VMA is setup and later moved. 2351 * The VMA is moved under the anon_vm 2163 * The VMA is moved under the anon_vma lock but not the 2352 * page tables leading to a race wher 2164 * page tables leading to a race where migration cannot 2353 * find the migration ptes. Rather th 2165 * find the migration ptes. Rather than increasing the 2354 * locking requirements of exec(), mi 2166 * locking requirements of exec(), migration skips 2355 * temporary VMAs until after exec() 2167 * temporary VMAs until after exec() completes. 2356 */ 2168 */ 2357 if (!folio_test_ksm(folio) && folio_t 2169 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2358 rwc.invalid_vma = invalid_mig 2170 rwc.invalid_vma = invalid_migration_vma; 2359 2171 2360 if (flags & TTU_RMAP_LOCKED) 2172 if (flags & TTU_RMAP_LOCKED) 2361 rmap_walk_locked(folio, &rwc) 2173 rmap_walk_locked(folio, &rwc); 2362 else 2174 else 2363 rmap_walk(folio, &rwc); 2175 rmap_walk(folio, &rwc); 2364 } 2176 } 2365 2177 2366 #ifdef CONFIG_DEVICE_PRIVATE 2178 #ifdef CONFIG_DEVICE_PRIVATE 2367 struct make_exclusive_args { 2179 struct make_exclusive_args { 2368 struct mm_struct *mm; 2180 struct mm_struct *mm; 2369 unsigned long address; 2181 unsigned long address; 2370 void *owner; 2182 void *owner; 2371 bool valid; 2183 bool valid; 2372 }; 2184 }; 2373 2185 2374 static bool page_make_device_exclusive_one(st 2186 static bool page_make_device_exclusive_one(struct folio *folio, 2375 struct vm_area_struct *vma, u 2187 struct vm_area_struct *vma, unsigned long address, void *priv) 2376 { 2188 { 2377 struct mm_struct *mm = vma->vm_mm; 2189 struct mm_struct *mm = vma->vm_mm; 2378 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vm 2190 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2379 struct make_exclusive_args *args = pr 2191 struct make_exclusive_args *args = priv; 2380 pte_t pteval; 2192 pte_t pteval; 2381 struct page *subpage; 2193 struct page *subpage; 2382 bool ret = true; 2194 bool ret = true; 2383 struct mmu_notifier_range range; 2195 struct mmu_notifier_range range; 2384 swp_entry_t entry; 2196 swp_entry_t entry; 2385 pte_t swp_pte; 2197 pte_t swp_pte; 2386 pte_t ptent; << 2387 2198 2388 mmu_notifier_range_init_owner(&range, !! 2199 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2389 vma->vm 2200 vma->vm_mm, address, min(vma->vm_end, 2390 address 2201 address + folio_size(folio)), 2391 args->o 2202 args->owner); 2392 mmu_notifier_invalidate_range_start(& 2203 mmu_notifier_invalidate_range_start(&range); 2393 2204 2394 while (page_vma_mapped_walk(&pvmw)) { 2205 while (page_vma_mapped_walk(&pvmw)) { 2395 /* Unexpected PMD-mapped THP? 2206 /* Unexpected PMD-mapped THP? */ 2396 VM_BUG_ON_FOLIO(!pvmw.pte, fo 2207 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2397 2208 2398 ptent = ptep_get(pvmw.pte); !! 2209 if (!pte_present(*pvmw.pte)) { 2399 if (!pte_present(ptent)) { << 2400 ret = false; 2210 ret = false; 2401 page_vma_mapped_walk_ 2211 page_vma_mapped_walk_done(&pvmw); 2402 break; 2212 break; 2403 } 2213 } 2404 2214 2405 subpage = folio_page(folio, 2215 subpage = folio_page(folio, 2406 pte_pfn(ptent !! 2216 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2407 address = pvmw.address; 2217 address = pvmw.address; 2408 2218 2409 /* Nuke the page table entry. 2219 /* Nuke the page table entry. */ 2410 flush_cache_page(vma, address !! 2220 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2411 pteval = ptep_clear_flush(vma 2221 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2412 2222 2413 /* Set the dirty flag on the 2223 /* Set the dirty flag on the folio now the pte is gone. */ 2414 if (pte_dirty(pteval)) 2224 if (pte_dirty(pteval)) 2415 folio_mark_dirty(foli 2225 folio_mark_dirty(folio); 2416 2226 2417 /* 2227 /* 2418 * Check that our target page 2228 * Check that our target page is still mapped at the expected 2419 * address. 2229 * address. 2420 */ 2230 */ 2421 if (args->mm == mm && args->a 2231 if (args->mm == mm && args->address == address && 2422 pte_write(pteval)) 2232 pte_write(pteval)) 2423 args->valid = true; 2233 args->valid = true; 2424 2234 2425 /* 2235 /* 2426 * Store the pfn of the page 2236 * Store the pfn of the page in a special migration 2427 * pte. do_swap_page() will w 2237 * pte. do_swap_page() will wait until the migration 2428 * pte is removed and then re 2238 * pte is removed and then restart fault handling. 2429 */ 2239 */ 2430 if (pte_write(pteval)) 2240 if (pte_write(pteval)) 2431 entry = make_writable 2241 entry = make_writable_device_exclusive_entry( 2432 2242 page_to_pfn(subpage)); 2433 else 2243 else 2434 entry = make_readable 2244 entry = make_readable_device_exclusive_entry( 2435 2245 page_to_pfn(subpage)); 2436 swp_pte = swp_entry_to_pte(en 2246 swp_pte = swp_entry_to_pte(entry); 2437 if (pte_soft_dirty(pteval)) 2247 if (pte_soft_dirty(pteval)) 2438 swp_pte = pte_swp_mks 2248 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2439 if (pte_uffd_wp(pteval)) 2249 if (pte_uffd_wp(pteval)) 2440 swp_pte = pte_swp_mku 2250 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2441 2251 2442 set_pte_at(mm, address, pvmw. 2252 set_pte_at(mm, address, pvmw.pte, swp_pte); 2443 2253 2444 /* 2254 /* 2445 * There is a reference on th 2255 * There is a reference on the page for the swap entry which has 2446 * been removed, so shouldn't 2256 * been removed, so shouldn't take another. 2447 */ 2257 */ 2448 folio_remove_rmap_pte(folio, !! 2258 page_remove_rmap(subpage, vma, false); 2449 } 2259 } 2450 2260 2451 mmu_notifier_invalidate_range_end(&ra 2261 mmu_notifier_invalidate_range_end(&range); 2452 2262 2453 return ret; 2263 return ret; 2454 } 2264 } 2455 2265 2456 /** 2266 /** 2457 * folio_make_device_exclusive - Mark the fol 2267 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2458 * @folio: The folio to replace page table en 2268 * @folio: The folio to replace page table entries for. 2459 * @mm: The mm_struct where the folio is expe 2269 * @mm: The mm_struct where the folio is expected to be mapped. 2460 * @address: Address where the folio is expec 2270 * @address: Address where the folio is expected to be mapped. 2461 * @owner: passed to MMU_NOTIFY_EXCLUSIVE ran 2271 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2462 * 2272 * 2463 * Tries to remove all the page table entries 2273 * Tries to remove all the page table entries which are mapping this 2464 * folio and replace them with special device 2274 * folio and replace them with special device exclusive swap entries to 2465 * grant a device exclusive access to the fol 2275 * grant a device exclusive access to the folio. 2466 * 2276 * 2467 * Context: Caller must hold the folio lock. 2277 * Context: Caller must hold the folio lock. 2468 * Return: false if the page is still mapped, 2278 * Return: false if the page is still mapped, or if it could not be unmapped 2469 * from the expected address. Otherwise retur 2279 * from the expected address. Otherwise returns true (success). 2470 */ 2280 */ 2471 static bool folio_make_device_exclusive(struc 2281 static bool folio_make_device_exclusive(struct folio *folio, 2472 struct mm_struct *mm, unsigne 2282 struct mm_struct *mm, unsigned long address, void *owner) 2473 { 2283 { 2474 struct make_exclusive_args args = { 2284 struct make_exclusive_args args = { 2475 .mm = mm, 2285 .mm = mm, 2476 .address = address, 2286 .address = address, 2477 .owner = owner, 2287 .owner = owner, 2478 .valid = false, 2288 .valid = false, 2479 }; 2289 }; 2480 struct rmap_walk_control rwc = { 2290 struct rmap_walk_control rwc = { 2481 .rmap_one = page_make_device_ 2291 .rmap_one = page_make_device_exclusive_one, 2482 .done = folio_not_mapped, 2292 .done = folio_not_mapped, 2483 .anon_lock = folio_lock_anon_ 2293 .anon_lock = folio_lock_anon_vma_read, 2484 .arg = &args, 2294 .arg = &args, 2485 }; 2295 }; 2486 2296 2487 /* 2297 /* 2488 * Restrict to anonymous folios for n 2298 * Restrict to anonymous folios for now to avoid potential writeback 2489 * issues. 2299 * issues. 2490 */ 2300 */ 2491 if (!folio_test_anon(folio)) 2301 if (!folio_test_anon(folio)) 2492 return false; 2302 return false; 2493 2303 2494 rmap_walk(folio, &rwc); 2304 rmap_walk(folio, &rwc); 2495 2305 2496 return args.valid && !folio_mapcount( 2306 return args.valid && !folio_mapcount(folio); 2497 } 2307 } 2498 2308 2499 /** 2309 /** 2500 * make_device_exclusive_range() - Mark a ran 2310 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2501 * @mm: mm_struct of associated target proces 2311 * @mm: mm_struct of associated target process 2502 * @start: start of the region to mark for ex 2312 * @start: start of the region to mark for exclusive device access 2503 * @end: end address of region 2313 * @end: end address of region 2504 * @pages: returns the pages which were succe 2314 * @pages: returns the pages which were successfully marked for exclusive access 2505 * @owner: passed to MMU_NOTIFY_EXCLUSIVE ran 2315 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2506 * 2316 * 2507 * Returns: number of pages found in the rang 2317 * Returns: number of pages found in the range by GUP. A page is marked for 2508 * exclusive access only if the page pointer 2318 * exclusive access only if the page pointer is non-NULL. 2509 * 2319 * 2510 * This function finds ptes mapping page(s) t 2320 * This function finds ptes mapping page(s) to the given address range, locks 2511 * them and replaces mappings with special sw 2321 * them and replaces mappings with special swap entries preventing userspace CPU 2512 * access. On fault these entries are replace 2322 * access. On fault these entries are replaced with the original mapping after 2513 * calling MMU notifiers. 2323 * calling MMU notifiers. 2514 * 2324 * 2515 * A driver using this to program access from 2325 * A driver using this to program access from a device must use a mmu notifier 2516 * critical section to hold a device specific 2326 * critical section to hold a device specific lock during programming. Once 2517 * programming is complete it should drop the 2327 * programming is complete it should drop the page lock and reference after 2518 * which point CPU access to the page will re 2328 * which point CPU access to the page will revoke the exclusive access. 2519 */ 2329 */ 2520 int make_device_exclusive_range(struct mm_str 2330 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2521 unsigned long 2331 unsigned long end, struct page **pages, 2522 void *owner) 2332 void *owner) 2523 { 2333 { 2524 long npages = (end - start) >> PAGE_S 2334 long npages = (end - start) >> PAGE_SHIFT; 2525 long i; 2335 long i; 2526 2336 2527 npages = get_user_pages_remote(mm, st 2337 npages = get_user_pages_remote(mm, start, npages, 2528 FOLL_G 2338 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2529 pages, !! 2339 pages, NULL, NULL); 2530 if (npages < 0) 2340 if (npages < 0) 2531 return npages; 2341 return npages; 2532 2342 2533 for (i = 0; i < npages; i++, start += 2343 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2534 struct folio *folio = page_fo 2344 struct folio *folio = page_folio(pages[i]); 2535 if (PageTail(pages[i]) || !fo 2345 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2536 folio_put(folio); 2346 folio_put(folio); 2537 pages[i] = NULL; 2347 pages[i] = NULL; 2538 continue; 2348 continue; 2539 } 2349 } 2540 2350 2541 if (!folio_make_device_exclus 2351 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2542 folio_unlock(folio); 2352 folio_unlock(folio); 2543 folio_put(folio); 2353 folio_put(folio); 2544 pages[i] = NULL; 2354 pages[i] = NULL; 2545 } 2355 } 2546 } 2356 } 2547 2357 2548 return npages; 2358 return npages; 2549 } 2359 } 2550 EXPORT_SYMBOL_GPL(make_device_exclusive_range 2360 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2551 #endif 2361 #endif 2552 2362 2553 void __put_anon_vma(struct anon_vma *anon_vma 2363 void __put_anon_vma(struct anon_vma *anon_vma) 2554 { 2364 { 2555 struct anon_vma *root = anon_vma->roo 2365 struct anon_vma *root = anon_vma->root; 2556 2366 2557 anon_vma_free(anon_vma); 2367 anon_vma_free(anon_vma); 2558 if (root != anon_vma && atomic_dec_an 2368 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2559 anon_vma_free(root); 2369 anon_vma_free(root); 2560 } 2370 } 2561 2371 2562 static struct anon_vma *rmap_walk_anon_lock(s 2372 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2563 s 2373 struct rmap_walk_control *rwc) 2564 { 2374 { 2565 struct anon_vma *anon_vma; 2375 struct anon_vma *anon_vma; 2566 2376 2567 if (rwc->anon_lock) 2377 if (rwc->anon_lock) 2568 return rwc->anon_lock(folio, 2378 return rwc->anon_lock(folio, rwc); 2569 2379 2570 /* 2380 /* 2571 * Note: remove_migration_ptes() cann 2381 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2572 * because that depends on page_mappe 2382 * because that depends on page_mapped(); but not all its usages 2573 * are holding mmap_lock. Users witho 2383 * are holding mmap_lock. Users without mmap_lock are required to 2574 * take a reference count to prevent 2384 * take a reference count to prevent the anon_vma disappearing 2575 */ 2385 */ 2576 anon_vma = folio_anon_vma(folio); 2386 anon_vma = folio_anon_vma(folio); 2577 if (!anon_vma) 2387 if (!anon_vma) 2578 return NULL; 2388 return NULL; 2579 2389 2580 if (anon_vma_trylock_read(anon_vma)) 2390 if (anon_vma_trylock_read(anon_vma)) 2581 goto out; 2391 goto out; 2582 2392 2583 if (rwc->try_lock) { 2393 if (rwc->try_lock) { 2584 anon_vma = NULL; 2394 anon_vma = NULL; 2585 rwc->contended = true; 2395 rwc->contended = true; 2586 goto out; 2396 goto out; 2587 } 2397 } 2588 2398 2589 anon_vma_lock_read(anon_vma); 2399 anon_vma_lock_read(anon_vma); 2590 out: 2400 out: 2591 return anon_vma; 2401 return anon_vma; 2592 } 2402 } 2593 2403 2594 /* 2404 /* 2595 * rmap_walk_anon - do something to anonymous 2405 * rmap_walk_anon - do something to anonymous page using the object-based 2596 * rmap method 2406 * rmap method 2597 * @folio: the folio to be handled !! 2407 * @page: the page to be handled 2598 * @rwc: control variable according to each w 2408 * @rwc: control variable according to each walk type 2599 * @locked: caller holds relevant rmap lock << 2600 * 2409 * 2601 * Find all the mappings of a folio using the !! 2410 * Find all the mappings of a page using the mapping pointer and the vma chains 2602 * chains contained in the anon_vma struct it !! 2411 * contained in the anon_vma struct it points to. 2603 */ 2412 */ 2604 static void rmap_walk_anon(struct folio *foli 2413 static void rmap_walk_anon(struct folio *folio, 2605 struct rmap_walk_control *rwc 2414 struct rmap_walk_control *rwc, bool locked) 2606 { 2415 { 2607 struct anon_vma *anon_vma; 2416 struct anon_vma *anon_vma; 2608 pgoff_t pgoff_start, pgoff_end; 2417 pgoff_t pgoff_start, pgoff_end; 2609 struct anon_vma_chain *avc; 2418 struct anon_vma_chain *avc; 2610 2419 2611 if (locked) { 2420 if (locked) { 2612 anon_vma = folio_anon_vma(fol 2421 anon_vma = folio_anon_vma(folio); 2613 /* anon_vma disappear under u 2422 /* anon_vma disappear under us? */ 2614 VM_BUG_ON_FOLIO(!anon_vma, fo 2423 VM_BUG_ON_FOLIO(!anon_vma, folio); 2615 } else { 2424 } else { 2616 anon_vma = rmap_walk_anon_loc 2425 anon_vma = rmap_walk_anon_lock(folio, rwc); 2617 } 2426 } 2618 if (!anon_vma) 2427 if (!anon_vma) 2619 return; 2428 return; 2620 2429 2621 pgoff_start = folio_pgoff(folio); 2430 pgoff_start = folio_pgoff(folio); 2622 pgoff_end = pgoff_start + folio_nr_pa 2431 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2623 anon_vma_interval_tree_foreach(avc, & 2432 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2624 pgoff_start, pgoff_en 2433 pgoff_start, pgoff_end) { 2625 struct vm_area_struct *vma = 2434 struct vm_area_struct *vma = avc->vma; 2626 unsigned long address = vma_a !! 2435 unsigned long address = vma_address(&folio->page, vma); 2627 folio_nr_page << 2628 2436 2629 VM_BUG_ON_VMA(address == -EFA 2437 VM_BUG_ON_VMA(address == -EFAULT, vma); 2630 cond_resched(); 2438 cond_resched(); 2631 2439 2632 if (rwc->invalid_vma && rwc-> 2440 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2633 continue; 2441 continue; 2634 2442 2635 if (!rwc->rmap_one(folio, vma 2443 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2636 break; 2444 break; 2637 if (rwc->done && rwc->done(fo 2445 if (rwc->done && rwc->done(folio)) 2638 break; 2446 break; 2639 } 2447 } 2640 2448 2641 if (!locked) 2449 if (!locked) 2642 anon_vma_unlock_read(anon_vma 2450 anon_vma_unlock_read(anon_vma); 2643 } 2451 } 2644 2452 2645 /* 2453 /* 2646 * rmap_walk_file - do something to file page 2454 * rmap_walk_file - do something to file page using the object-based rmap method 2647 * @folio: the folio to be handled !! 2455 * @page: the page to be handled 2648 * @rwc: control variable according to each w 2456 * @rwc: control variable according to each walk type 2649 * @locked: caller holds relevant rmap lock << 2650 * 2457 * 2651 * Find all the mappings of a folio using the !! 2458 * Find all the mappings of a page using the mapping pointer and the vma chains 2652 * contained in the address_space struct it p 2459 * contained in the address_space struct it points to. 2653 */ 2460 */ 2654 static void rmap_walk_file(struct folio *foli 2461 static void rmap_walk_file(struct folio *folio, 2655 struct rmap_walk_control *rwc 2462 struct rmap_walk_control *rwc, bool locked) 2656 { 2463 { 2657 struct address_space *mapping = folio 2464 struct address_space *mapping = folio_mapping(folio); 2658 pgoff_t pgoff_start, pgoff_end; 2465 pgoff_t pgoff_start, pgoff_end; 2659 struct vm_area_struct *vma; 2466 struct vm_area_struct *vma; 2660 2467 2661 /* 2468 /* 2662 * The page lock not only makes sure 2469 * The page lock not only makes sure that page->mapping cannot 2663 * suddenly be NULLified by truncatio 2470 * suddenly be NULLified by truncation, it makes sure that the 2664 * structure at mapping cannot be fre 2471 * structure at mapping cannot be freed and reused yet, 2665 * so we can safely take mapping->i_m 2472 * so we can safely take mapping->i_mmap_rwsem. 2666 */ 2473 */ 2667 VM_BUG_ON_FOLIO(!folio_test_locked(fo 2474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2668 2475 2669 if (!mapping) 2476 if (!mapping) 2670 return; 2477 return; 2671 2478 2672 pgoff_start = folio_pgoff(folio); 2479 pgoff_start = folio_pgoff(folio); 2673 pgoff_end = pgoff_start + folio_nr_pa 2480 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2674 if (!locked) { 2481 if (!locked) { 2675 if (i_mmap_trylock_read(mappi 2482 if (i_mmap_trylock_read(mapping)) 2676 goto lookup; 2483 goto lookup; 2677 2484 2678 if (rwc->try_lock) { 2485 if (rwc->try_lock) { 2679 rwc->contended = true 2486 rwc->contended = true; 2680 return; 2487 return; 2681 } 2488 } 2682 2489 2683 i_mmap_lock_read(mapping); 2490 i_mmap_lock_read(mapping); 2684 } 2491 } 2685 lookup: 2492 lookup: 2686 vma_interval_tree_foreach(vma, &mappi 2493 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2687 pgoff_start, pgoff_en 2494 pgoff_start, pgoff_end) { 2688 unsigned long address = vma_a !! 2495 unsigned long address = vma_address(&folio->page, vma); 2689 folio_nr_pages << 2690 2496 2691 VM_BUG_ON_VMA(address == -EFA 2497 VM_BUG_ON_VMA(address == -EFAULT, vma); 2692 cond_resched(); 2498 cond_resched(); 2693 2499 2694 if (rwc->invalid_vma && rwc-> 2500 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2695 continue; 2501 continue; 2696 2502 2697 if (!rwc->rmap_one(folio, vma 2503 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2698 goto done; 2504 goto done; 2699 if (rwc->done && rwc->done(fo 2505 if (rwc->done && rwc->done(folio)) 2700 goto done; 2506 goto done; 2701 } 2507 } 2702 2508 2703 done: 2509 done: 2704 if (!locked) 2510 if (!locked) 2705 i_mmap_unlock_read(mapping); 2511 i_mmap_unlock_read(mapping); 2706 } 2512 } 2707 2513 2708 void rmap_walk(struct folio *folio, struct rm 2514 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2709 { 2515 { 2710 if (unlikely(folio_test_ksm(folio))) 2516 if (unlikely(folio_test_ksm(folio))) 2711 rmap_walk_ksm(folio, rwc); 2517 rmap_walk_ksm(folio, rwc); 2712 else if (folio_test_anon(folio)) 2518 else if (folio_test_anon(folio)) 2713 rmap_walk_anon(folio, rwc, fa 2519 rmap_walk_anon(folio, rwc, false); 2714 else 2520 else 2715 rmap_walk_file(folio, rwc, fa 2521 rmap_walk_file(folio, rwc, false); 2716 } 2522 } 2717 2523 2718 /* Like rmap_walk, but caller holds relevant 2524 /* Like rmap_walk, but caller holds relevant rmap lock */ 2719 void rmap_walk_locked(struct folio *folio, st 2525 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2720 { 2526 { 2721 /* no ksm support for now */ 2527 /* no ksm support for now */ 2722 VM_BUG_ON_FOLIO(folio_test_ksm(folio) 2528 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2723 if (folio_test_anon(folio)) 2529 if (folio_test_anon(folio)) 2724 rmap_walk_anon(folio, rwc, tr 2530 rmap_walk_anon(folio, rwc, true); 2725 else 2531 else 2726 rmap_walk_file(folio, rwc, tr 2532 rmap_walk_file(folio, rwc, true); 2727 } 2533 } 2728 2534 2729 #ifdef CONFIG_HUGETLB_PAGE 2535 #ifdef CONFIG_HUGETLB_PAGE 2730 /* 2536 /* 2731 * The following two functions are for anonym 2537 * The following two functions are for anonymous (private mapped) hugepages. 2732 * Unlike common anonymous pages, anonymous h 2538 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2733 * and no lru code, because we handle hugepag 2539 * and no lru code, because we handle hugepages differently from common pages. >> 2540 * >> 2541 * RMAP_COMPOUND is ignored. 2734 */ 2542 */ 2735 void hugetlb_add_anon_rmap(struct folio *foli !! 2543 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2736 unsigned long address, rmap_t !! 2544 unsigned long address, rmap_t flags) 2737 { 2545 { 2738 VM_WARN_ON_FOLIO(!folio_test_hugetlb( !! 2546 struct anon_vma *anon_vma = vma->anon_vma; 2739 VM_WARN_ON_FOLIO(!folio_test_anon(fol !! 2547 int first; 2740 2548 2741 atomic_inc(&folio->_entire_mapcount); !! 2549 BUG_ON(!PageLocked(page)); 2742 atomic_inc(&folio->_large_mapcount); !! 2550 BUG_ON(!anon_vma); 2743 if (flags & RMAP_EXCLUSIVE) !! 2551 /* address might be in next vma when migration races vma_adjust */ 2744 SetPageAnonExclusive(&folio-> !! 2552 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2745 VM_WARN_ON_FOLIO(folio_entire_mapcoun !! 2553 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2746 PageAnonExclusive(&f !! 2554 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); >> 2555 if (first) >> 2556 __page_set_anon_rmap(page, vma, address, >> 2557 !!(flags & RMAP_EXCLUSIVE)); 2747 } 2558 } 2748 2559 2749 void hugetlb_add_new_anon_rmap(struct folio * !! 2560 void hugepage_add_new_anon_rmap(struct page *page, 2750 struct vm_area_struct *vma, u !! 2561 struct vm_area_struct *vma, unsigned long address) 2751 { 2562 { 2752 VM_WARN_ON_FOLIO(!folio_test_hugetlb( << 2753 << 2754 BUG_ON(address < vma->vm_start || add 2563 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2755 /* increment count (starts at -1) */ 2564 /* increment count (starts at -1) */ 2756 atomic_set(&folio->_entire_mapcount, !! 2565 atomic_set(compound_mapcount_ptr(page), 0); 2757 atomic_set(&folio->_large_mapcount, 0 !! 2566 ClearHPageRestoreReserve(page); 2758 folio_clear_hugetlb_restore_reserve(f !! 2567 __page_set_anon_rmap(page, vma, address, 1); 2759 __folio_set_anon(folio, vma, address, << 2760 SetPageAnonExclusive(&folio->page); << 2761 } 2568 } 2762 #endif /* CONFIG_HUGETLB_PAGE */ 2569 #endif /* CONFIG_HUGETLB_PAGE */ 2763 2570
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.