1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * linux/mm/vmstat.c 2 * linux/mm/vmstat.c 4 * 3 * 5 * Manages VM statistics 4 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linu 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 6 * 8 * zoned VM statistics 7 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 8 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@l 9 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 10 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 11 */ 13 #include <linux/fs.h> 12 #include <linux/fs.h> 14 #include <linux/mm.h> 13 #include <linux/mm.h> 15 #include <linux/err.h> 14 #include <linux/err.h> 16 #include <linux/module.h> 15 #include <linux/module.h> 17 #include <linux/slab.h> 16 #include <linux/slab.h> 18 #include <linux/cpu.h> 17 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 18 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 19 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 20 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 21 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 22 #include <linux/debugfs.h> 24 #include <linux/sched.h> 23 #include <linux/sched.h> 25 #include <linux/math64.h> 24 #include <linux/math64.h> 26 #include <linux/writeback.h> 25 #include <linux/writeback.h> 27 #include <linux/compaction.h> 26 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 27 #include <linux/mm_inline.h> >> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 29 #include <linux/page_owner.h> 30 #include <linux/sched/isolation.h> << 31 30 32 #include "internal.h" 31 #include "internal.h" 33 32 34 #ifdef CONFIG_NUMA << 35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; << 36 << 37 /* zero numa counters within a zone */ << 38 static void zero_zone_numa_counters(struct zon << 39 { << 40 int item, cpu; << 41 << 42 for (item = 0; item < NR_VM_NUMA_EVENT << 43 atomic_long_set(&zone->vm_numa << 44 for_each_online_cpu(cpu) { << 45 per_cpu_ptr(zone->per_ << 46 << 47 } << 48 } << 49 } << 50 << 51 /* zero numa counters of all the populated zon << 52 static void zero_zones_numa_counters(void) << 53 { << 54 struct zone *zone; << 55 << 56 for_each_populated_zone(zone) << 57 zero_zone_numa_counters(zone); << 58 } << 59 << 60 /* zero global numa counters */ << 61 static void zero_global_numa_counters(void) << 62 { << 63 int item; << 64 << 65 for (item = 0; item < NR_VM_NUMA_EVENT << 66 atomic_long_set(&vm_numa_event << 67 } << 68 << 69 static void invalid_numa_statistics(void) << 70 { << 71 zero_zones_numa_counters(); << 72 zero_global_numa_counters(); << 73 } << 74 << 75 static DEFINE_MUTEX(vm_numa_stat_lock); << 76 << 77 int sysctl_vm_numa_stat_handler(const struct c << 78 void *buffer, size_t *length, << 79 { << 80 int ret, oldval; << 81 << 82 mutex_lock(&vm_numa_stat_lock); << 83 if (write) << 84 oldval = sysctl_vm_numa_stat; << 85 ret = proc_dointvec_minmax(table, writ << 86 if (ret || !write) << 87 goto out; << 88 << 89 if (oldval == sysctl_vm_numa_stat) << 90 goto out; << 91 else if (sysctl_vm_numa_stat == ENABLE << 92 static_branch_enable(&vm_numa_ << 93 pr_info("enable numa statistic << 94 } else { << 95 static_branch_disable(&vm_numa << 96 invalid_numa_statistics(); << 97 pr_info("disable numa statisti << 98 } << 99 << 100 out: << 101 mutex_unlock(&vm_numa_stat_lock); << 102 return ret; << 103 } << 104 #endif << 105 << 106 #ifdef CONFIG_VM_EVENT_COUNTERS 33 #ifdef CONFIG_VM_EVENT_COUNTERS 107 DEFINE_PER_CPU(struct vm_event_state, vm_event 34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108 EXPORT_PER_CPU_SYMBOL(vm_event_states); 35 EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 36 110 static void sum_vm_events(unsigned long *ret) 37 static void sum_vm_events(unsigned long *ret) 111 { 38 { 112 int cpu; 39 int cpu; 113 int i; 40 int i; 114 41 115 memset(ret, 0, NR_VM_EVENT_ITEMS * siz 42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 43 117 for_each_online_cpu(cpu) { 44 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = 45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 46 120 for (i = 0; i < NR_VM_EVENT_IT 47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[ 48 ret[i] += this->event[i]; 122 } 49 } 123 } 50 } 124 51 125 /* 52 /* 126 * Accumulate the vm event counters across all 53 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it 54 * The result is unavoidably approximate - it can change 128 * during and after execution of this function 55 * during and after execution of this function. 129 */ 56 */ 130 void all_vm_events(unsigned long *ret) 57 void all_vm_events(unsigned long *ret) 131 { 58 { 132 cpus_read_lock(); !! 59 get_online_cpus(); 133 sum_vm_events(ret); 60 sum_vm_events(ret); 134 cpus_read_unlock(); !! 61 put_online_cpus(); 135 } 62 } 136 EXPORT_SYMBOL_GPL(all_vm_events); 63 EXPORT_SYMBOL_GPL(all_vm_events); 137 64 138 /* 65 /* 139 * Fold the foreign cpu events into our own. 66 * Fold the foreign cpu events into our own. 140 * 67 * 141 * This is adding to the events on one process 68 * This is adding to the events on one processor 142 * but keeps the global counts constant. 69 * but keeps the global counts constant. 143 */ 70 */ 144 void vm_events_fold_cpu(int cpu) 71 void vm_events_fold_cpu(int cpu) 145 { 72 { 146 struct vm_event_state *fold_state = &p 73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 74 int i; 148 75 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++ 76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state- 77 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 78 fold_state->event[i] = 0; 152 } 79 } 153 } 80 } 154 81 155 #endif /* CONFIG_VM_EVENT_COUNTERS */ 82 #endif /* CONFIG_VM_EVENT_COUNTERS */ 156 83 157 /* 84 /* 158 * Manage combined zone based / global counter 85 * Manage combined zone based / global counters 159 * 86 * 160 * vm_stat contains the global counters 87 * vm_stat contains the global counters 161 */ 88 */ 162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITE 89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITE 90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_I << 165 EXPORT_SYMBOL(vm_zone_stat); 91 EXPORT_SYMBOL(vm_zone_stat); 166 EXPORT_SYMBOL(vm_node_stat); 92 EXPORT_SYMBOL(vm_node_stat); 167 93 168 #ifdef CONFIG_NUMA << 169 static void fold_vm_zone_numa_events(struct zo << 170 { << 171 unsigned long zone_numa_events[NR_VM_N << 172 int cpu; << 173 enum numa_stat_item item; << 174 << 175 for_each_online_cpu(cpu) { << 176 struct per_cpu_zonestat *pzsta << 177 << 178 pzstats = per_cpu_ptr(zone->pe << 179 for (item = 0; item < NR_VM_NU << 180 zone_numa_events[item] << 181 } << 182 << 183 for (item = 0; item < NR_VM_NUMA_EVENT << 184 zone_numa_event_add(zone_numa_ << 185 } << 186 << 187 void fold_vm_numa_events(void) << 188 { << 189 struct zone *zone; << 190 << 191 for_each_populated_zone(zone) << 192 fold_vm_zone_numa_events(zone) << 193 } << 194 #endif << 195 << 196 #ifdef CONFIG_SMP 94 #ifdef CONFIG_SMP 197 95 198 int calculate_pressure_threshold(struct zone * 96 int calculate_pressure_threshold(struct zone *zone) 199 { 97 { 200 int threshold; 98 int threshold; 201 int watermark_distance; 99 int watermark_distance; 202 100 203 /* 101 /* 204 * As vmstats are not up to date, ther 102 * As vmstats are not up to date, there is drift between the estimated 205 * and real values. For high threshold 103 * and real values. For high thresholds and a high number of CPUs, it 206 * is possible for the min watermark t 104 * is possible for the min watermark to be breached while the estimated 207 * value looks fine. The pressure thre 105 * value looks fine. The pressure threshold is a reduced value such 208 * that even the maximum amount of dri 106 * that even the maximum amount of drift will not accidentally breach 209 * the min watermark 107 * the min watermark 210 */ 108 */ 211 watermark_distance = low_wmark_pages(z 109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 212 threshold = max(1, (int)(watermark_dis 110 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 213 111 214 /* 112 /* 215 * Maximum threshold is 125 113 * Maximum threshold is 125 216 */ 114 */ 217 threshold = min(125, threshold); 115 threshold = min(125, threshold); 218 116 219 return threshold; 117 return threshold; 220 } 118 } 221 119 222 int calculate_normal_threshold(struct zone *zo 120 int calculate_normal_threshold(struct zone *zone) 223 { 121 { 224 int threshold; 122 int threshold; 225 int mem; /* memory in 128 MB un 123 int mem; /* memory in 128 MB units */ 226 124 227 /* 125 /* 228 * The threshold scales with the numbe 126 * The threshold scales with the number of processors and the amount 229 * of memory per zone. More memory mea 127 * of memory per zone. More memory means that we can defer updates for 230 * longer, more processors could lead 128 * longer, more processors could lead to more contention. 231 * fls() is used to have a cheap way o 129 * fls() is used to have a cheap way of logarithmic scaling. 232 * 130 * 233 * Some sample thresholds: 131 * Some sample thresholds: 234 * 132 * 235 * Threshold Processors (fls) !! 133 * Threshold Processors (fls) Zonesize fls(mem+1) 236 * ----------------------------------- 134 * ------------------------------------------------------------------ 237 * 8 1 1 135 * 8 1 1 0.9-1 GB 4 238 * 16 2 2 136 * 16 2 2 0.9-1 GB 4 239 * 20 2 2 137 * 20 2 2 1-2 GB 5 240 * 24 2 2 138 * 24 2 2 2-4 GB 6 241 * 28 2 2 139 * 28 2 2 4-8 GB 7 242 * 32 2 2 140 * 32 2 2 8-16 GB 8 243 * 4 2 2 141 * 4 2 2 <128M 1 244 * 30 4 3 142 * 30 4 3 2-4 GB 5 245 * 48 4 3 143 * 48 4 3 8-16 GB 8 246 * 32 8 4 144 * 32 8 4 1-2 GB 4 247 * 32 8 4 145 * 32 8 4 0.9-1GB 4 248 * 10 16 5 146 * 10 16 5 <128M 1 249 * 40 16 5 147 * 40 16 5 900M 4 250 * 70 64 7 148 * 70 64 7 2-4 GB 5 251 * 84 64 7 149 * 84 64 7 4-8 GB 6 252 * 108 512 9 150 * 108 512 9 4-8 GB 6 253 * 125 1024 10 151 * 125 1024 10 8-16 GB 8 254 * 125 1024 10 152 * 125 1024 10 16-32 GB 9 255 */ 153 */ 256 154 257 mem = zone_managed_pages(zone) >> (27 !! 155 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 258 156 259 threshold = 2 * fls(num_online_cpus()) 157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 260 158 261 /* 159 /* 262 * Maximum threshold is 125 160 * Maximum threshold is 125 263 */ 161 */ 264 threshold = min(125, threshold); 162 threshold = min(125, threshold); 265 163 266 return threshold; 164 return threshold; 267 } 165 } 268 166 269 /* 167 /* 270 * Refresh the thresholds for each zone. 168 * Refresh the thresholds for each zone. 271 */ 169 */ 272 void refresh_zone_stat_thresholds(void) 170 void refresh_zone_stat_thresholds(void) 273 { 171 { 274 struct pglist_data *pgdat; 172 struct pglist_data *pgdat; 275 struct zone *zone; 173 struct zone *zone; 276 int cpu; 174 int cpu; 277 int threshold; 175 int threshold; 278 176 279 /* Zero current pgdat thresholds */ 177 /* Zero current pgdat thresholds */ 280 for_each_online_pgdat(pgdat) { 178 for_each_online_pgdat(pgdat) { 281 for_each_online_cpu(cpu) { 179 for_each_online_cpu(cpu) { 282 per_cpu_ptr(pgdat->per 180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 283 } 181 } 284 } 182 } 285 183 286 for_each_populated_zone(zone) { 184 for_each_populated_zone(zone) { 287 struct pglist_data *pgdat = zo 185 struct pglist_data *pgdat = zone->zone_pgdat; 288 unsigned long max_drift, toler 186 unsigned long max_drift, tolerate_drift; 289 187 290 threshold = calculate_normal_t 188 threshold = calculate_normal_threshold(zone); 291 189 292 for_each_online_cpu(cpu) { 190 for_each_online_cpu(cpu) { 293 int pgdat_threshold; 191 int pgdat_threshold; 294 192 295 per_cpu_ptr(zone->per_ !! 193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 296 194 = threshold; 297 195 298 /* Base nodestat thres 196 /* Base nodestat threshold on the largest populated zone. */ 299 pgdat_threshold = per_ 197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 300 per_cpu_ptr(pgdat->per 198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 301 = max(threshol 199 = max(threshold, pgdat_threshold); 302 } 200 } 303 201 304 /* 202 /* 305 * Only set percpu_drift_mark 203 * Only set percpu_drift_mark if there is a danger that 306 * NR_FREE_PAGES reports the l 204 * NR_FREE_PAGES reports the low watermark is ok when in fact 307 * the min watermark could be 205 * the min watermark could be breached by an allocation 308 */ 206 */ 309 tolerate_drift = low_wmark_pag 207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 310 max_drift = num_online_cpus() 208 max_drift = num_online_cpus() * threshold; 311 if (max_drift > tolerate_drift 209 if (max_drift > tolerate_drift) 312 zone->percpu_drift_mar 210 zone->percpu_drift_mark = high_wmark_pages(zone) + 313 max_dr 211 max_drift; 314 } 212 } 315 } 213 } 316 214 317 void set_pgdat_percpu_threshold(pg_data_t *pgd 215 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 318 int (*calculat 216 int (*calculate_pressure)(struct zone *)) 319 { 217 { 320 struct zone *zone; 218 struct zone *zone; 321 int cpu; 219 int cpu; 322 int threshold; 220 int threshold; 323 int i; 221 int i; 324 222 325 for (i = 0; i < pgdat->nr_zones; i++) 223 for (i = 0; i < pgdat->nr_zones; i++) { 326 zone = &pgdat->node_zones[i]; 224 zone = &pgdat->node_zones[i]; 327 if (!zone->percpu_drift_mark) 225 if (!zone->percpu_drift_mark) 328 continue; 226 continue; 329 227 330 threshold = (*calculate_pressu 228 threshold = (*calculate_pressure)(zone); 331 for_each_online_cpu(cpu) 229 for_each_online_cpu(cpu) 332 per_cpu_ptr(zone->per_ !! 230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 333 231 = threshold; 334 } 232 } 335 } 233 } 336 234 337 /* 235 /* 338 * For use when we know that interrupts are di 236 * For use when we know that interrupts are disabled, 339 * or when we know that preemption is disabled 237 * or when we know that preemption is disabled and that 340 * particular counter cannot be updated from i 238 * particular counter cannot be updated from interrupt context. 341 */ 239 */ 342 void __mod_zone_page_state(struct zone *zone, 240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 343 long delta) 241 long delta) 344 { 242 { 345 struct per_cpu_zonestat __percpu *pcp !! 243 struct per_cpu_pageset __percpu *pcp = zone->pageset; 346 s8 __percpu *p = pcp->vm_stat_diff + i 244 s8 __percpu *p = pcp->vm_stat_diff + item; 347 long x; 245 long x; 348 long t; 246 long t; 349 247 350 /* << 351 * Accurate vmstat updates require a R << 352 * atomicity is provided by IRQs being << 353 * or via local_lock_irq. On PREEMPT_R << 354 * CPU migrations and preemption poten << 355 * disable preemption. << 356 */ << 357 preempt_disable_nested(); << 358 << 359 x = delta + __this_cpu_read(*p); 248 x = delta + __this_cpu_read(*p); 360 249 361 t = __this_cpu_read(pcp->stat_threshol 250 t = __this_cpu_read(pcp->stat_threshold); 362 251 363 if (unlikely(abs(x) > t)) { !! 252 if (unlikely(x > t || x < -t)) { 364 zone_page_state_add(x, zone, i 253 zone_page_state_add(x, zone, item); 365 x = 0; 254 x = 0; 366 } 255 } 367 __this_cpu_write(*p, x); 256 __this_cpu_write(*p, x); 368 << 369 preempt_enable_nested(); << 370 } 257 } 371 EXPORT_SYMBOL(__mod_zone_page_state); 258 EXPORT_SYMBOL(__mod_zone_page_state); 372 259 373 void __mod_node_page_state(struct pglist_data 260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 374 long delta) 261 long delta) 375 { 262 { 376 struct per_cpu_nodestat __percpu *pcp 263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 377 s8 __percpu *p = pcp->vm_node_stat_dif 264 s8 __percpu *p = pcp->vm_node_stat_diff + item; 378 long x; 265 long x; 379 long t; 266 long t; 380 267 381 if (vmstat_item_in_bytes(item)) { << 382 /* << 383 * Only cgroups use subpage ac << 384 * the global level, these ite << 385 * multiples of whole pages. S << 386 * internally to keep the per- << 387 */ << 388 VM_WARN_ON_ONCE(delta & (PAGE_ << 389 delta >>= PAGE_SHIFT; << 390 } << 391 << 392 /* See __mod_node_page_state */ << 393 preempt_disable_nested(); << 394 << 395 x = delta + __this_cpu_read(*p); 268 x = delta + __this_cpu_read(*p); 396 269 397 t = __this_cpu_read(pcp->stat_threshol 270 t = __this_cpu_read(pcp->stat_threshold); 398 271 399 if (unlikely(abs(x) > t)) { !! 272 if (unlikely(x > t || x < -t)) { 400 node_page_state_add(x, pgdat, 273 node_page_state_add(x, pgdat, item); 401 x = 0; 274 x = 0; 402 } 275 } 403 __this_cpu_write(*p, x); 276 __this_cpu_write(*p, x); 404 << 405 preempt_enable_nested(); << 406 } 277 } 407 EXPORT_SYMBOL(__mod_node_page_state); 278 EXPORT_SYMBOL(__mod_node_page_state); 408 279 409 /* 280 /* 410 * Optimized increment and decrement functions 281 * Optimized increment and decrement functions. 411 * 282 * 412 * These are only for a single page and theref 283 * These are only for a single page and therefore can take a struct page * 413 * argument instead of struct zone *. This all 284 * argument instead of struct zone *. This allows the inclusion of the code 414 * generated for page_zone(page) into the opti 285 * generated for page_zone(page) into the optimized functions. 415 * 286 * 416 * No overflow check is necessary and therefor 287 * No overflow check is necessary and therefore the differential can be 417 * incremented or decremented in place which m 288 * incremented or decremented in place which may allow the compilers to 418 * generate better code. 289 * generate better code. 419 * The increment or decrement is known and the 290 * The increment or decrement is known and therefore one boundary check can 420 * be omitted. 291 * be omitted. 421 * 292 * 422 * NOTE: These functions are very performance 293 * NOTE: These functions are very performance sensitive. Change only 423 * with care. 294 * with care. 424 * 295 * 425 * Some processors have inc/dec instructions t 296 * Some processors have inc/dec instructions that are atomic vs an interrupt. 426 * However, the code must first determine the 297 * However, the code must first determine the differential location in a zone 427 * based on the processor number and then inc/ 298 * based on the processor number and then inc/dec the counter. There is no 428 * guarantee without disabling preemption that 299 * guarantee without disabling preemption that the processor will not change 429 * in between and therefore the atomicity vs. 300 * in between and therefore the atomicity vs. interrupt cannot be exploited 430 * in a useful way here. 301 * in a useful way here. 431 */ 302 */ 432 void __inc_zone_state(struct zone *zone, enum 303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 433 { 304 { 434 struct per_cpu_zonestat __percpu *pcp !! 305 struct per_cpu_pageset __percpu *pcp = zone->pageset; 435 s8 __percpu *p = pcp->vm_stat_diff + i 306 s8 __percpu *p = pcp->vm_stat_diff + item; 436 s8 v, t; 307 s8 v, t; 437 308 438 /* See __mod_node_page_state */ << 439 preempt_disable_nested(); << 440 << 441 v = __this_cpu_inc_return(*p); 309 v = __this_cpu_inc_return(*p); 442 t = __this_cpu_read(pcp->stat_threshol 310 t = __this_cpu_read(pcp->stat_threshold); 443 if (unlikely(v > t)) { 311 if (unlikely(v > t)) { 444 s8 overstep = t >> 1; 312 s8 overstep = t >> 1; 445 313 446 zone_page_state_add(v + overst 314 zone_page_state_add(v + overstep, zone, item); 447 __this_cpu_write(*p, -overstep 315 __this_cpu_write(*p, -overstep); 448 } 316 } 449 << 450 preempt_enable_nested(); << 451 } 317 } 452 318 453 void __inc_node_state(struct pglist_data *pgda 319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 454 { 320 { 455 struct per_cpu_nodestat __percpu *pcp 321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 456 s8 __percpu *p = pcp->vm_node_stat_dif 322 s8 __percpu *p = pcp->vm_node_stat_diff + item; 457 s8 v, t; 323 s8 v, t; 458 324 459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(i << 460 << 461 /* See __mod_node_page_state */ << 462 preempt_disable_nested(); << 463 << 464 v = __this_cpu_inc_return(*p); 325 v = __this_cpu_inc_return(*p); 465 t = __this_cpu_read(pcp->stat_threshol 326 t = __this_cpu_read(pcp->stat_threshold); 466 if (unlikely(v > t)) { 327 if (unlikely(v > t)) { 467 s8 overstep = t >> 1; 328 s8 overstep = t >> 1; 468 329 469 node_page_state_add(v + overst 330 node_page_state_add(v + overstep, pgdat, item); 470 __this_cpu_write(*p, -overstep 331 __this_cpu_write(*p, -overstep); 471 } 332 } 472 << 473 preempt_enable_nested(); << 474 } 333 } 475 334 476 void __inc_zone_page_state(struct page *page, 335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 477 { 336 { 478 __inc_zone_state(page_zone(page), item 337 __inc_zone_state(page_zone(page), item); 479 } 338 } 480 EXPORT_SYMBOL(__inc_zone_page_state); 339 EXPORT_SYMBOL(__inc_zone_page_state); 481 340 482 void __inc_node_page_state(struct page *page, 341 void __inc_node_page_state(struct page *page, enum node_stat_item item) 483 { 342 { 484 __inc_node_state(page_pgdat(page), ite 343 __inc_node_state(page_pgdat(page), item); 485 } 344 } 486 EXPORT_SYMBOL(__inc_node_page_state); 345 EXPORT_SYMBOL(__inc_node_page_state); 487 346 488 void __dec_zone_state(struct zone *zone, enum 347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 489 { 348 { 490 struct per_cpu_zonestat __percpu *pcp !! 349 struct per_cpu_pageset __percpu *pcp = zone->pageset; 491 s8 __percpu *p = pcp->vm_stat_diff + i 350 s8 __percpu *p = pcp->vm_stat_diff + item; 492 s8 v, t; 351 s8 v, t; 493 352 494 /* See __mod_node_page_state */ << 495 preempt_disable_nested(); << 496 << 497 v = __this_cpu_dec_return(*p); 353 v = __this_cpu_dec_return(*p); 498 t = __this_cpu_read(pcp->stat_threshol 354 t = __this_cpu_read(pcp->stat_threshold); 499 if (unlikely(v < - t)) { 355 if (unlikely(v < - t)) { 500 s8 overstep = t >> 1; 356 s8 overstep = t >> 1; 501 357 502 zone_page_state_add(v - overst 358 zone_page_state_add(v - overstep, zone, item); 503 __this_cpu_write(*p, overstep) 359 __this_cpu_write(*p, overstep); 504 } 360 } 505 << 506 preempt_enable_nested(); << 507 } 361 } 508 362 509 void __dec_node_state(struct pglist_data *pgda 363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 510 { 364 { 511 struct per_cpu_nodestat __percpu *pcp 365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 512 s8 __percpu *p = pcp->vm_node_stat_dif 366 s8 __percpu *p = pcp->vm_node_stat_diff + item; 513 s8 v, t; 367 s8 v, t; 514 368 515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(i << 516 << 517 /* See __mod_node_page_state */ << 518 preempt_disable_nested(); << 519 << 520 v = __this_cpu_dec_return(*p); 369 v = __this_cpu_dec_return(*p); 521 t = __this_cpu_read(pcp->stat_threshol 370 t = __this_cpu_read(pcp->stat_threshold); 522 if (unlikely(v < - t)) { 371 if (unlikely(v < - t)) { 523 s8 overstep = t >> 1; 372 s8 overstep = t >> 1; 524 373 525 node_page_state_add(v - overst 374 node_page_state_add(v - overstep, pgdat, item); 526 __this_cpu_write(*p, overstep) 375 __this_cpu_write(*p, overstep); 527 } 376 } 528 << 529 preempt_enable_nested(); << 530 } 377 } 531 378 532 void __dec_zone_page_state(struct page *page, 379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 533 { 380 { 534 __dec_zone_state(page_zone(page), item 381 __dec_zone_state(page_zone(page), item); 535 } 382 } 536 EXPORT_SYMBOL(__dec_zone_page_state); 383 EXPORT_SYMBOL(__dec_zone_page_state); 537 384 538 void __dec_node_page_state(struct page *page, 385 void __dec_node_page_state(struct page *page, enum node_stat_item item) 539 { 386 { 540 __dec_node_state(page_pgdat(page), ite 387 __dec_node_state(page_pgdat(page), item); 541 } 388 } 542 EXPORT_SYMBOL(__dec_node_page_state); 389 EXPORT_SYMBOL(__dec_node_page_state); 543 390 544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 545 /* 392 /* 546 * If we have cmpxchg_local support then we do 393 * If we have cmpxchg_local support then we do not need to incur the overhead 547 * that comes with local_irq_save/restore if w 394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 548 * 395 * 549 * mod_state() modifies the zone counter state 396 * mod_state() modifies the zone counter state through atomic per cpu 550 * operations. 397 * operations. 551 * 398 * 552 * Overstep mode specifies how overstep should 399 * Overstep mode specifies how overstep should handled: 553 * 0 No overstepping 400 * 0 No overstepping 554 * 1 Overstepping half of threshold 401 * 1 Overstepping half of threshold 555 * -1 Overstepping minus half of thre 402 * -1 Overstepping minus half of threshold 556 */ 403 */ 557 static inline void mod_zone_state(struct zone 404 static inline void mod_zone_state(struct zone *zone, 558 enum zone_stat_item item, long delta, i 405 enum zone_stat_item item, long delta, int overstep_mode) 559 { 406 { 560 struct per_cpu_zonestat __percpu *pcp !! 407 struct per_cpu_pageset __percpu *pcp = zone->pageset; 561 s8 __percpu *p = pcp->vm_stat_diff + i 408 s8 __percpu *p = pcp->vm_stat_diff + item; 562 long n, t, z; !! 409 long o, n, t, z; 563 s8 o; << 564 410 565 o = this_cpu_read(*p); << 566 do { 411 do { 567 z = 0; /* overflow to zone co 412 z = 0; /* overflow to zone counters */ 568 413 569 /* 414 /* 570 * The fetching of the stat_th 415 * The fetching of the stat_threshold is racy. We may apply 571 * a counter threshold to the 416 * a counter threshold to the wrong the cpu if we get 572 * rescheduled while executing 417 * rescheduled while executing here. However, the next 573 * counter update will apply t 418 * counter update will apply the threshold again and 574 * therefore bring the counter 419 * therefore bring the counter under the threshold again. 575 * 420 * 576 * Most of the time the thresh 421 * Most of the time the thresholds are the same anyways 577 * for all cpus in a zone. 422 * for all cpus in a zone. 578 */ 423 */ 579 t = this_cpu_read(pcp->stat_th 424 t = this_cpu_read(pcp->stat_threshold); 580 425 581 n = delta + (long)o; !! 426 o = this_cpu_read(*p); >> 427 n = delta + o; 582 428 583 if (abs(n) > t) { !! 429 if (n > t || n < -t) { 584 int os = overstep_mode 430 int os = overstep_mode * (t >> 1) ; 585 431 586 /* Overflow must be ad 432 /* Overflow must be added to zone counters */ 587 z = n + os; 433 z = n + os; 588 n = -os; 434 n = -os; 589 } 435 } 590 } while (!this_cpu_try_cmpxchg(*p, &o, !! 436 } while (this_cpu_cmpxchg(*p, o, n) != o); 591 437 592 if (z) 438 if (z) 593 zone_page_state_add(z, zone, i 439 zone_page_state_add(z, zone, item); 594 } 440 } 595 441 596 void mod_zone_page_state(struct zone *zone, en 442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 597 long delta) 443 long delta) 598 { 444 { 599 mod_zone_state(zone, item, delta, 0); 445 mod_zone_state(zone, item, delta, 0); 600 } 446 } 601 EXPORT_SYMBOL(mod_zone_page_state); 447 EXPORT_SYMBOL(mod_zone_page_state); 602 448 603 void inc_zone_page_state(struct page *page, en 449 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 604 { 450 { 605 mod_zone_state(page_zone(page), item, 451 mod_zone_state(page_zone(page), item, 1, 1); 606 } 452 } 607 EXPORT_SYMBOL(inc_zone_page_state); 453 EXPORT_SYMBOL(inc_zone_page_state); 608 454 609 void dec_zone_page_state(struct page *page, en 455 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 610 { 456 { 611 mod_zone_state(page_zone(page), item, 457 mod_zone_state(page_zone(page), item, -1, -1); 612 } 458 } 613 EXPORT_SYMBOL(dec_zone_page_state); 459 EXPORT_SYMBOL(dec_zone_page_state); 614 460 615 static inline void mod_node_state(struct pglis 461 static inline void mod_node_state(struct pglist_data *pgdat, 616 enum node_stat_item item, int delta, in 462 enum node_stat_item item, int delta, int overstep_mode) 617 { 463 { 618 struct per_cpu_nodestat __percpu *pcp 464 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 619 s8 __percpu *p = pcp->vm_node_stat_dif 465 s8 __percpu *p = pcp->vm_node_stat_diff + item; 620 long n, t, z; !! 466 long o, n, t, z; 621 s8 o; << 622 << 623 if (vmstat_item_in_bytes(item)) { << 624 /* << 625 * Only cgroups use subpage ac << 626 * the global level, these ite << 627 * multiples of whole pages. S << 628 * internally to keep the per- << 629 */ << 630 VM_WARN_ON_ONCE(delta & (PAGE_ << 631 delta >>= PAGE_SHIFT; << 632 } << 633 467 634 o = this_cpu_read(*p); << 635 do { 468 do { 636 z = 0; /* overflow to node co 469 z = 0; /* overflow to node counters */ 637 470 638 /* 471 /* 639 * The fetching of the stat_th 472 * The fetching of the stat_threshold is racy. We may apply 640 * a counter threshold to the 473 * a counter threshold to the wrong the cpu if we get 641 * rescheduled while executing 474 * rescheduled while executing here. However, the next 642 * counter update will apply t 475 * counter update will apply the threshold again and 643 * therefore bring the counter 476 * therefore bring the counter under the threshold again. 644 * 477 * 645 * Most of the time the thresh 478 * Most of the time the thresholds are the same anyways 646 * for all cpus in a node. 479 * for all cpus in a node. 647 */ 480 */ 648 t = this_cpu_read(pcp->stat_th 481 t = this_cpu_read(pcp->stat_threshold); 649 482 650 n = delta + (long)o; !! 483 o = this_cpu_read(*p); >> 484 n = delta + o; 651 485 652 if (abs(n) > t) { !! 486 if (n > t || n < -t) { 653 int os = overstep_mode 487 int os = overstep_mode * (t >> 1) ; 654 488 655 /* Overflow must be ad 489 /* Overflow must be added to node counters */ 656 z = n + os; 490 z = n + os; 657 n = -os; 491 n = -os; 658 } 492 } 659 } while (!this_cpu_try_cmpxchg(*p, &o, !! 493 } while (this_cpu_cmpxchg(*p, o, n) != o); 660 494 661 if (z) 495 if (z) 662 node_page_state_add(z, pgdat, 496 node_page_state_add(z, pgdat, item); 663 } 497 } 664 498 665 void mod_node_page_state(struct pglist_data *p 499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 666 long d 500 long delta) 667 { 501 { 668 mod_node_state(pgdat, item, delta, 0); 502 mod_node_state(pgdat, item, delta, 0); 669 } 503 } 670 EXPORT_SYMBOL(mod_node_page_state); 504 EXPORT_SYMBOL(mod_node_page_state); 671 505 672 void inc_node_state(struct pglist_data *pgdat, 506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 673 { 507 { 674 mod_node_state(pgdat, item, 1, 1); 508 mod_node_state(pgdat, item, 1, 1); 675 } 509 } 676 510 677 void inc_node_page_state(struct page *page, en 511 void inc_node_page_state(struct page *page, enum node_stat_item item) 678 { 512 { 679 mod_node_state(page_pgdat(page), item, 513 mod_node_state(page_pgdat(page), item, 1, 1); 680 } 514 } 681 EXPORT_SYMBOL(inc_node_page_state); 515 EXPORT_SYMBOL(inc_node_page_state); 682 516 683 void dec_node_page_state(struct page *page, en 517 void dec_node_page_state(struct page *page, enum node_stat_item item) 684 { 518 { 685 mod_node_state(page_pgdat(page), item, 519 mod_node_state(page_pgdat(page), item, -1, -1); 686 } 520 } 687 EXPORT_SYMBOL(dec_node_page_state); 521 EXPORT_SYMBOL(dec_node_page_state); 688 #else 522 #else 689 /* 523 /* 690 * Use interrupt disable to serialize counter 524 * Use interrupt disable to serialize counter updates 691 */ 525 */ 692 void mod_zone_page_state(struct zone *zone, en 526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 693 long delta) 527 long delta) 694 { 528 { 695 unsigned long flags; 529 unsigned long flags; 696 530 697 local_irq_save(flags); 531 local_irq_save(flags); 698 __mod_zone_page_state(zone, item, delt 532 __mod_zone_page_state(zone, item, delta); 699 local_irq_restore(flags); 533 local_irq_restore(flags); 700 } 534 } 701 EXPORT_SYMBOL(mod_zone_page_state); 535 EXPORT_SYMBOL(mod_zone_page_state); 702 536 703 void inc_zone_page_state(struct page *page, en 537 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 704 { 538 { 705 unsigned long flags; 539 unsigned long flags; 706 struct zone *zone; 540 struct zone *zone; 707 541 708 zone = page_zone(page); 542 zone = page_zone(page); 709 local_irq_save(flags); 543 local_irq_save(flags); 710 __inc_zone_state(zone, item); 544 __inc_zone_state(zone, item); 711 local_irq_restore(flags); 545 local_irq_restore(flags); 712 } 546 } 713 EXPORT_SYMBOL(inc_zone_page_state); 547 EXPORT_SYMBOL(inc_zone_page_state); 714 548 715 void dec_zone_page_state(struct page *page, en 549 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 716 { 550 { 717 unsigned long flags; 551 unsigned long flags; 718 552 719 local_irq_save(flags); 553 local_irq_save(flags); 720 __dec_zone_page_state(page, item); 554 __dec_zone_page_state(page, item); 721 local_irq_restore(flags); 555 local_irq_restore(flags); 722 } 556 } 723 EXPORT_SYMBOL(dec_zone_page_state); 557 EXPORT_SYMBOL(dec_zone_page_state); 724 558 725 void inc_node_state(struct pglist_data *pgdat, 559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 726 { 560 { 727 unsigned long flags; 561 unsigned long flags; 728 562 729 local_irq_save(flags); 563 local_irq_save(flags); 730 __inc_node_state(pgdat, item); 564 __inc_node_state(pgdat, item); 731 local_irq_restore(flags); 565 local_irq_restore(flags); 732 } 566 } 733 EXPORT_SYMBOL(inc_node_state); 567 EXPORT_SYMBOL(inc_node_state); 734 568 735 void mod_node_page_state(struct pglist_data *p 569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 736 long d 570 long delta) 737 { 571 { 738 unsigned long flags; 572 unsigned long flags; 739 573 740 local_irq_save(flags); 574 local_irq_save(flags); 741 __mod_node_page_state(pgdat, item, del 575 __mod_node_page_state(pgdat, item, delta); 742 local_irq_restore(flags); 576 local_irq_restore(flags); 743 } 577 } 744 EXPORT_SYMBOL(mod_node_page_state); 578 EXPORT_SYMBOL(mod_node_page_state); 745 579 746 void inc_node_page_state(struct page *page, en 580 void inc_node_page_state(struct page *page, enum node_stat_item item) 747 { 581 { 748 unsigned long flags; 582 unsigned long flags; 749 struct pglist_data *pgdat; 583 struct pglist_data *pgdat; 750 584 751 pgdat = page_pgdat(page); 585 pgdat = page_pgdat(page); 752 local_irq_save(flags); 586 local_irq_save(flags); 753 __inc_node_state(pgdat, item); 587 __inc_node_state(pgdat, item); 754 local_irq_restore(flags); 588 local_irq_restore(flags); 755 } 589 } 756 EXPORT_SYMBOL(inc_node_page_state); 590 EXPORT_SYMBOL(inc_node_page_state); 757 591 758 void dec_node_page_state(struct page *page, en 592 void dec_node_page_state(struct page *page, enum node_stat_item item) 759 { 593 { 760 unsigned long flags; 594 unsigned long flags; 761 595 762 local_irq_save(flags); 596 local_irq_save(flags); 763 __dec_node_page_state(page, item); 597 __dec_node_page_state(page, item); 764 local_irq_restore(flags); 598 local_irq_restore(flags); 765 } 599 } 766 EXPORT_SYMBOL(dec_node_page_state); 600 EXPORT_SYMBOL(dec_node_page_state); 767 #endif 601 #endif 768 602 769 /* 603 /* 770 * Fold a differential into the global counter 604 * Fold a differential into the global counters. 771 * Returns the number of counters updated. 605 * Returns the number of counters updated. 772 */ 606 */ 773 static int fold_diff(int *zone_diff, int *node 607 static int fold_diff(int *zone_diff, int *node_diff) 774 { 608 { 775 int i; 609 int i; 776 int changes = 0; 610 int changes = 0; 777 611 778 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; 612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 779 if (zone_diff[i]) { 613 if (zone_diff[i]) { 780 atomic_long_add(zone_d 614 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 781 changes++; 615 changes++; 782 } 616 } 783 617 784 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; 618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 785 if (node_diff[i]) { 619 if (node_diff[i]) { 786 atomic_long_add(node_d 620 atomic_long_add(node_diff[i], &vm_node_stat[i]); 787 changes++; 621 changes++; 788 } 622 } 789 return changes; 623 return changes; 790 } 624 } 791 625 792 /* 626 /* 793 * Update the zone counters for the current cp 627 * Update the zone counters for the current cpu. 794 * 628 * 795 * Note that refresh_cpu_vm_stats strives to o 629 * Note that refresh_cpu_vm_stats strives to only access 796 * node local memory. The per cpu pagesets on 630 * node local memory. The per cpu pagesets on remote zones are placed 797 * in the memory local to the processor using 631 * in the memory local to the processor using that pageset. So the 798 * loop over all zones will access a series of 632 * loop over all zones will access a series of cachelines local to 799 * the processor. 633 * the processor. 800 * 634 * 801 * The call to zone_page_state_add updates the 635 * The call to zone_page_state_add updates the cachelines with the 802 * statistics in the remote zone struct as wel 636 * statistics in the remote zone struct as well as the global cachelines 803 * with the global counters. These could cause 637 * with the global counters. These could cause remote node cache line 804 * bouncing and will have to be only done when 638 * bouncing and will have to be only done when necessary. 805 * 639 * 806 * The function returns the number of global c 640 * The function returns the number of global counters updated. 807 */ 641 */ 808 static int refresh_cpu_vm_stats(bool do_pagese 642 static int refresh_cpu_vm_stats(bool do_pagesets) 809 { 643 { 810 struct pglist_data *pgdat; 644 struct pglist_data *pgdat; 811 struct zone *zone; 645 struct zone *zone; 812 int i; 646 int i; 813 int global_zone_diff[NR_VM_ZONE_STAT_I 647 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 814 int global_node_diff[NR_VM_NODE_STAT_I 648 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 815 int changes = 0; 649 int changes = 0; 816 650 817 for_each_populated_zone(zone) { 651 for_each_populated_zone(zone) { 818 struct per_cpu_zonestat __perc !! 652 struct per_cpu_pageset __percpu *p = zone->pageset; 819 struct per_cpu_pages __percpu << 820 653 821 for (i = 0; i < NR_VM_ZONE_STA 654 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 822 int v; 655 int v; 823 656 824 v = this_cpu_xchg(pzst !! 657 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 825 if (v) { 658 if (v) { 826 659 827 atomic_long_ad 660 atomic_long_add(v, &zone->vm_stat[i]); 828 global_zone_di 661 global_zone_diff[i] += v; 829 #ifdef CONFIG_NUMA 662 #ifdef CONFIG_NUMA 830 /* 3 seconds i 663 /* 3 seconds idle till flush */ 831 __this_cpu_wri !! 664 __this_cpu_write(p->expire, 3); 832 #endif 665 #endif 833 } 666 } 834 } 667 } 835 !! 668 #ifdef CONFIG_NUMA 836 if (do_pagesets) { 669 if (do_pagesets) { 837 cond_resched(); 670 cond_resched(); 838 << 839 changes += decay_pcp_h << 840 #ifdef CONFIG_NUMA << 841 /* 671 /* 842 * Deal with draining 672 * Deal with draining the remote pageset of this 843 * processor 673 * processor 844 * 674 * 845 * Check if there are 675 * Check if there are pages remaining in this pageset 846 * if not then there i 676 * if not then there is nothing to expire. 847 */ 677 */ 848 if (!__this_cpu_read(p !! 678 if (!__this_cpu_read(p->expire) || 849 !__this_cpu_rea !! 679 !__this_cpu_read(p->pcp.count)) 850 continue; 680 continue; 851 681 852 /* 682 /* 853 * We never drain zone 683 * We never drain zones local to this processor. 854 */ 684 */ 855 if (zone_to_nid(zone) 685 if (zone_to_nid(zone) == numa_node_id()) { 856 __this_cpu_wri !! 686 __this_cpu_write(p->expire, 0); 857 continue; 687 continue; 858 } 688 } 859 689 860 if (__this_cpu_dec_ret !! 690 if (__this_cpu_dec_return(p->expire)) 861 changes++; << 862 continue; 691 continue; 863 } << 864 692 865 if (__this_cpu_read(pc !! 693 if (__this_cpu_read(p->pcp.count)) { 866 drain_zone_pag !! 694 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 867 changes++; 695 changes++; 868 } 696 } 869 #endif << 870 } 697 } >> 698 #endif 871 } 699 } 872 700 873 for_each_online_pgdat(pgdat) { 701 for_each_online_pgdat(pgdat) { 874 struct per_cpu_nodestat __perc 702 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 875 703 876 for (i = 0; i < NR_VM_NODE_STA 704 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 877 int v; 705 int v; 878 706 879 v = this_cpu_xchg(p->v 707 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 880 if (v) { 708 if (v) { 881 atomic_long_ad 709 atomic_long_add(v, &pgdat->vm_stat[i]); 882 global_node_di 710 global_node_diff[i] += v; 883 } 711 } 884 } 712 } 885 } 713 } 886 714 887 changes += fold_diff(global_zone_diff, 715 changes += fold_diff(global_zone_diff, global_node_diff); 888 return changes; 716 return changes; 889 } 717 } 890 718 891 /* 719 /* 892 * Fold the data for an offline cpu into the g 720 * Fold the data for an offline cpu into the global array. 893 * There cannot be any access by the offline c 721 * There cannot be any access by the offline cpu and therefore 894 * synchronization is simplified. 722 * synchronization is simplified. 895 */ 723 */ 896 void cpu_vm_stats_fold(int cpu) 724 void cpu_vm_stats_fold(int cpu) 897 { 725 { 898 struct pglist_data *pgdat; 726 struct pglist_data *pgdat; 899 struct zone *zone; 727 struct zone *zone; 900 int i; 728 int i; 901 int global_zone_diff[NR_VM_ZONE_STAT_I 729 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 902 int global_node_diff[NR_VM_NODE_STAT_I 730 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 903 731 904 for_each_populated_zone(zone) { 732 for_each_populated_zone(zone) { 905 struct per_cpu_zonestat *pzsta !! 733 struct per_cpu_pageset *p; 906 734 907 pzstats = per_cpu_ptr(zone->pe !! 735 p = per_cpu_ptr(zone->pageset, cpu); 908 736 909 for (i = 0; i < NR_VM_ZONE_STA !! 737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 910 if (pzstats->vm_stat_d !! 738 if (p->vm_stat_diff[i]) { 911 int v; 739 int v; 912 740 913 v = pzstats->v !! 741 v = p->vm_stat_diff[i]; 914 pzstats->vm_st !! 742 p->vm_stat_diff[i] = 0; 915 atomic_long_ad 743 atomic_long_add(v, &zone->vm_stat[i]); 916 global_zone_di 744 global_zone_diff[i] += v; 917 } 745 } 918 } << 919 #ifdef CONFIG_NUMA << 920 for (i = 0; i < NR_VM_NUMA_EVE << 921 if (pzstats->vm_numa_e << 922 unsigned long << 923 << 924 v = pzstats->v << 925 pzstats->vm_nu << 926 zone_numa_even << 927 } << 928 } << 929 #endif << 930 } 746 } 931 747 932 for_each_online_pgdat(pgdat) { 748 for_each_online_pgdat(pgdat) { 933 struct per_cpu_nodestat *p; 749 struct per_cpu_nodestat *p; 934 750 935 p = per_cpu_ptr(pgdat->per_cpu 751 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 936 752 937 for (i = 0; i < NR_VM_NODE_STA 753 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 938 if (p->vm_node_stat_di 754 if (p->vm_node_stat_diff[i]) { 939 int v; 755 int v; 940 756 941 v = p->vm_node 757 v = p->vm_node_stat_diff[i]; 942 p->vm_node_sta 758 p->vm_node_stat_diff[i] = 0; 943 atomic_long_ad 759 atomic_long_add(v, &pgdat->vm_stat[i]); 944 global_node_di 760 global_node_diff[i] += v; 945 } 761 } 946 } 762 } 947 763 948 fold_diff(global_zone_diff, global_nod 764 fold_diff(global_zone_diff, global_node_diff); 949 } 765 } 950 766 951 /* 767 /* 952 * this is only called if !populated_zone(zone 768 * this is only called if !populated_zone(zone), which implies no other users of 953 * pset->vm_stat_diff[] exist. !! 769 * pset->vm_stat_diff[] exsist. 954 */ 770 */ 955 void drain_zonestat(struct zone *zone, struct !! 771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 956 { 772 { 957 unsigned long v; << 958 int i; 773 int i; 959 774 960 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; !! 775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 961 if (pzstats->vm_stat_diff[i]) !! 776 if (pset->vm_stat_diff[i]) { 962 v = pzstats->vm_stat_d !! 777 int v = pset->vm_stat_diff[i]; 963 pzstats->vm_stat_diff[ !! 778 pset->vm_stat_diff[i] = 0; 964 zone_page_state_add(v, !! 779 atomic_long_add(v, &zone->vm_stat[i]); 965 } !! 780 atomic_long_add(v, &vm_zone_stat[i]); 966 } << 967 << 968 #ifdef CONFIG_NUMA << 969 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS << 970 if (pzstats->vm_numa_event[i]) << 971 v = pzstats->vm_numa_e << 972 pzstats->vm_numa_event << 973 zone_numa_event_add(v, << 974 } 781 } 975 } << 976 #endif << 977 } 782 } 978 #endif 783 #endif 979 784 980 #ifdef CONFIG_NUMA 785 #ifdef CONFIG_NUMA 981 /* 786 /* 982 * Determine the per node value of a stat item 787 * Determine the per node value of a stat item. This function 983 * is called frequently in a NUMA machine, so 788 * is called frequently in a NUMA machine, so try to be as 984 * frugal as possible. 789 * frugal as possible. 985 */ 790 */ 986 unsigned long sum_zone_node_page_state(int nod 791 unsigned long sum_zone_node_page_state(int node, 987 enum zone_sta 792 enum zone_stat_item item) 988 { 793 { 989 struct zone *zones = NODE_DATA(node)-> 794 struct zone *zones = NODE_DATA(node)->node_zones; 990 int i; 795 int i; 991 unsigned long count = 0; 796 unsigned long count = 0; 992 797 993 for (i = 0; i < MAX_NR_ZONES; i++) 798 for (i = 0; i < MAX_NR_ZONES; i++) 994 count += zone_page_state(zones 799 count += zone_page_state(zones + i, item); 995 800 996 return count; 801 return count; 997 } 802 } 998 803 999 /* Determine the per node value of a numa stat << 1000 unsigned long sum_zone_numa_event_state(int n << 1001 enum numa_st << 1002 { << 1003 struct zone *zones = NODE_DATA(node)- << 1004 unsigned long count = 0; << 1005 int i; << 1006 << 1007 for (i = 0; i < MAX_NR_ZONES; i++) << 1008 count += zone_numa_event_stat << 1009 << 1010 return count; << 1011 } << 1012 << 1013 /* 804 /* 1014 * Determine the per node value of a stat ite 805 * Determine the per node value of a stat item. 1015 */ 806 */ 1016 unsigned long node_page_state_pages(struct pg !! 807 unsigned long node_page_state(struct pglist_data *pgdat, 1017 enum node !! 808 enum node_stat_item item) 1018 { 809 { 1019 long x = atomic_long_read(&pgdat->vm_ 810 long x = atomic_long_read(&pgdat->vm_stat[item]); 1020 #ifdef CONFIG_SMP 811 #ifdef CONFIG_SMP 1021 if (x < 0) 812 if (x < 0) 1022 x = 0; 813 x = 0; 1023 #endif 814 #endif 1024 return x; 815 return x; 1025 } 816 } 1026 << 1027 unsigned long node_page_state(struct pglist_d << 1028 enum node_stat_ << 1029 { << 1030 VM_WARN_ON_ONCE(vmstat_item_in_bytes( << 1031 << 1032 return node_page_state_pages(pgdat, i << 1033 } << 1034 #endif 817 #endif 1035 818 1036 /* << 1037 * Count number of pages "struct page" and "s << 1038 * nr_memmap_boot_pages: # of pages allocated << 1039 * nr_memmap_pages: # of pages that were allo << 1040 */ << 1041 static atomic_long_t nr_memmap_boot_pages = A << 1042 static atomic_long_t nr_memmap_pages = ATOMIC << 1043 << 1044 void memmap_boot_pages_add(long delta) << 1045 { << 1046 atomic_long_add(delta, &nr_memmap_boo << 1047 } << 1048 << 1049 void memmap_pages_add(long delta) << 1050 { << 1051 atomic_long_add(delta, &nr_memmap_pag << 1052 } << 1053 << 1054 #ifdef CONFIG_COMPACTION 819 #ifdef CONFIG_COMPACTION 1055 820 1056 struct contig_page_info { 821 struct contig_page_info { 1057 unsigned long free_pages; 822 unsigned long free_pages; 1058 unsigned long free_blocks_total; 823 unsigned long free_blocks_total; 1059 unsigned long free_blocks_suitable; 824 unsigned long free_blocks_suitable; 1060 }; 825 }; 1061 826 1062 /* 827 /* 1063 * Calculate the number of free pages in a zo 828 * Calculate the number of free pages in a zone, how many contiguous 1064 * pages are free and how many are large enou 829 * pages are free and how many are large enough to satisfy an allocation of 1065 * the target size. Note that this function m 830 * the target size. Note that this function makes no attempt to estimate 1066 * how many suitable free blocks there *might 831 * how many suitable free blocks there *might* be if MOVABLE pages were 1067 * migrated. Calculating that is possible, bu 832 * migrated. Calculating that is possible, but expensive and can be 1068 * figured out from userspace 833 * figured out from userspace 1069 */ 834 */ 1070 static void fill_contig_page_info(struct zone 835 static void fill_contig_page_info(struct zone *zone, 1071 unsigned int 836 unsigned int suitable_order, 1072 struct contig 837 struct contig_page_info *info) 1073 { 838 { 1074 unsigned int order; 839 unsigned int order; 1075 840 1076 info->free_pages = 0; 841 info->free_pages = 0; 1077 info->free_blocks_total = 0; 842 info->free_blocks_total = 0; 1078 info->free_blocks_suitable = 0; 843 info->free_blocks_suitable = 0; 1079 844 1080 for (order = 0; order < NR_PAGE_ORDER !! 845 for (order = 0; order < MAX_ORDER; order++) { 1081 unsigned long blocks; 846 unsigned long blocks; 1082 847 1083 /* !! 848 /* Count number of free blocks */ 1084 * Count number of free block !! 849 blocks = zone->free_area[order].nr_free; 1085 * << 1086 * Access to nr_free is lockl << 1087 * diagnostic purposes. Use d << 1088 */ << 1089 blocks = data_race(zone->free << 1090 info->free_blocks_total += bl 850 info->free_blocks_total += blocks; 1091 851 1092 /* Count free base pages */ 852 /* Count free base pages */ 1093 info->free_pages += blocks << 853 info->free_pages += blocks << order; 1094 854 1095 /* Count the suitable free bl 855 /* Count the suitable free blocks */ 1096 if (order >= suitable_order) 856 if (order >= suitable_order) 1097 info->free_blocks_sui 857 info->free_blocks_suitable += blocks << 1098 858 (order - suitable_order); 1099 } 859 } 1100 } 860 } 1101 861 1102 /* 862 /* 1103 * A fragmentation index only makes sense if 863 * A fragmentation index only makes sense if an allocation of a requested 1104 * size would fail. If that is true, the frag 864 * size would fail. If that is true, the fragmentation index indicates 1105 * whether external fragmentation or a lack o 865 * whether external fragmentation or a lack of memory was the problem. 1106 * The value can be used to determine if page 866 * The value can be used to determine if page reclaim or compaction 1107 * should be used 867 * should be used 1108 */ 868 */ 1109 static int __fragmentation_index(unsigned int 869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1110 { 870 { 1111 unsigned long requested = 1UL << orde 871 unsigned long requested = 1UL << order; 1112 872 1113 if (WARN_ON_ONCE(order > MAX_PAGE_ORD << 1114 return 0; << 1115 << 1116 if (!info->free_blocks_total) 873 if (!info->free_blocks_total) 1117 return 0; 874 return 0; 1118 875 1119 /* Fragmentation index only makes sen 876 /* Fragmentation index only makes sense when a request would fail */ 1120 if (info->free_blocks_suitable) 877 if (info->free_blocks_suitable) 1121 return -1000; 878 return -1000; 1122 879 1123 /* 880 /* 1124 * Index is between 0 and 1 so return 881 * Index is between 0 and 1 so return within 3 decimal places 1125 * 882 * 1126 * 0 => allocation would fail due to 883 * 0 => allocation would fail due to lack of memory 1127 * 1 => allocation would fail due to 884 * 1 => allocation would fail due to fragmentation 1128 */ 885 */ 1129 return 1000 - div_u64( (1000+(div_u64 886 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1130 } 887 } 1131 888 1132 /* << 1133 * Calculates external fragmentation within a << 1134 * It is defined as the percentage of pages f << 1135 * less than 1 << order. It returns values in << 1136 */ << 1137 unsigned int extfrag_for_order(struct zone *z << 1138 { << 1139 struct contig_page_info info; << 1140 << 1141 fill_contig_page_info(zone, order, &i << 1142 if (info.free_pages == 0) << 1143 return 0; << 1144 << 1145 return div_u64((info.free_pages - << 1146 (info.free_blocks_sui << 1147 info.free_pages); << 1148 } << 1149 << 1150 /* Same as __fragmentation index but allocs c 889 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1151 int fragmentation_index(struct zone *zone, un 890 int fragmentation_index(struct zone *zone, unsigned int order) 1152 { 891 { 1153 struct contig_page_info info; 892 struct contig_page_info info; 1154 893 1155 fill_contig_page_info(zone, order, &i 894 fill_contig_page_info(zone, order, &info); 1156 return __fragmentation_index(order, & 895 return __fragmentation_index(order, &info); 1157 } 896 } 1158 #endif 897 #endif 1159 898 1160 #if defined(CONFIG_PROC_FS) || defined(CONFIG !! 899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 1161 defined(CONFIG_NUMA) || defined(CONFIG_ME << 1162 #ifdef CONFIG_ZONE_DMA 900 #ifdef CONFIG_ZONE_DMA 1163 #define TEXT_FOR_DMA(xx) xx "_dma", 901 #define TEXT_FOR_DMA(xx) xx "_dma", 1164 #else 902 #else 1165 #define TEXT_FOR_DMA(xx) 903 #define TEXT_FOR_DMA(xx) 1166 #endif 904 #endif 1167 905 1168 #ifdef CONFIG_ZONE_DMA32 906 #ifdef CONFIG_ZONE_DMA32 1169 #define TEXT_FOR_DMA32(xx) xx "_dma32", 907 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1170 #else 908 #else 1171 #define TEXT_FOR_DMA32(xx) 909 #define TEXT_FOR_DMA32(xx) 1172 #endif 910 #endif 1173 911 1174 #ifdef CONFIG_HIGHMEM 912 #ifdef CONFIG_HIGHMEM 1175 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 913 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1176 #else 914 #else 1177 #define TEXT_FOR_HIGHMEM(xx) 915 #define TEXT_FOR_HIGHMEM(xx) 1178 #endif 916 #endif 1179 917 1180 #ifdef CONFIG_ZONE_DEVICE << 1181 #define TEXT_FOR_DEVICE(xx) xx "_device", << 1182 #else << 1183 #define TEXT_FOR_DEVICE(xx) << 1184 #endif << 1185 << 1186 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) 918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1187 TEXT_ !! 919 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1188 TEXT_ << 1189 920 1190 const char * const vmstat_text[] = { 921 const char * const vmstat_text[] = { 1191 /* enum zone_stat_item counters */ !! 922 /* enum zone_stat_item countes */ 1192 "nr_free_pages", 923 "nr_free_pages", 1193 "nr_zone_inactive_anon", 924 "nr_zone_inactive_anon", 1194 "nr_zone_active_anon", 925 "nr_zone_active_anon", 1195 "nr_zone_inactive_file", 926 "nr_zone_inactive_file", 1196 "nr_zone_active_file", 927 "nr_zone_active_file", 1197 "nr_zone_unevictable", 928 "nr_zone_unevictable", 1198 "nr_zone_write_pending", 929 "nr_zone_write_pending", 1199 "nr_mlock", 930 "nr_mlock", >> 931 "nr_slab_reclaimable", >> 932 "nr_slab_unreclaimable", >> 933 "nr_page_table_pages", >> 934 "nr_kernel_stack", 1200 "nr_bounce", 935 "nr_bounce", 1201 #if IS_ENABLED(CONFIG_ZSMALLOC) 936 #if IS_ENABLED(CONFIG_ZSMALLOC) 1202 "nr_zspages", 937 "nr_zspages", 1203 #endif 938 #endif 1204 "nr_free_cma", << 1205 #ifdef CONFIG_UNACCEPTED_MEMORY << 1206 "nr_unaccepted", << 1207 #endif << 1208 << 1209 /* enum numa_stat_item counters */ << 1210 #ifdef CONFIG_NUMA 939 #ifdef CONFIG_NUMA 1211 "numa_hit", 940 "numa_hit", 1212 "numa_miss", 941 "numa_miss", 1213 "numa_foreign", 942 "numa_foreign", 1214 "numa_interleave", 943 "numa_interleave", 1215 "numa_local", 944 "numa_local", 1216 "numa_other", 945 "numa_other", 1217 #endif 946 #endif >> 947 "nr_free_cma", 1218 948 1219 /* enum node_stat_item counters */ !! 949 /* Node-based counters */ 1220 "nr_inactive_anon", 950 "nr_inactive_anon", 1221 "nr_active_anon", 951 "nr_active_anon", 1222 "nr_inactive_file", 952 "nr_inactive_file", 1223 "nr_active_file", 953 "nr_active_file", 1224 "nr_unevictable", 954 "nr_unevictable", 1225 "nr_slab_reclaimable", << 1226 "nr_slab_unreclaimable", << 1227 "nr_isolated_anon", 955 "nr_isolated_anon", 1228 "nr_isolated_file", 956 "nr_isolated_file", 1229 "workingset_nodes", !! 957 "nr_pages_scanned", 1230 "workingset_refault_anon", !! 958 "workingset_refault", 1231 "workingset_refault_file", !! 959 "workingset_activate", 1232 "workingset_activate_anon", << 1233 "workingset_activate_file", << 1234 "workingset_restore_anon", << 1235 "workingset_restore_file", << 1236 "workingset_nodereclaim", 960 "workingset_nodereclaim", 1237 "nr_anon_pages", 961 "nr_anon_pages", 1238 "nr_mapped", 962 "nr_mapped", 1239 "nr_file_pages", 963 "nr_file_pages", 1240 "nr_dirty", 964 "nr_dirty", 1241 "nr_writeback", 965 "nr_writeback", 1242 "nr_writeback_temp", 966 "nr_writeback_temp", 1243 "nr_shmem", 967 "nr_shmem", 1244 "nr_shmem_hugepages", 968 "nr_shmem_hugepages", 1245 "nr_shmem_pmdmapped", 969 "nr_shmem_pmdmapped", 1246 "nr_file_hugepages", << 1247 "nr_file_pmdmapped", << 1248 "nr_anon_transparent_hugepages", 970 "nr_anon_transparent_hugepages", >> 971 "nr_unstable", 1249 "nr_vmscan_write", 972 "nr_vmscan_write", 1250 "nr_vmscan_immediate_reclaim", 973 "nr_vmscan_immediate_reclaim", 1251 "nr_dirtied", 974 "nr_dirtied", 1252 "nr_written", 975 "nr_written", 1253 "nr_throttled_written", !! 976 1254 "nr_kernel_misc_reclaimable", !! 977 /* enum writeback_stat_item counters */ 1255 "nr_foll_pin_acquired", << 1256 "nr_foll_pin_released", << 1257 "nr_kernel_stack", << 1258 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) << 1259 "nr_shadow_call_stack", << 1260 #endif << 1261 "nr_page_table_pages", << 1262 "nr_sec_page_table_pages", << 1263 #ifdef CONFIG_IOMMU_SUPPORT << 1264 "nr_iommu_pages", << 1265 #endif << 1266 #ifdef CONFIG_SWAP << 1267 "nr_swapcached", << 1268 #endif << 1269 #ifdef CONFIG_NUMA_BALANCING << 1270 "pgpromote_success", << 1271 "pgpromote_candidate", << 1272 #endif << 1273 "pgdemote_kswapd", << 1274 "pgdemote_direct", << 1275 "pgdemote_khugepaged", << 1276 /* system-wide enum vm_stat_item coun << 1277 "nr_dirty_threshold", 978 "nr_dirty_threshold", 1278 "nr_dirty_background_threshold", 979 "nr_dirty_background_threshold", 1279 "nr_memmap_pages", << 1280 "nr_memmap_boot_pages", << 1281 980 1282 #if defined(CONFIG_VM_EVENT_COUNTERS) || defi !! 981 #ifdef CONFIG_VM_EVENT_COUNTERS 1283 /* enum vm_event_item counters */ 982 /* enum vm_event_item counters */ 1284 "pgpgin", 983 "pgpgin", 1285 "pgpgout", 984 "pgpgout", 1286 "pswpin", 985 "pswpin", 1287 "pswpout", 986 "pswpout", 1288 987 1289 TEXTS_FOR_ZONES("pgalloc") 988 TEXTS_FOR_ZONES("pgalloc") 1290 TEXTS_FOR_ZONES("allocstall") 989 TEXTS_FOR_ZONES("allocstall") 1291 TEXTS_FOR_ZONES("pgskip") 990 TEXTS_FOR_ZONES("pgskip") 1292 991 1293 "pgfree", 992 "pgfree", 1294 "pgactivate", 993 "pgactivate", 1295 "pgdeactivate", 994 "pgdeactivate", 1296 "pglazyfree", << 1297 995 1298 "pgfault", 996 "pgfault", 1299 "pgmajfault", 997 "pgmajfault", 1300 "pglazyfreed", 998 "pglazyfreed", 1301 999 1302 "pgrefill", 1000 "pgrefill", 1303 "pgreuse", << 1304 "pgsteal_kswapd", 1001 "pgsteal_kswapd", 1305 "pgsteal_direct", 1002 "pgsteal_direct", 1306 "pgsteal_khugepaged", << 1307 "pgscan_kswapd", 1003 "pgscan_kswapd", 1308 "pgscan_direct", 1004 "pgscan_direct", 1309 "pgscan_khugepaged", << 1310 "pgscan_direct_throttle", 1005 "pgscan_direct_throttle", 1311 "pgscan_anon", << 1312 "pgscan_file", << 1313 "pgsteal_anon", << 1314 "pgsteal_file", << 1315 1006 1316 #ifdef CONFIG_NUMA 1007 #ifdef CONFIG_NUMA 1317 "zone_reclaim_success", << 1318 "zone_reclaim_failed", 1008 "zone_reclaim_failed", 1319 #endif 1009 #endif 1320 "pginodesteal", 1010 "pginodesteal", 1321 "slabs_scanned", 1011 "slabs_scanned", 1322 "kswapd_inodesteal", 1012 "kswapd_inodesteal", 1323 "kswapd_low_wmark_hit_quickly", 1013 "kswapd_low_wmark_hit_quickly", 1324 "kswapd_high_wmark_hit_quickly", 1014 "kswapd_high_wmark_hit_quickly", 1325 "pageoutrun", 1015 "pageoutrun", 1326 1016 1327 "pgrotated", 1017 "pgrotated", 1328 1018 1329 "drop_pagecache", 1019 "drop_pagecache", 1330 "drop_slab", 1020 "drop_slab", 1331 "oom_kill", << 1332 1021 1333 #ifdef CONFIG_NUMA_BALANCING 1022 #ifdef CONFIG_NUMA_BALANCING 1334 "numa_pte_updates", 1023 "numa_pte_updates", 1335 "numa_huge_pte_updates", 1024 "numa_huge_pte_updates", 1336 "numa_hint_faults", 1025 "numa_hint_faults", 1337 "numa_hint_faults_local", 1026 "numa_hint_faults_local", 1338 "numa_pages_migrated", 1027 "numa_pages_migrated", 1339 #endif 1028 #endif 1340 #ifdef CONFIG_MIGRATION 1029 #ifdef CONFIG_MIGRATION 1341 "pgmigrate_success", 1030 "pgmigrate_success", 1342 "pgmigrate_fail", 1031 "pgmigrate_fail", 1343 "thp_migration_success", << 1344 "thp_migration_fail", << 1345 "thp_migration_split", << 1346 #endif 1032 #endif 1347 #ifdef CONFIG_COMPACTION 1033 #ifdef CONFIG_COMPACTION 1348 "compact_migrate_scanned", 1034 "compact_migrate_scanned", 1349 "compact_free_scanned", 1035 "compact_free_scanned", 1350 "compact_isolated", 1036 "compact_isolated", 1351 "compact_stall", 1037 "compact_stall", 1352 "compact_fail", 1038 "compact_fail", 1353 "compact_success", 1039 "compact_success", 1354 "compact_daemon_wake", 1040 "compact_daemon_wake", 1355 "compact_daemon_migrate_scanned", << 1356 "compact_daemon_free_scanned", << 1357 #endif 1041 #endif 1358 1042 1359 #ifdef CONFIG_HUGETLB_PAGE 1043 #ifdef CONFIG_HUGETLB_PAGE 1360 "htlb_buddy_alloc_success", 1044 "htlb_buddy_alloc_success", 1361 "htlb_buddy_alloc_fail", 1045 "htlb_buddy_alloc_fail", 1362 #endif 1046 #endif 1363 #ifdef CONFIG_CMA << 1364 "cma_alloc_success", << 1365 "cma_alloc_fail", << 1366 #endif << 1367 "unevictable_pgs_culled", 1047 "unevictable_pgs_culled", 1368 "unevictable_pgs_scanned", 1048 "unevictable_pgs_scanned", 1369 "unevictable_pgs_rescued", 1049 "unevictable_pgs_rescued", 1370 "unevictable_pgs_mlocked", 1050 "unevictable_pgs_mlocked", 1371 "unevictable_pgs_munlocked", 1051 "unevictable_pgs_munlocked", 1372 "unevictable_pgs_cleared", 1052 "unevictable_pgs_cleared", 1373 "unevictable_pgs_stranded", 1053 "unevictable_pgs_stranded", 1374 1054 1375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1376 "thp_fault_alloc", 1056 "thp_fault_alloc", 1377 "thp_fault_fallback", 1057 "thp_fault_fallback", 1378 "thp_fault_fallback_charge", << 1379 "thp_collapse_alloc", 1058 "thp_collapse_alloc", 1380 "thp_collapse_alloc_failed", 1059 "thp_collapse_alloc_failed", 1381 "thp_file_alloc", 1060 "thp_file_alloc", 1382 "thp_file_fallback", << 1383 "thp_file_fallback_charge", << 1384 "thp_file_mapped", 1061 "thp_file_mapped", 1385 "thp_split_page", 1062 "thp_split_page", 1386 "thp_split_page_failed", 1063 "thp_split_page_failed", 1387 "thp_deferred_split_page", 1064 "thp_deferred_split_page", 1388 "thp_underused_split_page", << 1389 "thp_split_pmd", 1065 "thp_split_pmd", 1390 "thp_scan_exceed_none_pte", << 1391 "thp_scan_exceed_swap_pte", << 1392 "thp_scan_exceed_share_pte", << 1393 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_ << 1394 "thp_split_pud", << 1395 #endif << 1396 "thp_zero_page_alloc", 1066 "thp_zero_page_alloc", 1397 "thp_zero_page_alloc_failed", 1067 "thp_zero_page_alloc_failed", 1398 "thp_swpout", << 1399 "thp_swpout_fallback", << 1400 #endif 1068 #endif 1401 #ifdef CONFIG_MEMORY_BALLOON 1069 #ifdef CONFIG_MEMORY_BALLOON 1402 "balloon_inflate", 1070 "balloon_inflate", 1403 "balloon_deflate", 1071 "balloon_deflate", 1404 #ifdef CONFIG_BALLOON_COMPACTION 1072 #ifdef CONFIG_BALLOON_COMPACTION 1405 "balloon_migrate", 1073 "balloon_migrate", 1406 #endif 1074 #endif 1407 #endif /* CONFIG_MEMORY_BALLOON */ 1075 #endif /* CONFIG_MEMORY_BALLOON */ 1408 #ifdef CONFIG_DEBUG_TLBFLUSH 1076 #ifdef CONFIG_DEBUG_TLBFLUSH >> 1077 #ifdef CONFIG_SMP 1409 "nr_tlb_remote_flush", 1078 "nr_tlb_remote_flush", 1410 "nr_tlb_remote_flush_received", 1079 "nr_tlb_remote_flush_received", >> 1080 #endif /* CONFIG_SMP */ 1411 "nr_tlb_local_flush_all", 1081 "nr_tlb_local_flush_all", 1412 "nr_tlb_local_flush_one", 1082 "nr_tlb_local_flush_one", 1413 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1083 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1414 1084 1415 #ifdef CONFIG_SWAP !! 1085 #ifdef CONFIG_DEBUG_VM_VMACACHE 1416 "swap_ra", !! 1086 "vmacache_find_calls", 1417 "swap_ra_hit", !! 1087 "vmacache_find_hits", 1418 #ifdef CONFIG_KSM !! 1088 "vmacache_full_flushes", 1419 "ksm_swpin_copy", << 1420 #endif << 1421 #endif << 1422 #ifdef CONFIG_KSM << 1423 "cow_ksm", << 1424 #endif << 1425 #ifdef CONFIG_ZSWAP << 1426 "zswpin", << 1427 "zswpout", << 1428 "zswpwb", << 1429 #endif << 1430 #ifdef CONFIG_X86 << 1431 "direct_map_level2_splits", << 1432 "direct_map_level3_splits", << 1433 #endif 1089 #endif 1434 #ifdef CONFIG_PER_VMA_LOCK_STATS !! 1090 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 1435 "vma_lock_success", << 1436 "vma_lock_abort", << 1437 "vma_lock_retry", << 1438 "vma_lock_miss", << 1439 #endif << 1440 #ifdef CONFIG_DEBUG_STACK_USAGE << 1441 "kstack_1k", << 1442 #if THREAD_SIZE > 1024 << 1443 "kstack_2k", << 1444 #endif << 1445 #if THREAD_SIZE > 2048 << 1446 "kstack_4k", << 1447 #endif << 1448 #if THREAD_SIZE > 4096 << 1449 "kstack_8k", << 1450 #endif << 1451 #if THREAD_SIZE > 8192 << 1452 "kstack_16k", << 1453 #endif << 1454 #if THREAD_SIZE > 16384 << 1455 "kstack_32k", << 1456 #endif << 1457 #if THREAD_SIZE > 32768 << 1458 "kstack_64k", << 1459 #endif << 1460 #if THREAD_SIZE > 65536 << 1461 "kstack_rest", << 1462 #endif << 1463 #endif << 1464 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_ << 1465 }; 1091 }; 1466 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || C !! 1092 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ >> 1093 1467 1094 1468 #if (defined(CONFIG_DEBUG_FS) && defined(CONF 1095 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1469 defined(CONFIG_PROC_FS) 1096 defined(CONFIG_PROC_FS) 1470 static void *frag_start(struct seq_file *m, l 1097 static void *frag_start(struct seq_file *m, loff_t *pos) 1471 { 1098 { 1472 pg_data_t *pgdat; 1099 pg_data_t *pgdat; 1473 loff_t node = *pos; 1100 loff_t node = *pos; 1474 1101 1475 for (pgdat = first_online_pgdat(); 1102 for (pgdat = first_online_pgdat(); 1476 pgdat && node; 1103 pgdat && node; 1477 pgdat = next_online_pgdat(pgdat) 1104 pgdat = next_online_pgdat(pgdat)) 1478 --node; 1105 --node; 1479 1106 1480 return pgdat; 1107 return pgdat; 1481 } 1108 } 1482 1109 1483 static void *frag_next(struct seq_file *m, vo 1110 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1484 { 1111 { 1485 pg_data_t *pgdat = (pg_data_t *)arg; 1112 pg_data_t *pgdat = (pg_data_t *)arg; 1486 1113 1487 (*pos)++; 1114 (*pos)++; 1488 return next_online_pgdat(pgdat); 1115 return next_online_pgdat(pgdat); 1489 } 1116 } 1490 1117 1491 static void frag_stop(struct seq_file *m, voi 1118 static void frag_stop(struct seq_file *m, void *arg) 1492 { 1119 { 1493 } 1120 } 1494 1121 1495 /* !! 1122 /* Walk all the zones in a node and print using a callback */ 1496 * Walk zones in a node and print using a cal << 1497 * If @assert_populated is true, only use cal << 1498 */ << 1499 static void walk_zones_in_node(struct seq_fil 1123 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1500 bool assert_populated, bool n << 1501 void (*print)(struct seq_file 1124 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1502 { 1125 { 1503 struct zone *zone; 1126 struct zone *zone; 1504 struct zone *node_zones = pgdat->node 1127 struct zone *node_zones = pgdat->node_zones; 1505 unsigned long flags; 1128 unsigned long flags; 1506 1129 1507 for (zone = node_zones; zone - node_z 1130 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1508 if (assert_populated && !popu !! 1131 if (!populated_zone(zone)) 1509 continue; 1132 continue; 1510 1133 1511 if (!nolock) !! 1134 spin_lock_irqsave(&zone->lock, flags); 1512 spin_lock_irqsave(&zo << 1513 print(m, pgdat, zone); 1135 print(m, pgdat, zone); 1514 if (!nolock) !! 1136 spin_unlock_irqrestore(&zone->lock, flags); 1515 spin_unlock_irqrestor << 1516 } 1137 } 1517 } 1138 } 1518 #endif 1139 #endif 1519 1140 1520 #ifdef CONFIG_PROC_FS 1141 #ifdef CONFIG_PROC_FS 1521 static void frag_show_print(struct seq_file * 1142 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1522 1143 struct zone *zone) 1523 { 1144 { 1524 int order; 1145 int order; 1525 1146 1526 seq_printf(m, "Node %d, zone %8s ", p 1147 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1527 for (order = 0; order < NR_PAGE_ORDER !! 1148 for (order = 0; order < MAX_ORDER; ++order) 1528 /* !! 1149 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1529 * Access to nr_free is lockl << 1530 * printing purposes. Use dat << 1531 */ << 1532 seq_printf(m, "%6lu ", data_r << 1533 seq_putc(m, '\n'); 1150 seq_putc(m, '\n'); 1534 } 1151 } 1535 1152 1536 /* 1153 /* 1537 * This walks the free areas for each zone. 1154 * This walks the free areas for each zone. 1538 */ 1155 */ 1539 static int frag_show(struct seq_file *m, void 1156 static int frag_show(struct seq_file *m, void *arg) 1540 { 1157 { 1541 pg_data_t *pgdat = (pg_data_t *)arg; 1158 pg_data_t *pgdat = (pg_data_t *)arg; 1542 walk_zones_in_node(m, pgdat, true, fa !! 1159 walk_zones_in_node(m, pgdat, frag_show_print); 1543 return 0; 1160 return 0; 1544 } 1161 } 1545 1162 1546 static void pagetypeinfo_showfree_print(struc 1163 static void pagetypeinfo_showfree_print(struct seq_file *m, 1547 pg_da 1164 pg_data_t *pgdat, struct zone *zone) 1548 { 1165 { 1549 int order, mtype; 1166 int order, mtype; 1550 1167 1551 for (mtype = 0; mtype < MIGRATE_TYPES 1168 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1552 seq_printf(m, "Node %4d, zone 1169 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1553 pgdat 1170 pgdat->node_id, 1554 zone- 1171 zone->name, 1555 migra 1172 migratetype_names[mtype]); 1556 for (order = 0; order < NR_PA !! 1173 for (order = 0; order < MAX_ORDER; ++order) { 1557 unsigned long freecou 1174 unsigned long freecount = 0; 1558 struct free_area *are 1175 struct free_area *area; 1559 struct list_head *cur 1176 struct list_head *curr; 1560 bool overflow = false << 1561 1177 1562 area = &(zone->free_a 1178 area = &(zone->free_area[order]); 1563 1179 1564 list_for_each(curr, & !! 1180 list_for_each(curr, &area->free_list[mtype]) 1565 /* !! 1181 freecount++; 1566 * Cap the fr !! 1182 seq_printf(m, "%6lu ", freecount); 1567 * be really << 1568 * so a long << 1569 * hard locku << 1570 * debugging << 1571 * of pages o << 1572 * sufficient << 1573 */ << 1574 if (++freecou << 1575 overf << 1576 break << 1577 } << 1578 } << 1579 seq_printf(m, "%s%6lu << 1580 spin_unlock_irq(&zone << 1581 cond_resched(); << 1582 spin_lock_irq(&zone-> << 1583 } 1183 } 1584 seq_putc(m, '\n'); 1184 seq_putc(m, '\n'); 1585 } 1185 } 1586 } 1186 } 1587 1187 1588 /* Print out the free pages at each order for 1188 /* Print out the free pages at each order for each migatetype */ 1589 static void pagetypeinfo_showfree(struct seq_ !! 1189 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1590 { 1190 { 1591 int order; 1191 int order; 1592 pg_data_t *pgdat = (pg_data_t *)arg; 1192 pg_data_t *pgdat = (pg_data_t *)arg; 1593 1193 1594 /* Print header */ 1194 /* Print header */ 1595 seq_printf(m, "%-43s ", "Free pages c 1195 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1596 for (order = 0; order < NR_PAGE_ORDER !! 1196 for (order = 0; order < MAX_ORDER; ++order) 1597 seq_printf(m, "%6d ", order); 1197 seq_printf(m, "%6d ", order); 1598 seq_putc(m, '\n'); 1198 seq_putc(m, '\n'); 1599 1199 1600 walk_zones_in_node(m, pgdat, true, fa !! 1200 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); >> 1201 >> 1202 return 0; 1601 } 1203 } 1602 1204 1603 static void pagetypeinfo_showblockcount_print 1205 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1604 pg_da 1206 pg_data_t *pgdat, struct zone *zone) 1605 { 1207 { 1606 int mtype; 1208 int mtype; 1607 unsigned long pfn; 1209 unsigned long pfn; 1608 unsigned long start_pfn = zone->zone_ 1210 unsigned long start_pfn = zone->zone_start_pfn; 1609 unsigned long end_pfn = zone_end_pfn( 1211 unsigned long end_pfn = zone_end_pfn(zone); 1610 unsigned long count[MIGRATE_TYPES] = 1212 unsigned long count[MIGRATE_TYPES] = { 0, }; 1611 1213 1612 for (pfn = start_pfn; pfn < end_pfn; 1214 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1613 struct page *page; 1215 struct page *page; 1614 1216 1615 page = pfn_to_online_page(pfn !! 1217 if (!pfn_valid(pfn)) 1616 if (!page) !! 1218 continue; >> 1219 >> 1220 page = pfn_to_page(pfn); >> 1221 >> 1222 /* Watch for unexpected holes punched in the memmap */ >> 1223 if (!memmap_valid_within(pfn, page, zone)) 1617 continue; 1224 continue; 1618 1225 1619 if (page_zone(page) != zone) 1226 if (page_zone(page) != zone) 1620 continue; 1227 continue; 1621 1228 1622 mtype = get_pageblock_migrate 1229 mtype = get_pageblock_migratetype(page); 1623 1230 1624 if (mtype < MIGRATE_TYPES) 1231 if (mtype < MIGRATE_TYPES) 1625 count[mtype]++; 1232 count[mtype]++; 1626 } 1233 } 1627 1234 1628 /* Print counts */ 1235 /* Print counts */ 1629 seq_printf(m, "Node %d, zone %8s ", p 1236 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1630 for (mtype = 0; mtype < MIGRATE_TYPES 1237 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1631 seq_printf(m, "%12lu ", count 1238 seq_printf(m, "%12lu ", count[mtype]); 1632 seq_putc(m, '\n'); 1239 seq_putc(m, '\n'); 1633 } 1240 } 1634 1241 1635 /* Print out the number of pageblocks for eac !! 1242 /* Print out the free pages at each order for each migratetype */ 1636 static void pagetypeinfo_showblockcount(struc !! 1243 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1637 { 1244 { 1638 int mtype; 1245 int mtype; 1639 pg_data_t *pgdat = (pg_data_t *)arg; 1246 pg_data_t *pgdat = (pg_data_t *)arg; 1640 1247 1641 seq_printf(m, "\n%-23s", "Number of b 1248 seq_printf(m, "\n%-23s", "Number of blocks type "); 1642 for (mtype = 0; mtype < MIGRATE_TYPES 1249 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1643 seq_printf(m, "%12s ", migrat 1250 seq_printf(m, "%12s ", migratetype_names[mtype]); 1644 seq_putc(m, '\n'); 1251 seq_putc(m, '\n'); 1645 walk_zones_in_node(m, pgdat, true, fa !! 1252 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1646 pagetypeinfo_showblockcount_p !! 1253 >> 1254 return 0; 1647 } 1255 } 1648 1256 1649 /* 1257 /* 1650 * Print out the number of pageblocks for eac 1258 * Print out the number of pageblocks for each migratetype that contain pages 1651 * of other types. This gives an indication o 1259 * of other types. This gives an indication of how well fallbacks are being 1652 * contained by rmqueue_fallback(). It requir 1260 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1653 * to determine what is going on 1261 * to determine what is going on 1654 */ 1262 */ 1655 static void pagetypeinfo_showmixedcount(struc 1263 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1656 { 1264 { 1657 #ifdef CONFIG_PAGE_OWNER 1265 #ifdef CONFIG_PAGE_OWNER 1658 int mtype; 1266 int mtype; 1659 1267 1660 if (!static_branch_unlikely(&page_own 1268 if (!static_branch_unlikely(&page_owner_inited)) 1661 return; 1269 return; 1662 1270 1663 drain_all_pages(NULL); 1271 drain_all_pages(NULL); 1664 1272 1665 seq_printf(m, "\n%-23s", "Number of m 1273 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1666 for (mtype = 0; mtype < MIGRATE_TYPES 1274 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1667 seq_printf(m, "%12s ", migrat 1275 seq_printf(m, "%12s ", migratetype_names[mtype]); 1668 seq_putc(m, '\n'); 1276 seq_putc(m, '\n'); 1669 1277 1670 walk_zones_in_node(m, pgdat, true, tr !! 1278 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1671 pagetypeinfo_showmixedcount_p << 1672 #endif /* CONFIG_PAGE_OWNER */ 1279 #endif /* CONFIG_PAGE_OWNER */ 1673 } 1280 } 1674 1281 1675 /* 1282 /* 1676 * This prints out statistics in relation to 1283 * This prints out statistics in relation to grouping pages by mobility. 1677 * It is expensive to collect so do not const 1284 * It is expensive to collect so do not constantly read the file. 1678 */ 1285 */ 1679 static int pagetypeinfo_show(struct seq_file 1286 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1680 { 1287 { 1681 pg_data_t *pgdat = (pg_data_t *)arg; 1288 pg_data_t *pgdat = (pg_data_t *)arg; 1682 1289 1683 /* check memoryless node */ 1290 /* check memoryless node */ 1684 if (!node_state(pgdat->node_id, N_MEM 1291 if (!node_state(pgdat->node_id, N_MEMORY)) 1685 return 0; 1292 return 0; 1686 1293 1687 seq_printf(m, "Page block order: %d\n 1294 seq_printf(m, "Page block order: %d\n", pageblock_order); 1688 seq_printf(m, "Pages per block: %lu\ 1295 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1689 seq_putc(m, '\n'); 1296 seq_putc(m, '\n'); 1690 pagetypeinfo_showfree(m, pgdat); 1297 pagetypeinfo_showfree(m, pgdat); 1691 pagetypeinfo_showblockcount(m, pgdat) 1298 pagetypeinfo_showblockcount(m, pgdat); 1692 pagetypeinfo_showmixedcount(m, pgdat) 1299 pagetypeinfo_showmixedcount(m, pgdat); 1693 1300 1694 return 0; 1301 return 0; 1695 } 1302 } 1696 1303 1697 static const struct seq_operations fragmentat 1304 static const struct seq_operations fragmentation_op = { 1698 .start = frag_start, 1305 .start = frag_start, 1699 .next = frag_next, 1306 .next = frag_next, 1700 .stop = frag_stop, 1307 .stop = frag_stop, 1701 .show = frag_show, 1308 .show = frag_show, 1702 }; 1309 }; 1703 1310 >> 1311 static int fragmentation_open(struct inode *inode, struct file *file) >> 1312 { >> 1313 return seq_open(file, &fragmentation_op); >> 1314 } >> 1315 >> 1316 static const struct file_operations fragmentation_file_operations = { >> 1317 .open = fragmentation_open, >> 1318 .read = seq_read, >> 1319 .llseek = seq_lseek, >> 1320 .release = seq_release, >> 1321 }; >> 1322 1704 static const struct seq_operations pagetypein 1323 static const struct seq_operations pagetypeinfo_op = { 1705 .start = frag_start, 1324 .start = frag_start, 1706 .next = frag_next, 1325 .next = frag_next, 1707 .stop = frag_stop, 1326 .stop = frag_stop, 1708 .show = pagetypeinfo_show, 1327 .show = pagetypeinfo_show, 1709 }; 1328 }; 1710 1329 >> 1330 static int pagetypeinfo_open(struct inode *inode, struct file *file) >> 1331 { >> 1332 return seq_open(file, &pagetypeinfo_op); >> 1333 } >> 1334 >> 1335 static const struct file_operations pagetypeinfo_file_ops = { >> 1336 .open = pagetypeinfo_open, >> 1337 .read = seq_read, >> 1338 .llseek = seq_lseek, >> 1339 .release = seq_release, >> 1340 }; >> 1341 1711 static bool is_zone_first_populated(pg_data_t 1342 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1712 { 1343 { 1713 int zid; 1344 int zid; 1714 1345 1715 for (zid = 0; zid < MAX_NR_ZONES; zid 1346 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1716 struct zone *compare = &pgdat 1347 struct zone *compare = &pgdat->node_zones[zid]; 1717 1348 1718 if (populated_zone(compare)) 1349 if (populated_zone(compare)) 1719 return zone == compar 1350 return zone == compare; 1720 } 1351 } 1721 1352 >> 1353 /* The zone must be somewhere! */ >> 1354 WARN_ON_ONCE(1); 1722 return false; 1355 return false; 1723 } 1356 } 1724 1357 1725 static void zoneinfo_show_print(struct seq_fi 1358 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1726 1359 struct zone *zone) 1727 { 1360 { 1728 int i; 1361 int i; 1729 seq_printf(m, "Node %d, zone %8s", pg 1362 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1730 if (is_zone_first_populated(pgdat, zo 1363 if (is_zone_first_populated(pgdat, zone)) { 1731 seq_printf(m, "\n per-node s 1364 seq_printf(m, "\n per-node stats"); 1732 for (i = 0; i < NR_VM_NODE_ST 1365 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1733 unsigned long pages = !! 1366 seq_printf(m, "\n %-12s %lu", 1734 !! 1367 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], 1735 if (vmstat_item_print !! 1368 node_page_state(pgdat, i)); 1736 pages /= HPAG << 1737 seq_printf(m, "\n << 1738 pages); << 1739 } 1369 } 1740 } 1370 } 1741 seq_printf(m, 1371 seq_printf(m, 1742 "\n pages free %lu" 1372 "\n pages free %lu" 1743 "\n boost %lu" << 1744 "\n min %lu" 1373 "\n min %lu" 1745 "\n low %lu" 1374 "\n low %lu" 1746 "\n high %lu" 1375 "\n high %lu" 1747 "\n promo %lu" !! 1376 "\n node_scanned %lu" 1748 "\n spanned %lu" 1377 "\n spanned %lu" 1749 "\n present %lu" 1378 "\n present %lu" 1750 "\n managed %lu" !! 1379 "\n managed %lu", 1751 "\n cma %lu", << 1752 zone_page_state(zone, NR_F 1380 zone_page_state(zone, NR_FREE_PAGES), 1753 zone->watermark_boost, << 1754 min_wmark_pages(zone), 1381 min_wmark_pages(zone), 1755 low_wmark_pages(zone), 1382 low_wmark_pages(zone), 1756 high_wmark_pages(zone), 1383 high_wmark_pages(zone), 1757 promo_wmark_pages(zone), !! 1384 node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED), 1758 zone->spanned_pages, 1385 zone->spanned_pages, 1759 zone->present_pages, 1386 zone->present_pages, 1760 zone_managed_pages(zone), !! 1387 zone->managed_pages); 1761 zone_cma_pages(zone)); !! 1388 >> 1389 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) >> 1390 seq_printf(m, "\n %-12s %lu", vmstat_text[i], >> 1391 zone_page_state(zone, i)); 1762 1392 1763 seq_printf(m, 1393 seq_printf(m, 1764 "\n protection: (%l 1394 "\n protection: (%ld", 1765 zone->lowmem_reserve[0]); 1395 zone->lowmem_reserve[0]); 1766 for (i = 1; i < ARRAY_SIZE(zone->lowm 1396 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1767 seq_printf(m, ", %ld", zone-> 1397 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1768 seq_putc(m, ')'); !! 1398 seq_printf(m, 1769 !! 1399 ")" 1770 /* If unpopulated, no other informati !! 1400 "\n pagesets"); 1771 if (!populated_zone(zone)) { << 1772 seq_putc(m, '\n'); << 1773 return; << 1774 } << 1775 << 1776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS << 1777 seq_printf(m, "\n %-12s << 1778 zone_page_state(zo << 1779 << 1780 #ifdef CONFIG_NUMA << 1781 for (i = 0; i < NR_VM_NUMA_EVENT_ITEM << 1782 seq_printf(m, "\n %-12s << 1783 zone_numa_event_st << 1784 #endif << 1785 << 1786 seq_printf(m, "\n pagesets"); << 1787 for_each_online_cpu(i) { 1401 for_each_online_cpu(i) { 1788 struct per_cpu_pages *pcp; !! 1402 struct per_cpu_pageset *pageset; 1789 struct per_cpu_zonestat __may << 1790 1403 1791 pcp = per_cpu_ptr(zone->per_c !! 1404 pageset = per_cpu_ptr(zone->pageset, i); 1792 seq_printf(m, 1405 seq_printf(m, 1793 "\n cpu: %i" 1406 "\n cpu: %i" 1794 "\n c 1407 "\n count: %i" 1795 "\n h 1408 "\n high: %i" 1796 "\n b 1409 "\n batch: %i", 1797 i, 1410 i, 1798 pcp->count, !! 1411 pageset->pcp.count, 1799 pcp->high, !! 1412 pageset->pcp.high, 1800 pcp->batch); !! 1413 pageset->pcp.batch); 1801 #ifdef CONFIG_SMP 1414 #ifdef CONFIG_SMP 1802 pzstats = per_cpu_ptr(zone->p << 1803 seq_printf(m, "\n vm stats t 1415 seq_printf(m, "\n vm stats threshold: %d", 1804 pzstats->stat !! 1416 pageset->stat_threshold); 1805 #endif 1417 #endif 1806 } 1418 } 1807 seq_printf(m, 1419 seq_printf(m, 1808 "\n node_unreclaimable: 1420 "\n node_unreclaimable: %u" 1809 "\n start_pfn: !! 1421 "\n start_pfn: %lu" 1810 pgdat->kswapd_failures >= !! 1422 "\n node_inactive_ratio: %u", 1811 zone->zone_start_pfn); !! 1423 !pgdat_reclaimable(zone->zone_pgdat), >> 1424 zone->zone_start_pfn, >> 1425 zone->zone_pgdat->inactive_ratio); 1812 seq_putc(m, '\n'); 1426 seq_putc(m, '\n'); 1813 } 1427 } 1814 1428 1815 /* 1429 /* 1816 * Output information about zones in @pgdat. !! 1430 * Output information about zones in @pgdat. 1817 * of whether they are populated or not: lowm << 1818 * set of all zones and userspace would not b << 1819 * suppressed here (zoneinfo displays the eff << 1820 */ 1431 */ 1821 static int zoneinfo_show(struct seq_file *m, 1432 static int zoneinfo_show(struct seq_file *m, void *arg) 1822 { 1433 { 1823 pg_data_t *pgdat = (pg_data_t *)arg; 1434 pg_data_t *pgdat = (pg_data_t *)arg; 1824 walk_zones_in_node(m, pgdat, false, f !! 1435 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1825 return 0; 1436 return 0; 1826 } 1437 } 1827 1438 1828 static const struct seq_operations zoneinfo_o 1439 static const struct seq_operations zoneinfo_op = { 1829 .start = frag_start, /* iterate over 1440 .start = frag_start, /* iterate over all zones. The same as in 1830 * fragmentatio 1441 * fragmentation. */ 1831 .next = frag_next, 1442 .next = frag_next, 1832 .stop = frag_stop, 1443 .stop = frag_stop, 1833 .show = zoneinfo_show, 1444 .show = zoneinfo_show, 1834 }; 1445 }; 1835 1446 1836 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEM !! 1447 static int zoneinfo_open(struct inode *inode, struct file *file) 1837 NR_VM_NUMA_EVENT_ITE !! 1448 { 1838 NR_VM_NODE_STAT_ITEM !! 1449 return seq_open(file, &zoneinfo_op); 1839 NR_VM_STAT_ITEMS + \ !! 1450 } 1840 (IS_ENABLED(CONFIG_V !! 1451 1841 NR_VM_EVENT_ITEMS : !! 1452 static const struct file_operations proc_zoneinfo_file_operations = { >> 1453 .open = zoneinfo_open, >> 1454 .read = seq_read, >> 1455 .llseek = seq_lseek, >> 1456 .release = seq_release, >> 1457 }; >> 1458 >> 1459 enum writeback_stat_item { >> 1460 NR_DIRTY_THRESHOLD, >> 1461 NR_DIRTY_BG_THRESHOLD, >> 1462 NR_VM_WRITEBACK_STAT_ITEMS, >> 1463 }; 1842 1464 1843 static void *vmstat_start(struct seq_file *m, 1465 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1844 { 1466 { 1845 unsigned long *v; 1467 unsigned long *v; 1846 int i; !! 1468 int i, stat_items_size; 1847 1469 1848 if (*pos >= NR_VMSTAT_ITEMS) !! 1470 if (*pos >= ARRAY_SIZE(vmstat_text)) 1849 return NULL; 1471 return NULL; >> 1472 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + >> 1473 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + >> 1474 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1850 1475 1851 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) !! 1476 #ifdef CONFIG_VM_EVENT_COUNTERS 1852 fold_vm_numa_events(); !! 1477 stat_items_size += sizeof(struct vm_event_state); 1853 v = kmalloc_array(NR_VMSTAT_ITEMS, si !! 1478 #endif >> 1479 >> 1480 v = kmalloc(stat_items_size, GFP_KERNEL); 1854 m->private = v; 1481 m->private = v; 1855 if (!v) 1482 if (!v) 1856 return ERR_PTR(-ENOMEM); 1483 return ERR_PTR(-ENOMEM); 1857 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS 1484 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1858 v[i] = global_zone_page_state !! 1485 v[i] = global_page_state(i); 1859 v += NR_VM_ZONE_STAT_ITEMS; 1486 v += NR_VM_ZONE_STAT_ITEMS; 1860 1487 1861 #ifdef CONFIG_NUMA !! 1488 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1862 for (i = 0; i < NR_VM_NUMA_EVENT_ITEM !! 1489 v[i] = global_node_page_state(i); 1863 v[i] = global_numa_event_stat << 1864 v += NR_VM_NUMA_EVENT_ITEMS; << 1865 #endif << 1866 << 1867 for (i = 0; i < NR_VM_NODE_STAT_ITEMS << 1868 v[i] = global_node_page_state << 1869 if (vmstat_item_print_in_thp( << 1870 v[i] /= HPAGE_PMD_NR; << 1871 } << 1872 v += NR_VM_NODE_STAT_ITEMS; 1490 v += NR_VM_NODE_STAT_ITEMS; 1873 1491 1874 global_dirty_limits(v + NR_DIRTY_BG_T 1492 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1875 v + NR_DIRTY_THRE 1493 v + NR_DIRTY_THRESHOLD); 1876 v[NR_MEMMAP_PAGES] = atomic_long_read !! 1494 v += NR_VM_WRITEBACK_STAT_ITEMS; 1877 v[NR_MEMMAP_BOOT_PAGES] = atomic_long << 1878 v += NR_VM_STAT_ITEMS; << 1879 1495 1880 #ifdef CONFIG_VM_EVENT_COUNTERS 1496 #ifdef CONFIG_VM_EVENT_COUNTERS 1881 all_vm_events(v); 1497 all_vm_events(v); 1882 v[PGPGIN] /= 2; /* sectors -> 1498 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1883 v[PGPGOUT] /= 2; 1499 v[PGPGOUT] /= 2; 1884 #endif 1500 #endif 1885 return (unsigned long *)m->private + 1501 return (unsigned long *)m->private + *pos; 1886 } 1502 } 1887 1503 1888 static void *vmstat_next(struct seq_file *m, 1504 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1889 { 1505 { 1890 (*pos)++; 1506 (*pos)++; 1891 if (*pos >= NR_VMSTAT_ITEMS) !! 1507 if (*pos >= ARRAY_SIZE(vmstat_text)) 1892 return NULL; 1508 return NULL; 1893 return (unsigned long *)m->private + 1509 return (unsigned long *)m->private + *pos; 1894 } 1510 } 1895 1511 1896 static int vmstat_show(struct seq_file *m, vo 1512 static int vmstat_show(struct seq_file *m, void *arg) 1897 { 1513 { 1898 unsigned long *l = arg; 1514 unsigned long *l = arg; 1899 unsigned long off = l - (unsigned lon 1515 unsigned long off = l - (unsigned long *)m->private; 1900 1516 1901 seq_puts(m, vmstat_text[off]); 1517 seq_puts(m, vmstat_text[off]); 1902 seq_put_decimal_ull(m, " ", *l); 1518 seq_put_decimal_ull(m, " ", *l); 1903 seq_putc(m, '\n'); 1519 seq_putc(m, '\n'); 1904 << 1905 if (off == NR_VMSTAT_ITEMS - 1) { << 1906 /* << 1907 * We've come to the end - ad << 1908 * breaking userspace which m << 1909 */ << 1910 seq_puts(m, "nr_unstable 0\n" << 1911 } << 1912 return 0; 1520 return 0; 1913 } 1521 } 1914 1522 1915 static void vmstat_stop(struct seq_file *m, v 1523 static void vmstat_stop(struct seq_file *m, void *arg) 1916 { 1524 { 1917 kfree(m->private); 1525 kfree(m->private); 1918 m->private = NULL; 1526 m->private = NULL; 1919 } 1527 } 1920 1528 1921 static const struct seq_operations vmstat_op 1529 static const struct seq_operations vmstat_op = { 1922 .start = vmstat_start, 1530 .start = vmstat_start, 1923 .next = vmstat_next, 1531 .next = vmstat_next, 1924 .stop = vmstat_stop, 1532 .stop = vmstat_stop, 1925 .show = vmstat_show, 1533 .show = vmstat_show, 1926 }; 1534 }; >> 1535 >> 1536 static int vmstat_open(struct inode *inode, struct file *file) >> 1537 { >> 1538 return seq_open(file, &vmstat_op); >> 1539 } >> 1540 >> 1541 static const struct file_operations proc_vmstat_file_operations = { >> 1542 .open = vmstat_open, >> 1543 .read = seq_read, >> 1544 .llseek = seq_lseek, >> 1545 .release = seq_release, >> 1546 }; 1927 #endif /* CONFIG_PROC_FS */ 1547 #endif /* CONFIG_PROC_FS */ 1928 1548 1929 #ifdef CONFIG_SMP 1549 #ifdef CONFIG_SMP >> 1550 static struct workqueue_struct *vmstat_wq; 1930 static DEFINE_PER_CPU(struct delayed_work, vm 1551 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1931 int sysctl_stat_interval __read_mostly = HZ; 1552 int sysctl_stat_interval __read_mostly = HZ; 1932 1553 1933 #ifdef CONFIG_PROC_FS 1554 #ifdef CONFIG_PROC_FS 1934 static void refresh_vm_stats(struct work_stru 1555 static void refresh_vm_stats(struct work_struct *work) 1935 { 1556 { 1936 refresh_cpu_vm_stats(true); 1557 refresh_cpu_vm_stats(true); 1937 } 1558 } 1938 1559 1939 int vmstat_refresh(const struct ctl_table *ta !! 1560 int vmstat_refresh(struct ctl_table *table, int write, 1940 void *buffer, size_t *lenp !! 1561 void __user *buffer, size_t *lenp, loff_t *ppos) 1941 { 1562 { 1942 long val; 1563 long val; 1943 int err; 1564 int err; 1944 int i; 1565 int i; 1945 1566 1946 /* 1567 /* 1947 * The regular update, every sysctl_s 1568 * The regular update, every sysctl_stat_interval, may come later 1948 * than expected: leaving a significa 1569 * than expected: leaving a significant amount in per_cpu buckets. 1949 * This is particularly misleading wh 1570 * This is particularly misleading when checking a quantity of HUGE 1950 * pages, immediately after running a 1571 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1951 * which can equally be echo'ed to or 1572 * which can equally be echo'ed to or cat'ted from (by root), 1952 * can be used to update the stats ju 1573 * can be used to update the stats just before reading them. 1953 * 1574 * 1954 * Oh, and since global_zone_page_sta !! 1575 * Oh, and since global_page_state() etc. are so careful to hide 1955 * transiently negative values, repor 1576 * transiently negative values, report an error here if any of 1956 * the stats is negative, so we know 1577 * the stats is negative, so we know to go looking for imbalance. 1957 */ 1578 */ 1958 err = schedule_on_each_cpu(refresh_vm 1579 err = schedule_on_each_cpu(refresh_vm_stats); 1959 if (err) 1580 if (err) 1960 return err; 1581 return err; 1961 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS 1582 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1962 /* << 1963 * Skip checking stats known << 1964 */ << 1965 switch (i) { << 1966 case NR_ZONE_WRITE_PENDING: << 1967 case NR_FREE_CMA_PAGES: << 1968 continue; << 1969 } << 1970 val = atomic_long_read(&vm_zo 1583 val = atomic_long_read(&vm_zone_stat[i]); 1971 if (val < 0) { 1584 if (val < 0) { 1972 pr_warn("%s: %s %ld\n !! 1585 switch (i) { 1973 __func__, zon !! 1586 case NR_PAGES_SCANNED: 1974 } !! 1587 /* 1975 } !! 1588 * This is often seen to go negative in 1976 for (i = 0; i < NR_VM_NODE_STAT_ITEMS !! 1589 * recent kernels, but not to go permanently 1977 /* !! 1590 * negative. Whilst it would be nicer not to 1978 * Skip checking stats known !! 1591 * have exceptions, rooting them out would be 1979 */ !! 1592 * another task, of rather low priority. 1980 switch (i) { !! 1593 */ 1981 case NR_WRITEBACK: !! 1594 break; 1982 continue; !! 1595 default: 1983 } !! 1596 pr_warn("%s: %s %ld\n", 1984 val = atomic_long_read(&vm_no !! 1597 __func__, vmstat_text[i], val); 1985 if (val < 0) { !! 1598 err = -EINVAL; 1986 pr_warn("%s: %s %ld\n !! 1599 break; 1987 __func__, nod !! 1600 } 1988 } 1601 } 1989 } 1602 } >> 1603 if (err) >> 1604 return err; 1990 if (write) 1605 if (write) 1991 *ppos += *lenp; 1606 *ppos += *lenp; 1992 else 1607 else 1993 *lenp = 0; 1608 *lenp = 0; 1994 return 0; 1609 return 0; 1995 } 1610 } 1996 #endif /* CONFIG_PROC_FS */ 1611 #endif /* CONFIG_PROC_FS */ 1997 1612 1998 static void vmstat_update(struct work_struct 1613 static void vmstat_update(struct work_struct *w) 1999 { 1614 { 2000 if (refresh_cpu_vm_stats(true)) { 1615 if (refresh_cpu_vm_stats(true)) { 2001 /* 1616 /* 2002 * Counters were updated so w 1617 * Counters were updated so we expect more updates 2003 * to occur in the future. Ke 1618 * to occur in the future. Keep on running the 2004 * update worker thread. 1619 * update worker thread. 2005 */ 1620 */ 2006 queue_delayed_work_on(smp_pro !! 1621 queue_delayed_work_on(smp_processor_id(), vmstat_wq, 2007 this_cpu_ptr( 1622 this_cpu_ptr(&vmstat_work), 2008 round_jiffies 1623 round_jiffies_relative(sysctl_stat_interval)); 2009 } 1624 } 2010 } 1625 } 2011 1626 2012 /* 1627 /* >> 1628 * Switch off vmstat processing and then fold all the remaining differentials >> 1629 * until the diffs stay at zero. The function is used by NOHZ and can only be >> 1630 * invoked when tick processing is not active. >> 1631 */ >> 1632 /* 2013 * Check if the diffs for a certain cpu indic 1633 * Check if the diffs for a certain cpu indicate that 2014 * an update is needed. 1634 * an update is needed. 2015 */ 1635 */ 2016 static bool need_update(int cpu) 1636 static bool need_update(int cpu) 2017 { 1637 { 2018 pg_data_t *last_pgdat = NULL; << 2019 struct zone *zone; 1638 struct zone *zone; 2020 1639 2021 for_each_populated_zone(zone) { 1640 for_each_populated_zone(zone) { 2022 struct per_cpu_zonestat *pzst !! 1641 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 2023 struct per_cpu_nodestat *n; << 2024 1642 >> 1643 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 2025 /* 1644 /* 2026 * The fast way of checking i 1645 * The fast way of checking if there are any vmstat diffs. >> 1646 * This works because the diffs are byte sized items. 2027 */ 1647 */ 2028 if (memchr_inv(pzstats->vm_st !! 1648 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 2029 return true; 1649 return true; 2030 1650 2031 if (last_pgdat == zone->zone_ << 2032 continue; << 2033 last_pgdat = zone->zone_pgdat << 2034 n = per_cpu_ptr(zone->zone_pg << 2035 if (memchr_inv(n->vm_node_sta << 2036 return true; << 2037 } 1651 } 2038 return false; 1652 return false; 2039 } 1653 } 2040 1654 2041 /* 1655 /* 2042 * Switch off vmstat processing and then fold 1656 * Switch off vmstat processing and then fold all the remaining differentials 2043 * until the diffs stay at zero. The function 1657 * until the diffs stay at zero. The function is used by NOHZ and can only be 2044 * invoked when tick processing is not active 1658 * invoked when tick processing is not active. 2045 */ 1659 */ 2046 void quiet_vmstat(void) 1660 void quiet_vmstat(void) 2047 { 1661 { 2048 if (system_state != SYSTEM_RUNNING) 1662 if (system_state != SYSTEM_RUNNING) 2049 return; 1663 return; 2050 1664 2051 if (!delayed_work_pending(this_cpu_pt 1665 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 2052 return; 1666 return; 2053 1667 2054 if (!need_update(smp_processor_id())) 1668 if (!need_update(smp_processor_id())) 2055 return; 1669 return; 2056 1670 2057 /* 1671 /* 2058 * Just refresh counters and do not c 1672 * Just refresh counters and do not care about the pending delayed 2059 * vmstat_update. It doesn't fire tha 1673 * vmstat_update. It doesn't fire that often to matter and canceling 2060 * it would be too expensive from thi 1674 * it would be too expensive from this path. 2061 * vmstat_shepherd will take care abo 1675 * vmstat_shepherd will take care about that for us. 2062 */ 1676 */ 2063 refresh_cpu_vm_stats(false); 1677 refresh_cpu_vm_stats(false); 2064 } 1678 } 2065 1679 2066 /* 1680 /* 2067 * Shepherd worker thread that checks the 1681 * Shepherd worker thread that checks the 2068 * differentials of processors that have thei 1682 * differentials of processors that have their worker 2069 * threads for vm statistics updates disabled 1683 * threads for vm statistics updates disabled because of 2070 * inactivity. 1684 * inactivity. 2071 */ 1685 */ 2072 static void vmstat_shepherd(struct work_struc 1686 static void vmstat_shepherd(struct work_struct *w); 2073 1687 2074 static DECLARE_DEFERRABLE_WORK(shepherd, vmst 1688 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2075 1689 2076 static void vmstat_shepherd(struct work_struc 1690 static void vmstat_shepherd(struct work_struct *w) 2077 { 1691 { 2078 int cpu; 1692 int cpu; 2079 1693 2080 cpus_read_lock(); !! 1694 get_online_cpus(); 2081 /* Check processors whose vmstat work 1695 /* Check processors whose vmstat worker threads have been disabled */ 2082 for_each_online_cpu(cpu) { 1696 for_each_online_cpu(cpu) { 2083 struct delayed_work *dw = &pe 1697 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2084 1698 2085 /* << 2086 * In kernel users of vmstat << 2087 * they are using zone_page_s << 2088 * an imprecision as the regu << 2089 * cumulative error can grow << 2090 * << 2091 * From that POV the regular << 2092 * been isolated from the ker << 2093 * infrastructure ever notici << 2094 * for all isolated CPUs to a << 2095 */ << 2096 if (cpu_is_isolated(cpu)) << 2097 continue; << 2098 << 2099 if (!delayed_work_pending(dw) 1699 if (!delayed_work_pending(dw) && need_update(cpu)) 2100 queue_delayed_work_on !! 1700 queue_delayed_work_on(cpu, vmstat_wq, dw, 0); 2101 << 2102 cond_resched(); << 2103 } 1701 } 2104 cpus_read_unlock(); !! 1702 put_online_cpus(); 2105 1703 2106 schedule_delayed_work(&shepherd, 1704 schedule_delayed_work(&shepherd, 2107 round_jiffies_relative(sysctl 1705 round_jiffies_relative(sysctl_stat_interval)); 2108 } 1706 } 2109 1707 2110 static void __init start_shepherd_timer(void) 1708 static void __init start_shepherd_timer(void) 2111 { 1709 { 2112 int cpu; 1710 int cpu; 2113 1711 2114 for_each_possible_cpu(cpu) 1712 for_each_possible_cpu(cpu) 2115 INIT_DEFERRABLE_WORK(per_cpu_ 1713 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2116 vmstat_update); 1714 vmstat_update); 2117 1715 >> 1716 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); 2118 schedule_delayed_work(&shepherd, 1717 schedule_delayed_work(&shepherd, 2119 round_jiffies_relative(sysctl 1718 round_jiffies_relative(sysctl_stat_interval)); 2120 } 1719 } 2121 1720 2122 static void __init init_cpu_node_state(void) 1721 static void __init init_cpu_node_state(void) 2123 { 1722 { 2124 int node; 1723 int node; 2125 1724 2126 for_each_online_node(node) { 1725 for_each_online_node(node) { 2127 if (!cpumask_empty(cpumask_of !! 1726 if (cpumask_weight(cpumask_of_node(node)) > 0) 2128 node_set_state(node, 1727 node_set_state(node, N_CPU); 2129 } 1728 } 2130 } 1729 } 2131 1730 2132 static int vmstat_cpu_online(unsigned int cpu 1731 static int vmstat_cpu_online(unsigned int cpu) 2133 { 1732 { 2134 refresh_zone_stat_thresholds(); 1733 refresh_zone_stat_thresholds(); 2135 !! 1734 node_set_state(cpu_to_node(cpu), N_CPU); 2136 if (!node_state(cpu_to_node(cpu), N_C << 2137 node_set_state(cpu_to_node(cp << 2138 } << 2139 << 2140 return 0; 1735 return 0; 2141 } 1736 } 2142 1737 2143 static int vmstat_cpu_down_prep(unsigned int 1738 static int vmstat_cpu_down_prep(unsigned int cpu) 2144 { 1739 { 2145 cancel_delayed_work_sync(&per_cpu(vms 1740 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2146 return 0; 1741 return 0; 2147 } 1742 } 2148 1743 2149 static int vmstat_cpu_dead(unsigned int cpu) 1744 static int vmstat_cpu_dead(unsigned int cpu) 2150 { 1745 { 2151 const struct cpumask *node_cpus; 1746 const struct cpumask *node_cpus; 2152 int node; 1747 int node; 2153 1748 2154 node = cpu_to_node(cpu); 1749 node = cpu_to_node(cpu); 2155 1750 2156 refresh_zone_stat_thresholds(); 1751 refresh_zone_stat_thresholds(); 2157 node_cpus = cpumask_of_node(node); 1752 node_cpus = cpumask_of_node(node); 2158 if (!cpumask_empty(node_cpus)) !! 1753 if (cpumask_weight(node_cpus) > 0) 2159 return 0; 1754 return 0; 2160 1755 2161 node_clear_state(node, N_CPU); 1756 node_clear_state(node, N_CPU); 2162 << 2163 return 0; 1757 return 0; 2164 } 1758 } 2165 1759 2166 #endif 1760 #endif 2167 1761 2168 struct workqueue_struct *mm_percpu_wq; !! 1762 static int __init setup_vmstat(void) 2169 << 2170 void __init init_mm_internals(void) << 2171 { 1763 { 2172 int ret __maybe_unused; << 2173 << 2174 mm_percpu_wq = alloc_workqueue("mm_pe << 2175 << 2176 #ifdef CONFIG_SMP 1764 #ifdef CONFIG_SMP >> 1765 int ret; >> 1766 2177 ret = cpuhp_setup_state_nocalls(CPUHP 1767 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2178 NULL, 1768 NULL, vmstat_cpu_dead); 2179 if (ret < 0) 1769 if (ret < 0) 2180 pr_err("vmstat: failed to reg 1770 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2181 1771 2182 ret = cpuhp_setup_state_nocalls(CPUHP 1772 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2183 vmsta 1773 vmstat_cpu_online, 2184 vmsta 1774 vmstat_cpu_down_prep); 2185 if (ret < 0) 1775 if (ret < 0) 2186 pr_err("vmstat: failed to reg 1776 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2187 1777 2188 cpus_read_lock(); !! 1778 get_online_cpus(); 2189 init_cpu_node_state(); 1779 init_cpu_node_state(); 2190 cpus_read_unlock(); !! 1780 put_online_cpus(); 2191 1781 2192 start_shepherd_timer(); 1782 start_shepherd_timer(); 2193 #endif 1783 #endif 2194 #ifdef CONFIG_PROC_FS 1784 #ifdef CONFIG_PROC_FS 2195 proc_create_seq("buddyinfo", 0444, NU !! 1785 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 2196 proc_create_seq("pagetypeinfo", 0400, !! 1786 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 2197 proc_create_seq("vmstat", 0444, NULL, !! 1787 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 2198 proc_create_seq("zoneinfo", 0444, NUL !! 1788 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 2199 #endif 1789 #endif >> 1790 return 0; 2200 } 1791 } >> 1792 module_init(setup_vmstat) 2201 1793 2202 #if defined(CONFIG_DEBUG_FS) && defined(CONFI 1794 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2203 1795 2204 /* 1796 /* 2205 * Return an index indicating how much of the 1797 * Return an index indicating how much of the available free memory is 2206 * unusable for an allocation of the requeste 1798 * unusable for an allocation of the requested size. 2207 */ 1799 */ 2208 static int unusable_free_index(unsigned int o 1800 static int unusable_free_index(unsigned int order, 2209 struct contig 1801 struct contig_page_info *info) 2210 { 1802 { 2211 /* No free memory is interpreted as a 1803 /* No free memory is interpreted as all free memory is unusable */ 2212 if (info->free_pages == 0) 1804 if (info->free_pages == 0) 2213 return 1000; 1805 return 1000; 2214 1806 2215 /* 1807 /* 2216 * Index should be a value between 0 1808 * Index should be a value between 0 and 1. Return a value to 3 2217 * decimal places. 1809 * decimal places. 2218 * 1810 * 2219 * 0 => no fragmentation 1811 * 0 => no fragmentation 2220 * 1 => high fragmentation 1812 * 1 => high fragmentation 2221 */ 1813 */ 2222 return div_u64((info->free_pages - (i 1814 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2223 1815 2224 } 1816 } 2225 1817 2226 static void unusable_show_print(struct seq_fi 1818 static void unusable_show_print(struct seq_file *m, 2227 pg_da 1819 pg_data_t *pgdat, struct zone *zone) 2228 { 1820 { 2229 unsigned int order; 1821 unsigned int order; 2230 int index; 1822 int index; 2231 struct contig_page_info info; 1823 struct contig_page_info info; 2232 1824 2233 seq_printf(m, "Node %d, zone %8s ", 1825 seq_printf(m, "Node %d, zone %8s ", 2234 pgdat->node_i 1826 pgdat->node_id, 2235 zone->name); 1827 zone->name); 2236 for (order = 0; order < NR_PAGE_ORDER !! 1828 for (order = 0; order < MAX_ORDER; ++order) { 2237 fill_contig_page_info(zone, o 1829 fill_contig_page_info(zone, order, &info); 2238 index = unusable_free_index(o 1830 index = unusable_free_index(order, &info); 2239 seq_printf(m, "%d.%03d ", ind 1831 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2240 } 1832 } 2241 1833 2242 seq_putc(m, '\n'); 1834 seq_putc(m, '\n'); 2243 } 1835 } 2244 1836 2245 /* 1837 /* 2246 * Display unusable free space index 1838 * Display unusable free space index 2247 * 1839 * 2248 * The unusable free space index measures how 1840 * The unusable free space index measures how much of the available free 2249 * memory cannot be used to satisfy an alloca 1841 * memory cannot be used to satisfy an allocation of a given size and is a 2250 * value between 0 and 1. The higher the valu 1842 * value between 0 and 1. The higher the value, the more of free memory is 2251 * unusable and by implication, the worse the 1843 * unusable and by implication, the worse the external fragmentation is. This 2252 * can be expressed as a percentage by multip 1844 * can be expressed as a percentage by multiplying by 100. 2253 */ 1845 */ 2254 static int unusable_show(struct seq_file *m, 1846 static int unusable_show(struct seq_file *m, void *arg) 2255 { 1847 { 2256 pg_data_t *pgdat = (pg_data_t *)arg; 1848 pg_data_t *pgdat = (pg_data_t *)arg; 2257 1849 2258 /* check memoryless node */ 1850 /* check memoryless node */ 2259 if (!node_state(pgdat->node_id, N_MEM 1851 if (!node_state(pgdat->node_id, N_MEMORY)) 2260 return 0; 1852 return 0; 2261 1853 2262 walk_zones_in_node(m, pgdat, true, fa !! 1854 walk_zones_in_node(m, pgdat, unusable_show_print); 2263 1855 2264 return 0; 1856 return 0; 2265 } 1857 } 2266 1858 2267 static const struct seq_operations unusable_s !! 1859 static const struct seq_operations unusable_op = { 2268 .start = frag_start, 1860 .start = frag_start, 2269 .next = frag_next, 1861 .next = frag_next, 2270 .stop = frag_stop, 1862 .stop = frag_stop, 2271 .show = unusable_show, 1863 .show = unusable_show, 2272 }; 1864 }; 2273 1865 2274 DEFINE_SEQ_ATTRIBUTE(unusable); !! 1866 static int unusable_open(struct inode *inode, struct file *file) >> 1867 { >> 1868 return seq_open(file, &unusable_op); >> 1869 } >> 1870 >> 1871 static const struct file_operations unusable_file_ops = { >> 1872 .open = unusable_open, >> 1873 .read = seq_read, >> 1874 .llseek = seq_lseek, >> 1875 .release = seq_release, >> 1876 }; 2275 1877 2276 static void extfrag_show_print(struct seq_fil 1878 static void extfrag_show_print(struct seq_file *m, 2277 pg_da 1879 pg_data_t *pgdat, struct zone *zone) 2278 { 1880 { 2279 unsigned int order; 1881 unsigned int order; 2280 int index; 1882 int index; 2281 1883 2282 /* Alloc on stack as interrupts are d 1884 /* Alloc on stack as interrupts are disabled for zone walk */ 2283 struct contig_page_info info; 1885 struct contig_page_info info; 2284 1886 2285 seq_printf(m, "Node %d, zone %8s ", 1887 seq_printf(m, "Node %d, zone %8s ", 2286 pgdat->node_i 1888 pgdat->node_id, 2287 zone->name); 1889 zone->name); 2288 for (order = 0; order < NR_PAGE_ORDER !! 1890 for (order = 0; order < MAX_ORDER; ++order) { 2289 fill_contig_page_info(zone, o 1891 fill_contig_page_info(zone, order, &info); 2290 index = __fragmentation_index 1892 index = __fragmentation_index(order, &info); 2291 seq_printf(m, "%2d.%03d ", in !! 1893 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2292 } 1894 } 2293 1895 2294 seq_putc(m, '\n'); 1896 seq_putc(m, '\n'); 2295 } 1897 } 2296 1898 2297 /* 1899 /* 2298 * Display fragmentation index for orders tha 1900 * Display fragmentation index for orders that allocations would fail for 2299 */ 1901 */ 2300 static int extfrag_show(struct seq_file *m, v 1902 static int extfrag_show(struct seq_file *m, void *arg) 2301 { 1903 { 2302 pg_data_t *pgdat = (pg_data_t *)arg; 1904 pg_data_t *pgdat = (pg_data_t *)arg; 2303 1905 2304 walk_zones_in_node(m, pgdat, true, fa !! 1906 walk_zones_in_node(m, pgdat, extfrag_show_print); 2305 1907 2306 return 0; 1908 return 0; 2307 } 1909 } 2308 1910 2309 static const struct seq_operations extfrag_so !! 1911 static const struct seq_operations extfrag_op = { 2310 .start = frag_start, 1912 .start = frag_start, 2311 .next = frag_next, 1913 .next = frag_next, 2312 .stop = frag_stop, 1914 .stop = frag_stop, 2313 .show = extfrag_show, 1915 .show = extfrag_show, 2314 }; 1916 }; 2315 1917 2316 DEFINE_SEQ_ATTRIBUTE(extfrag); !! 1918 static int extfrag_open(struct inode *inode, struct file *file) >> 1919 { >> 1920 return seq_open(file, &extfrag_op); >> 1921 } >> 1922 >> 1923 static const struct file_operations extfrag_file_ops = { >> 1924 .open = extfrag_open, >> 1925 .read = seq_read, >> 1926 .llseek = seq_lseek, >> 1927 .release = seq_release, >> 1928 }; 2317 1929 2318 static int __init extfrag_debug_init(void) 1930 static int __init extfrag_debug_init(void) 2319 { 1931 { 2320 struct dentry *extfrag_debug_root; 1932 struct dentry *extfrag_debug_root; 2321 1933 2322 extfrag_debug_root = debugfs_create_d 1934 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); >> 1935 if (!extfrag_debug_root) >> 1936 return -ENOMEM; 2323 1937 2324 debugfs_create_file("unusable_index", !! 1938 if (!debugfs_create_file("unusable_index", 0444, 2325 &unusable_fops); !! 1939 extfrag_debug_root, NULL, &unusable_file_ops)) 2326 !! 1940 goto fail; 2327 debugfs_create_file("extfrag_index", !! 1941 2328 &extfrag_fops); !! 1942 if (!debugfs_create_file("extfrag_index", 0444, >> 1943 extfrag_debug_root, NULL, &extfrag_file_ops)) >> 1944 goto fail; 2329 1945 2330 return 0; 1946 return 0; >> 1947 fail: >> 1948 debugfs_remove_recursive(extfrag_debug_root); >> 1949 return -ENOMEM; 2331 } 1950 } 2332 1951 2333 module_init(extfrag_debug_init); 1952 module_init(extfrag_debug_init); 2334 << 2335 #endif 1953 #endif 2336 1954
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.