1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * zpool memory storage api 3 * zpool memory storage api 4 * 4 * 5 * Copyright (C) 2014 Dan Streetman 5 * Copyright (C) 2014 Dan Streetman 6 * 6 * 7 * This is a common frontend for memory storag 7 * This is a common frontend for memory storage pool implementations. 8 * Typically, this is used to store compressed 8 * Typically, this is used to store compressed memory. 9 */ 9 */ 10 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 12 13 #include <linux/list.h> 13 #include <linux/list.h> 14 #include <linux/types.h> 14 #include <linux/types.h> 15 #include <linux/mm.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 17 #include <linux/spinlock.h> 18 #include <linux/module.h> 18 #include <linux/module.h> 19 #include <linux/zpool.h> 19 #include <linux/zpool.h> 20 20 21 struct zpool { 21 struct zpool { 22 struct zpool_driver *driver; 22 struct zpool_driver *driver; 23 void *pool; 23 void *pool; 24 }; 24 }; 25 25 26 static LIST_HEAD(drivers_head); 26 static LIST_HEAD(drivers_head); 27 static DEFINE_SPINLOCK(drivers_lock); 27 static DEFINE_SPINLOCK(drivers_lock); 28 28 29 /** 29 /** 30 * zpool_register_driver() - register a zpool 30 * zpool_register_driver() - register a zpool implementation. 31 * @driver: driver to register 31 * @driver: driver to register 32 */ 32 */ 33 void zpool_register_driver(struct zpool_driver 33 void zpool_register_driver(struct zpool_driver *driver) 34 { 34 { 35 spin_lock(&drivers_lock); 35 spin_lock(&drivers_lock); 36 atomic_set(&driver->refcount, 0); 36 atomic_set(&driver->refcount, 0); 37 list_add(&driver->list, &drivers_head) 37 list_add(&driver->list, &drivers_head); 38 spin_unlock(&drivers_lock); 38 spin_unlock(&drivers_lock); 39 } 39 } 40 EXPORT_SYMBOL(zpool_register_driver); 40 EXPORT_SYMBOL(zpool_register_driver); 41 41 42 /** 42 /** 43 * zpool_unregister_driver() - unregister a zp 43 * zpool_unregister_driver() - unregister a zpool implementation. 44 * @driver: driver to unregister. 44 * @driver: driver to unregister. 45 * 45 * 46 * Module usage counting is used to prevent us 46 * Module usage counting is used to prevent using a driver 47 * while/after unloading, so if this is called 47 * while/after unloading, so if this is called from module 48 * exit function, this should never fail; if c 48 * exit function, this should never fail; if called from 49 * other than the module exit function, and th 49 * other than the module exit function, and this returns 50 * failure, the driver is in use and must rema 50 * failure, the driver is in use and must remain available. 51 */ 51 */ 52 int zpool_unregister_driver(struct zpool_drive 52 int zpool_unregister_driver(struct zpool_driver *driver) 53 { 53 { 54 int ret = 0, refcount; 54 int ret = 0, refcount; 55 55 56 spin_lock(&drivers_lock); 56 spin_lock(&drivers_lock); 57 refcount = atomic_read(&driver->refcou 57 refcount = atomic_read(&driver->refcount); 58 WARN_ON(refcount < 0); 58 WARN_ON(refcount < 0); 59 if (refcount > 0) 59 if (refcount > 0) 60 ret = -EBUSY; 60 ret = -EBUSY; 61 else 61 else 62 list_del(&driver->list); 62 list_del(&driver->list); 63 spin_unlock(&drivers_lock); 63 spin_unlock(&drivers_lock); 64 64 65 return ret; 65 return ret; 66 } 66 } 67 EXPORT_SYMBOL(zpool_unregister_driver); 67 EXPORT_SYMBOL(zpool_unregister_driver); 68 68 69 /* this assumes @type is null-terminated. */ 69 /* this assumes @type is null-terminated. */ 70 static struct zpool_driver *zpool_get_driver(c 70 static struct zpool_driver *zpool_get_driver(const char *type) 71 { 71 { 72 struct zpool_driver *driver; 72 struct zpool_driver *driver; 73 73 74 spin_lock(&drivers_lock); 74 spin_lock(&drivers_lock); 75 list_for_each_entry(driver, &drivers_h 75 list_for_each_entry(driver, &drivers_head, list) { 76 if (!strcmp(driver->type, type 76 if (!strcmp(driver->type, type)) { 77 bool got = try_module_ 77 bool got = try_module_get(driver->owner); 78 78 79 if (got) 79 if (got) 80 atomic_inc(&dr 80 atomic_inc(&driver->refcount); 81 spin_unlock(&drivers_l 81 spin_unlock(&drivers_lock); 82 return got ? driver : 82 return got ? driver : NULL; 83 } 83 } 84 } 84 } 85 85 86 spin_unlock(&drivers_lock); 86 spin_unlock(&drivers_lock); 87 return NULL; 87 return NULL; 88 } 88 } 89 89 90 static void zpool_put_driver(struct zpool_driv 90 static void zpool_put_driver(struct zpool_driver *driver) 91 { 91 { 92 atomic_dec(&driver->refcount); 92 atomic_dec(&driver->refcount); 93 module_put(driver->owner); 93 module_put(driver->owner); 94 } 94 } 95 95 96 /** 96 /** 97 * zpool_has_pool() - Check if the pool driver 97 * zpool_has_pool() - Check if the pool driver is available 98 * @type: The type of the zpool to check 98 * @type: The type of the zpool to check (e.g. zbud, zsmalloc) 99 * 99 * 100 * This checks if the @type pool driver is ava 100 * This checks if the @type pool driver is available. This will try to load 101 * the requested module, if needed, but there 101 * the requested module, if needed, but there is no guarantee the module will 102 * still be loaded and available immediately a 102 * still be loaded and available immediately after calling. If this returns 103 * true, the caller should assume the pool is 103 * true, the caller should assume the pool is available, but must be prepared 104 * to handle the @zpool_create_pool() returnin 104 * to handle the @zpool_create_pool() returning failure. However if this 105 * returns false, the caller should assume the 105 * returns false, the caller should assume the requested pool type is not 106 * available; either the requested pool type m 106 * available; either the requested pool type module does not exist, or could 107 * not be loaded, and calling @zpool_create_po 107 * not be loaded, and calling @zpool_create_pool() with the pool type will 108 * fail. 108 * fail. 109 * 109 * 110 * The @type string must be null-terminated. 110 * The @type string must be null-terminated. 111 * 111 * 112 * Returns: true if @type pool is available, f 112 * Returns: true if @type pool is available, false if not 113 */ 113 */ 114 bool zpool_has_pool(char *type) 114 bool zpool_has_pool(char *type) 115 { 115 { 116 struct zpool_driver *driver = zpool_ge 116 struct zpool_driver *driver = zpool_get_driver(type); 117 117 118 if (!driver) { 118 if (!driver) { 119 request_module("zpool-%s", typ 119 request_module("zpool-%s", type); 120 driver = zpool_get_driver(type 120 driver = zpool_get_driver(type); 121 } 121 } 122 122 123 if (!driver) 123 if (!driver) 124 return false; 124 return false; 125 125 126 zpool_put_driver(driver); 126 zpool_put_driver(driver); 127 return true; 127 return true; 128 } 128 } 129 EXPORT_SYMBOL(zpool_has_pool); 129 EXPORT_SYMBOL(zpool_has_pool); 130 130 131 /** 131 /** 132 * zpool_create_pool() - Create a new zpool 132 * zpool_create_pool() - Create a new zpool 133 * @type: The type of the zpool to creat 133 * @type: The type of the zpool to create (e.g. zbud, zsmalloc) 134 * @name: The name of the zpool (e.g. zr 134 * @name: The name of the zpool (e.g. zram0, zswap) 135 * @gfp: The GFP flags to use when allo 135 * @gfp: The GFP flags to use when allocating the pool. 136 * 136 * 137 * This creates a new zpool of the specified t 137 * This creates a new zpool of the specified type. The gfp flags will be 138 * used when allocating memory, if the impleme 138 * used when allocating memory, if the implementation supports it. If the 139 * ops param is NULL, then the created zpool w 139 * ops param is NULL, then the created zpool will not be evictable. 140 * 140 * 141 * Implementations must guarantee this to be t 141 * Implementations must guarantee this to be thread-safe. 142 * 142 * 143 * The @type and @name strings must be null-te 143 * The @type and @name strings must be null-terminated. 144 * 144 * 145 * Returns: New zpool on success, NULL on fail 145 * Returns: New zpool on success, NULL on failure. 146 */ 146 */ 147 struct zpool *zpool_create_pool(const char *ty 147 struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp) 148 { 148 { 149 struct zpool_driver *driver; 149 struct zpool_driver *driver; 150 struct zpool *zpool; 150 struct zpool *zpool; 151 151 152 pr_debug("creating pool type %s\n", ty 152 pr_debug("creating pool type %s\n", type); 153 153 154 driver = zpool_get_driver(type); 154 driver = zpool_get_driver(type); 155 155 156 if (!driver) { 156 if (!driver) { 157 request_module("zpool-%s", typ 157 request_module("zpool-%s", type); 158 driver = zpool_get_driver(type 158 driver = zpool_get_driver(type); 159 } 159 } 160 160 161 if (!driver) { 161 if (!driver) { 162 pr_err("no driver for type %s\ 162 pr_err("no driver for type %s\n", type); 163 return NULL; 163 return NULL; 164 } 164 } 165 165 166 zpool = kmalloc(sizeof(*zpool), gfp); 166 zpool = kmalloc(sizeof(*zpool), gfp); 167 if (!zpool) { 167 if (!zpool) { 168 pr_err("couldn't create zpool 168 pr_err("couldn't create zpool - out of memory\n"); 169 zpool_put_driver(driver); 169 zpool_put_driver(driver); 170 return NULL; 170 return NULL; 171 } 171 } 172 172 173 zpool->driver = driver; 173 zpool->driver = driver; 174 zpool->pool = driver->create(name, gfp 174 zpool->pool = driver->create(name, gfp); 175 175 176 if (!zpool->pool) { 176 if (!zpool->pool) { 177 pr_err("couldn't create %s poo 177 pr_err("couldn't create %s pool\n", type); 178 zpool_put_driver(driver); 178 zpool_put_driver(driver); 179 kfree(zpool); 179 kfree(zpool); 180 return NULL; 180 return NULL; 181 } 181 } 182 182 183 pr_debug("created pool type %s\n", typ 183 pr_debug("created pool type %s\n", type); 184 184 185 return zpool; 185 return zpool; 186 } 186 } 187 187 188 /** 188 /** 189 * zpool_destroy_pool() - Destroy a zpool 189 * zpool_destroy_pool() - Destroy a zpool 190 * @zpool: The zpool to destroy. 190 * @zpool: The zpool to destroy. 191 * 191 * 192 * Implementations must guarantee this to be t 192 * Implementations must guarantee this to be thread-safe, 193 * however only when destroying different pool 193 * however only when destroying different pools. The same 194 * pool should only be destroyed once, and sho 194 * pool should only be destroyed once, and should not be used 195 * after it is destroyed. 195 * after it is destroyed. 196 * 196 * 197 * This destroys an existing zpool. The zpool 197 * This destroys an existing zpool. The zpool should not be in use. 198 */ 198 */ 199 void zpool_destroy_pool(struct zpool *zpool) 199 void zpool_destroy_pool(struct zpool *zpool) 200 { 200 { 201 pr_debug("destroying pool type %s\n", 201 pr_debug("destroying pool type %s\n", zpool->driver->type); 202 202 203 zpool->driver->destroy(zpool->pool); 203 zpool->driver->destroy(zpool->pool); 204 zpool_put_driver(zpool->driver); 204 zpool_put_driver(zpool->driver); 205 kfree(zpool); 205 kfree(zpool); 206 } 206 } 207 207 208 /** 208 /** 209 * zpool_get_type() - Get the type of the zpoo 209 * zpool_get_type() - Get the type of the zpool 210 * @zpool: The zpool to check 210 * @zpool: The zpool to check 211 * 211 * 212 * This returns the type of the pool. 212 * This returns the type of the pool. 213 * 213 * 214 * Implementations must guarantee this to be t 214 * Implementations must guarantee this to be thread-safe. 215 * 215 * 216 * Returns: The type of zpool. 216 * Returns: The type of zpool. 217 */ 217 */ 218 const char *zpool_get_type(struct zpool *zpool 218 const char *zpool_get_type(struct zpool *zpool) 219 { 219 { 220 return zpool->driver->type; 220 return zpool->driver->type; 221 } 221 } 222 222 223 /** 223 /** 224 * zpool_malloc_support_movable() - Check if t 224 * zpool_malloc_support_movable() - Check if the zpool supports 225 * allocating movable memory 225 * allocating movable memory 226 * @zpool: The zpool to check 226 * @zpool: The zpool to check 227 * 227 * 228 * This returns if the zpool supports allocati 228 * This returns if the zpool supports allocating movable memory. 229 * 229 * 230 * Implementations must guarantee this to be t 230 * Implementations must guarantee this to be thread-safe. 231 * 231 * 232 * Returns: true if the zpool supports allocat 232 * Returns: true if the zpool supports allocating movable memory, false if not 233 */ 233 */ 234 bool zpool_malloc_support_movable(struct zpool 234 bool zpool_malloc_support_movable(struct zpool *zpool) 235 { 235 { 236 return zpool->driver->malloc_support_m 236 return zpool->driver->malloc_support_movable; 237 } 237 } 238 238 239 /** 239 /** 240 * zpool_malloc() - Allocate memory 240 * zpool_malloc() - Allocate memory 241 * @zpool: The zpool to allocate from. 241 * @zpool: The zpool to allocate from. 242 * @size: The amount of memory to alloca 242 * @size: The amount of memory to allocate. 243 * @gfp: The GFP flags to use when allo 243 * @gfp: The GFP flags to use when allocating memory. 244 * @handle: Pointer to the handle to set 244 * @handle: Pointer to the handle to set 245 * 245 * 246 * This allocates the requested amount of memo 246 * This allocates the requested amount of memory from the pool. 247 * The gfp flags will be used when allocating 247 * The gfp flags will be used when allocating memory, if the 248 * implementation supports it. The provided @ 248 * implementation supports it. The provided @handle will be 249 * set to the allocated object handle. 249 * set to the allocated object handle. 250 * 250 * 251 * Implementations must guarantee this to be t 251 * Implementations must guarantee this to be thread-safe. 252 * 252 * 253 * Returns: 0 on success, negative value on er 253 * Returns: 0 on success, negative value on error. 254 */ 254 */ 255 int zpool_malloc(struct zpool *zpool, size_t s 255 int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp, 256 unsigned long *handle) 256 unsigned long *handle) 257 { 257 { 258 return zpool->driver->malloc(zpool->po 258 return zpool->driver->malloc(zpool->pool, size, gfp, handle); 259 } 259 } 260 260 261 /** 261 /** 262 * zpool_free() - Free previously allocated me 262 * zpool_free() - Free previously allocated memory 263 * @zpool: The zpool that allocated the m 263 * @zpool: The zpool that allocated the memory. 264 * @handle: The handle to the memory to fr 264 * @handle: The handle to the memory to free. 265 * 265 * 266 * This frees previously allocated memory. Th 266 * This frees previously allocated memory. This does not guarantee 267 * that the pool will actually free memory, on 267 * that the pool will actually free memory, only that the memory 268 * in the pool will become available for use b 268 * in the pool will become available for use by the pool. 269 * 269 * 270 * Implementations must guarantee this to be t 270 * Implementations must guarantee this to be thread-safe, 271 * however only when freeing different handles 271 * however only when freeing different handles. The same 272 * handle should only be freed once, and shoul 272 * handle should only be freed once, and should not be used 273 * after freeing. 273 * after freeing. 274 */ 274 */ 275 void zpool_free(struct zpool *zpool, unsigned 275 void zpool_free(struct zpool *zpool, unsigned long handle) 276 { 276 { 277 zpool->driver->free(zpool->pool, handl 277 zpool->driver->free(zpool->pool, handle); 278 } 278 } 279 279 280 /** 280 /** 281 * zpool_map_handle() - Map a previously alloc 281 * zpool_map_handle() - Map a previously allocated handle into memory 282 * @zpool: The zpool that the handle was 282 * @zpool: The zpool that the handle was allocated from 283 * @handle: The handle to map 283 * @handle: The handle to map 284 * @mapmode: How the memory should be mappe 284 * @mapmode: How the memory should be mapped 285 * 285 * 286 * This maps a previously allocated handle int 286 * This maps a previously allocated handle into memory. The @mapmode 287 * param indicates to the implementation how t 287 * param indicates to the implementation how the memory will be 288 * used, i.e. read-only, write-only, read-writ 288 * used, i.e. read-only, write-only, read-write. If the 289 * implementation does not support it, the mem 289 * implementation does not support it, the memory will be treated 290 * as read-write. 290 * as read-write. 291 * 291 * 292 * This may hold locks, disable interrupts, an 292 * This may hold locks, disable interrupts, and/or preemption, 293 * and the zpool_unmap_handle() must be called 293 * and the zpool_unmap_handle() must be called to undo those 294 * actions. The code that uses the mapped han 294 * actions. The code that uses the mapped handle should complete 295 * its operations on the mapped handle memory 295 * its operations on the mapped handle memory quickly and unmap 296 * as soon as possible. As the implementation 296 * as soon as possible. As the implementation may use per-cpu 297 * data, multiple handles should not be mapped 297 * data, multiple handles should not be mapped concurrently on 298 * any cpu. 298 * any cpu. 299 * 299 * 300 * Returns: A pointer to the handle's mapped m 300 * Returns: A pointer to the handle's mapped memory area. 301 */ 301 */ 302 void *zpool_map_handle(struct zpool *zpool, un 302 void *zpool_map_handle(struct zpool *zpool, unsigned long handle, 303 enum zpool_mapmode map 303 enum zpool_mapmode mapmode) 304 { 304 { 305 return zpool->driver->map(zpool->pool, 305 return zpool->driver->map(zpool->pool, handle, mapmode); 306 } 306 } 307 307 308 /** 308 /** 309 * zpool_unmap_handle() - Unmap a previously m 309 * zpool_unmap_handle() - Unmap a previously mapped handle 310 * @zpool: The zpool that the handle was 310 * @zpool: The zpool that the handle was allocated from 311 * @handle: The handle to unmap 311 * @handle: The handle to unmap 312 * 312 * 313 * This unmaps a previously mapped handle. An 313 * This unmaps a previously mapped handle. Any locks or other 314 * actions that the implementation took in zpo 314 * actions that the implementation took in zpool_map_handle() 315 * will be undone here. The memory area retur 315 * will be undone here. The memory area returned from 316 * zpool_map_handle() should no longer be used 316 * zpool_map_handle() should no longer be used after this. 317 */ 317 */ 318 void zpool_unmap_handle(struct zpool *zpool, u 318 void zpool_unmap_handle(struct zpool *zpool, unsigned long handle) 319 { 319 { 320 zpool->driver->unmap(zpool->pool, hand 320 zpool->driver->unmap(zpool->pool, handle); 321 } 321 } 322 322 323 /** 323 /** 324 * zpool_get_total_pages() - The total size of 324 * zpool_get_total_pages() - The total size of the pool 325 * @zpool: The zpool to check 325 * @zpool: The zpool to check 326 * 326 * 327 * This returns the total size in pages of the 327 * This returns the total size in pages of the pool. 328 * 328 * 329 * Returns: Total size of the zpool in pages. 329 * Returns: Total size of the zpool in pages. 330 */ 330 */ 331 u64 zpool_get_total_pages(struct zpool *zpool) 331 u64 zpool_get_total_pages(struct zpool *zpool) 332 { 332 { 333 return zpool->driver->total_pages(zpoo 333 return zpool->driver->total_pages(zpool->pool); 334 } 334 } 335 335 336 /** 336 /** 337 * zpool_can_sleep_mapped - Test if zpool can 337 * zpool_can_sleep_mapped - Test if zpool can sleep when do mapped. 338 * @zpool: The zpool to test 338 * @zpool: The zpool to test 339 * 339 * 340 * Some allocators enter non-preemptible conte 340 * Some allocators enter non-preemptible context in ->map() callback (e.g. 341 * disable pagefaults) and exit that context i 341 * disable pagefaults) and exit that context in ->unmap(), which limits what 342 * we can do with the mapped object. For insta 342 * we can do with the mapped object. For instance, we cannot wait for 343 * asynchronous crypto API to decompress such 343 * asynchronous crypto API to decompress such an object or take mutexes 344 * since those will call into the scheduler. T 344 * since those will call into the scheduler. This function tells us whether 345 * we use such an allocator. 345 * we use such an allocator. 346 * 346 * 347 * Returns: true if zpool can sleep; false oth 347 * Returns: true if zpool can sleep; false otherwise. 348 */ 348 */ 349 bool zpool_can_sleep_mapped(struct zpool *zpoo 349 bool zpool_can_sleep_mapped(struct zpool *zpool) 350 { 350 { 351 return zpool->driver->sleep_mapped; 351 return zpool->driver->sleep_mapped; 352 } 352 } 353 353 354 MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.or 354 MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>"); 355 MODULE_DESCRIPTION("Common API for compressed 355 MODULE_DESCRIPTION("Common API for compressed memory storage"); 356 356
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.