1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * Copyright 2002-2004, Instant802 Networks, I 2 * Copyright 2002-2004, Instant802 Networks, Inc. 4 * Copyright 2008, Jouni Malinen <j@w1.fi> 3 * Copyright 2008, Jouni Malinen <j@w1.fi> 5 * Copyright (C) 2016-2017 Intel Deutschland G !! 4 * Copyright (C) 2016 Intel Deutschland GmbH 6 * Copyright (C) 2020-2023 Intel Corporation !! 5 * >> 6 * This program is free software; you can redistribute it and/or modify >> 7 * it under the terms of the GNU General Public License version 2 as >> 8 * published by the Free Software Foundation. 7 */ 9 */ 8 10 9 #include <linux/netdevice.h> 11 #include <linux/netdevice.h> 10 #include <linux/types.h> 12 #include <linux/types.h> 11 #include <linux/skbuff.h> 13 #include <linux/skbuff.h> 12 #include <linux/compiler.h> 14 #include <linux/compiler.h> 13 #include <linux/ieee80211.h> 15 #include <linux/ieee80211.h> 14 #include <linux/gfp.h> 16 #include <linux/gfp.h> 15 #include <linux/unaligned.h> !! 17 #include <asm/unaligned.h> 16 #include <net/mac80211.h> 18 #include <net/mac80211.h> 17 #include <crypto/aes.h> 19 #include <crypto/aes.h> 18 #include <crypto/utils.h> !! 20 #include <crypto/algapi.h> 19 21 20 #include "ieee80211_i.h" 22 #include "ieee80211_i.h" 21 #include "michael.h" 23 #include "michael.h" 22 #include "tkip.h" 24 #include "tkip.h" 23 #include "aes_ccm.h" 25 #include "aes_ccm.h" 24 #include "aes_cmac.h" 26 #include "aes_cmac.h" 25 #include "aes_gmac.h" 27 #include "aes_gmac.h" 26 #include "aes_gcm.h" 28 #include "aes_gcm.h" 27 #include "wpa.h" 29 #include "wpa.h" 28 30 29 ieee80211_tx_result 31 ieee80211_tx_result 30 ieee80211_tx_h_michael_mic_add(struct ieee8021 32 ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx) 31 { 33 { 32 u8 *data, *key, *mic; 34 u8 *data, *key, *mic; 33 size_t data_len; 35 size_t data_len; 34 unsigned int hdrlen; 36 unsigned int hdrlen; 35 struct ieee80211_hdr *hdr; 37 struct ieee80211_hdr *hdr; 36 struct sk_buff *skb = tx->skb; 38 struct sk_buff *skb = tx->skb; 37 struct ieee80211_tx_info *info = IEEE8 39 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 38 int tail; 40 int tail; 39 41 40 hdr = (struct ieee80211_hdr *)skb->dat 42 hdr = (struct ieee80211_hdr *)skb->data; 41 if (!tx->key || tx->key->conf.cipher ! 43 if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 42 skb->len < 24 || !ieee80211_is_dat 44 skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control)) 43 return TX_CONTINUE; 45 return TX_CONTINUE; 44 46 45 hdrlen = ieee80211_hdrlen(hdr->frame_c 47 hdrlen = ieee80211_hdrlen(hdr->frame_control); 46 if (skb->len < hdrlen) 48 if (skb->len < hdrlen) 47 return TX_DROP; 49 return TX_DROP; 48 50 49 data = skb->data + hdrlen; 51 data = skb->data + hdrlen; 50 data_len = skb->len - hdrlen; 52 data_len = skb->len - hdrlen; 51 53 52 if (unlikely(info->flags & IEEE80211_T 54 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) { 53 /* Need to use software crypto 55 /* Need to use software crypto for the test */ 54 info->control.hw_key = NULL; 56 info->control.hw_key = NULL; 55 } 57 } 56 58 57 if (info->control.hw_key && 59 if (info->control.hw_key && 58 (info->flags & IEEE80211_TX_CTL_DO 60 (info->flags & IEEE80211_TX_CTL_DONTFRAG || 59 ieee80211_hw_check(&tx->local->hw 61 ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) && 60 !(tx->key->conf.flags & (IEEE80211 !! 62 !(tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) { 61 IEEE80211 !! 63 /* hwaccel - with no need for SW-generated MMIC */ 62 /* hwaccel - with no need for << 63 return TX_CONTINUE; 64 return TX_CONTINUE; 64 } 65 } 65 66 66 tail = MICHAEL_MIC_LEN; 67 tail = MICHAEL_MIC_LEN; 67 if (!info->control.hw_key) 68 if (!info->control.hw_key) 68 tail += IEEE80211_TKIP_ICV_LEN 69 tail += IEEE80211_TKIP_ICV_LEN; 69 70 70 if (WARN(skb_tailroom(skb) < tail || 71 if (WARN(skb_tailroom(skb) < tail || 71 skb_headroom(skb) < IEEE80211 72 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN, 72 "mmic: not enough head/tail ( 73 "mmic: not enough head/tail (%d/%d,%d/%d)\n", 73 skb_headroom(skb), IEEE80211_ 74 skb_headroom(skb), IEEE80211_TKIP_IV_LEN, 74 skb_tailroom(skb), tail)) 75 skb_tailroom(skb), tail)) 75 return TX_DROP; 76 return TX_DROP; 76 77 77 mic = skb_put(skb, MICHAEL_MIC_LEN); << 78 << 79 if (tx->key->conf.flags & IEEE80211_KE << 80 /* Zeroed MIC can help with de << 81 memset(mic, 0, MICHAEL_MIC_LEN << 82 return TX_CONTINUE; << 83 } << 84 << 85 key = &tx->key->conf.key[NL80211_TKIP_ 78 key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]; >> 79 mic = skb_put(skb, MICHAEL_MIC_LEN); 86 michael_mic(key, hdr, data, data_len, 80 michael_mic(key, hdr, data, data_len, mic); 87 if (unlikely(info->flags & IEEE80211_T 81 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) 88 mic[0]++; 82 mic[0]++; 89 83 90 return TX_CONTINUE; 84 return TX_CONTINUE; 91 } 85 } 92 86 93 87 94 ieee80211_rx_result 88 ieee80211_rx_result 95 ieee80211_rx_h_michael_mic_verify(struct ieee8 89 ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx) 96 { 90 { 97 u8 *data, *key = NULL; 91 u8 *data, *key = NULL; 98 size_t data_len; 92 size_t data_len; 99 unsigned int hdrlen; 93 unsigned int hdrlen; 100 u8 mic[MICHAEL_MIC_LEN]; 94 u8 mic[MICHAEL_MIC_LEN]; 101 struct sk_buff *skb = rx->skb; 95 struct sk_buff *skb = rx->skb; 102 struct ieee80211_rx_status *status = I 96 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 103 struct ieee80211_hdr *hdr = (struct ie 97 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 104 98 105 /* 99 /* 106 * it makes no sense to check for MIC 100 * it makes no sense to check for MIC errors on anything other 107 * than data frames. 101 * than data frames. 108 */ 102 */ 109 if (!ieee80211_is_data_present(hdr->fr 103 if (!ieee80211_is_data_present(hdr->frame_control)) 110 return RX_CONTINUE; 104 return RX_CONTINUE; 111 105 112 /* 106 /* 113 * No way to verify the MIC if the har 107 * No way to verify the MIC if the hardware stripped it or 114 * the IV with the key index. In this 108 * the IV with the key index. In this case we have solely rely 115 * on the driver to set RX_FLAG_MMIC_E 109 * on the driver to set RX_FLAG_MMIC_ERROR in the event of a 116 * MIC failure report. 110 * MIC failure report. 117 */ 111 */ 118 if (status->flag & (RX_FLAG_MMIC_STRIP 112 if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) { 119 if (status->flag & RX_FLAG_MMI 113 if (status->flag & RX_FLAG_MMIC_ERROR) 120 goto mic_fail_no_key; 114 goto mic_fail_no_key; 121 115 122 if (!(status->flag & RX_FLAG_I 116 if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key && 123 rx->key->conf.cipher == WL 117 rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP) 124 goto update_iv; 118 goto update_iv; 125 119 126 return RX_CONTINUE; 120 return RX_CONTINUE; 127 } 121 } 128 122 129 /* 123 /* 130 * Some hardware seems to generate Mic 124 * Some hardware seems to generate Michael MIC failure reports; even 131 * though, the frame was not encrypted 125 * though, the frame was not encrypted with TKIP and therefore has no 132 * MIC. Ignore the flag them to avoid 126 * MIC. Ignore the flag them to avoid triggering countermeasures. 133 */ 127 */ 134 if (!rx->key || rx->key->conf.cipher ! 128 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 135 !(status->flag & RX_FLAG_DECRYPTED 129 !(status->flag & RX_FLAG_DECRYPTED)) 136 return RX_CONTINUE; 130 return RX_CONTINUE; 137 131 138 if (rx->sdata->vif.type == NL80211_IFT 132 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) { 139 /* 133 /* 140 * APs with pairwise keys shou 134 * APs with pairwise keys should never receive Michael MIC 141 * errors for non-zero keyidx 135 * errors for non-zero keyidx because these are reserved for 142 * group keys and only the AP 136 * group keys and only the AP is sending real multicast 143 * frames in the BSS. 137 * frames in the BSS. 144 */ 138 */ 145 return RX_DROP_U_AP_RX_GROUPCA !! 139 return RX_DROP_UNUSABLE; 146 } 140 } 147 141 148 if (status->flag & RX_FLAG_MMIC_ERROR) 142 if (status->flag & RX_FLAG_MMIC_ERROR) 149 goto mic_fail; 143 goto mic_fail; 150 144 151 hdrlen = ieee80211_hdrlen(hdr->frame_c 145 hdrlen = ieee80211_hdrlen(hdr->frame_control); 152 if (skb->len < hdrlen + MICHAEL_MIC_LE 146 if (skb->len < hdrlen + MICHAEL_MIC_LEN) 153 return RX_DROP_U_SHORT_MMIC; !! 147 return RX_DROP_UNUSABLE; 154 148 155 if (skb_linearize(rx->skb)) 149 if (skb_linearize(rx->skb)) 156 return RX_DROP_U_OOM; !! 150 return RX_DROP_UNUSABLE; 157 hdr = (void *)skb->data; 151 hdr = (void *)skb->data; 158 152 159 data = skb->data + hdrlen; 153 data = skb->data + hdrlen; 160 data_len = skb->len - hdrlen - MICHAEL 154 data_len = skb->len - hdrlen - MICHAEL_MIC_LEN; 161 key = &rx->key->conf.key[NL80211_TKIP_ 155 key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; 162 michael_mic(key, hdr, data, data_len, 156 michael_mic(key, hdr, data, data_len, mic); 163 if (crypto_memneq(mic, data + data_len 157 if (crypto_memneq(mic, data + data_len, MICHAEL_MIC_LEN)) 164 goto mic_fail; 158 goto mic_fail; 165 159 166 /* remove Michael MIC from payload */ 160 /* remove Michael MIC from payload */ 167 skb_trim(skb, skb->len - MICHAEL_MIC_L 161 skb_trim(skb, skb->len - MICHAEL_MIC_LEN); 168 162 169 update_iv: 163 update_iv: 170 /* update IV in key information to be 164 /* update IV in key information to be able to detect replays */ 171 rx->key->u.tkip.rx[rx->security_idx].i !! 165 rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip_iv32; 172 rx->key->u.tkip.rx[rx->security_idx].i !! 166 rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip_iv16; 173 167 174 return RX_CONTINUE; 168 return RX_CONTINUE; 175 169 176 mic_fail: 170 mic_fail: 177 rx->key->u.tkip.mic_failures++; 171 rx->key->u.tkip.mic_failures++; 178 172 179 mic_fail_no_key: 173 mic_fail_no_key: 180 /* 174 /* 181 * In some cases the key can be unset 175 * In some cases the key can be unset - e.g. a multicast packet, in 182 * a driver that supports HW encryptio 176 * a driver that supports HW encryption. Send up the key idx only if 183 * the key is set. 177 * the key is set. 184 */ 178 */ 185 cfg80211_michael_mic_failure(rx->sdata 179 cfg80211_michael_mic_failure(rx->sdata->dev, hdr->addr2, 186 is_multic 180 is_multicast_ether_addr(hdr->addr1) ? 187 NL80211_K 181 NL80211_KEYTYPE_GROUP : 188 NL80211_K 182 NL80211_KEYTYPE_PAIRWISE, 189 rx->key ? 183 rx->key ? rx->key->conf.keyidx : -1, 190 NULL, GFP 184 NULL, GFP_ATOMIC); 191 return RX_DROP_U_MMIC_FAIL; !! 185 return RX_DROP_UNUSABLE; 192 } 186 } 193 187 194 static int tkip_encrypt_skb(struct ieee80211_t 188 static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 195 { 189 { 196 struct ieee80211_hdr *hdr = (struct ie 190 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 197 struct ieee80211_key *key = tx->key; 191 struct ieee80211_key *key = tx->key; 198 struct ieee80211_tx_info *info = IEEE8 192 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 199 unsigned int hdrlen; 193 unsigned int hdrlen; 200 int len, tail; 194 int len, tail; 201 u64 pn; 195 u64 pn; 202 u8 *pos; 196 u8 *pos; 203 197 204 if (info->control.hw_key && 198 if (info->control.hw_key && 205 !(info->control.hw_key->flags & IE 199 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 206 !(info->control.hw_key->flags & IE 200 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { 207 /* hwaccel - with no need for 201 /* hwaccel - with no need for software-generated IV */ 208 return 0; 202 return 0; 209 } 203 } 210 204 211 hdrlen = ieee80211_hdrlen(hdr->frame_c 205 hdrlen = ieee80211_hdrlen(hdr->frame_control); 212 len = skb->len - hdrlen; 206 len = skb->len - hdrlen; 213 207 214 if (info->control.hw_key) 208 if (info->control.hw_key) 215 tail = 0; 209 tail = 0; 216 else 210 else 217 tail = IEEE80211_TKIP_ICV_LEN; 211 tail = IEEE80211_TKIP_ICV_LEN; 218 212 219 if (WARN_ON(skb_tailroom(skb) < tail | 213 if (WARN_ON(skb_tailroom(skb) < tail || 220 skb_headroom(skb) < IEEE80 214 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN)) 221 return -1; 215 return -1; 222 216 223 pos = skb_push(skb, IEEE80211_TKIP_IV_ 217 pos = skb_push(skb, IEEE80211_TKIP_IV_LEN); 224 memmove(pos, pos + IEEE80211_TKIP_IV_L 218 memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen); 225 pos += hdrlen; 219 pos += hdrlen; 226 220 227 /* the HW only needs room for the IV, 221 /* the HW only needs room for the IV, but not the actual IV */ 228 if (info->control.hw_key && 222 if (info->control.hw_key && 229 (info->control.hw_key->flags & IEE 223 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 230 return 0; 224 return 0; 231 225 232 /* Increase IV for the frame */ 226 /* Increase IV for the frame */ 233 pn = atomic64_inc_return(&key->conf.tx 227 pn = atomic64_inc_return(&key->conf.tx_pn); 234 pos = ieee80211_tkip_add_iv(pos, &key- 228 pos = ieee80211_tkip_add_iv(pos, &key->conf, pn); 235 229 236 /* hwaccel - with software IV */ 230 /* hwaccel - with software IV */ 237 if (info->control.hw_key) 231 if (info->control.hw_key) 238 return 0; 232 return 0; 239 233 240 /* Add room for ICV */ 234 /* Add room for ICV */ 241 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 235 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 242 236 243 return ieee80211_tkip_encrypt_data(&tx !! 237 return ieee80211_tkip_encrypt_data(tx->local->wep_tx_tfm, 244 key 238 key, skb, pos, len); 245 } 239 } 246 240 247 241 248 ieee80211_tx_result 242 ieee80211_tx_result 249 ieee80211_crypto_tkip_encrypt(struct ieee80211 243 ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx) 250 { 244 { 251 struct sk_buff *skb; 245 struct sk_buff *skb; 252 246 253 ieee80211_tx_set_protected(tx); 247 ieee80211_tx_set_protected(tx); 254 248 255 skb_queue_walk(&tx->skbs, skb) { 249 skb_queue_walk(&tx->skbs, skb) { 256 if (tkip_encrypt_skb(tx, skb) 250 if (tkip_encrypt_skb(tx, skb) < 0) 257 return TX_DROP; 251 return TX_DROP; 258 } 252 } 259 253 260 return TX_CONTINUE; 254 return TX_CONTINUE; 261 } 255 } 262 256 263 257 264 ieee80211_rx_result 258 ieee80211_rx_result 265 ieee80211_crypto_tkip_decrypt(struct ieee80211 259 ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx) 266 { 260 { 267 struct ieee80211_hdr *hdr = (struct ie 261 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; 268 int hdrlen, res, hwaccel = 0; 262 int hdrlen, res, hwaccel = 0; 269 struct ieee80211_key *key = rx->key; 263 struct ieee80211_key *key = rx->key; 270 struct sk_buff *skb = rx->skb; 264 struct sk_buff *skb = rx->skb; 271 struct ieee80211_rx_status *status = I 265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 272 266 273 hdrlen = ieee80211_hdrlen(hdr->frame_c 267 hdrlen = ieee80211_hdrlen(hdr->frame_control); 274 268 275 if (!ieee80211_is_data(hdr->frame_cont 269 if (!ieee80211_is_data(hdr->frame_control)) 276 return RX_CONTINUE; 270 return RX_CONTINUE; 277 271 278 if (!rx->sta || skb->len - hdrlen < 12 272 if (!rx->sta || skb->len - hdrlen < 12) 279 return RX_DROP_U_SHORT_TKIP; !! 273 return RX_DROP_UNUSABLE; 280 274 281 /* it may be possible to optimize this 275 /* it may be possible to optimize this a bit more */ 282 if (skb_linearize(rx->skb)) 276 if (skb_linearize(rx->skb)) 283 return RX_DROP_U_OOM; !! 277 return RX_DROP_UNUSABLE; 284 hdr = (void *)skb->data; 278 hdr = (void *)skb->data; 285 279 286 /* 280 /* 287 * Let TKIP code verify IV, but skip d 281 * Let TKIP code verify IV, but skip decryption. 288 * In the case where hardware checks t 282 * In the case where hardware checks the IV as well, 289 * we don't even get here, see ieee802 283 * we don't even get here, see ieee80211_rx_h_decrypt() 290 */ 284 */ 291 if (status->flag & RX_FLAG_DECRYPTED) 285 if (status->flag & RX_FLAG_DECRYPTED) 292 hwaccel = 1; 286 hwaccel = 1; 293 287 294 res = ieee80211_tkip_decrypt_data(&rx- !! 288 res = ieee80211_tkip_decrypt_data(rx->local->wep_rx_tfm, 295 key, 289 key, skb->data + hdrlen, 296 skb- 290 skb->len - hdrlen, rx->sta->sta.addr, 297 hdr- 291 hdr->addr1, hwaccel, rx->security_idx, 298 &rx- !! 292 &rx->tkip_iv32, 299 &rx- !! 293 &rx->tkip_iv16); 300 if (res != TKIP_DECRYPT_OK) 294 if (res != TKIP_DECRYPT_OK) 301 return RX_DROP_U_TKIP_FAIL; !! 295 return RX_DROP_UNUSABLE; 302 296 303 /* Trim ICV */ 297 /* Trim ICV */ 304 if (!(status->flag & RX_FLAG_ICV_STRIP 298 if (!(status->flag & RX_FLAG_ICV_STRIPPED)) 305 skb_trim(skb, skb->len - IEEE8 299 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 306 300 307 /* Remove IV */ 301 /* Remove IV */ 308 memmove(skb->data + IEEE80211_TKIP_IV_ 302 memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen); 309 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 303 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 310 304 311 return RX_CONTINUE; 305 return RX_CONTINUE; 312 } 306 } 313 307 314 /* !! 308 315 * Calculate AAD for CCMP/GCMP, returning qos_ !! 309 static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad) 316 * need that in CCMP also for b_0. << 317 */ << 318 static u8 ccmp_gcmp_aad(struct sk_buff *skb, u << 319 { 310 { 320 struct ieee80211_hdr *hdr = (void *)sk << 321 __le16 mask_fc; 311 __le16 mask_fc; 322 int a4_included, mgmt; 312 int a4_included, mgmt; 323 u8 qos_tid; 313 u8 qos_tid; 324 u16 len_a = 22; !! 314 u16 len_a; >> 315 unsigned int hdrlen; >> 316 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 325 317 326 /* 318 /* 327 * Mask FC: zero subtype b4 b5 b6 (if 319 * Mask FC: zero subtype b4 b5 b6 (if not mgmt) 328 * Retry, PwrMgt, MoreData, Order (if !! 320 * Retry, PwrMgt, MoreData; set Protected 329 */ 321 */ 330 mgmt = ieee80211_is_mgmt(hdr->frame_co 322 mgmt = ieee80211_is_mgmt(hdr->frame_control); 331 mask_fc = hdr->frame_control; 323 mask_fc = hdr->frame_control; 332 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 324 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | 333 IEEE80211_FCTL 325 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); 334 if (!mgmt) 326 if (!mgmt) 335 mask_fc &= ~cpu_to_le16(0x0070 327 mask_fc &= ~cpu_to_le16(0x0070); 336 mask_fc |= cpu_to_le16(IEEE80211_FCTL_ 328 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 337 329 >> 330 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 331 len_a = hdrlen - 2; 338 a4_included = ieee80211_has_a4(hdr->fr 332 a4_included = ieee80211_has_a4(hdr->frame_control); 339 if (a4_included) << 340 len_a += 6; << 341 333 342 if (ieee80211_is_data_qos(hdr->frame_c !! 334 if (ieee80211_is_data_qos(hdr->frame_control)) 343 qos_tid = *ieee80211_get_qos_c !! 335 qos_tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; >> 336 else >> 337 qos_tid = 0; 344 338 345 if (spp_amsdu) !! 339 /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC 346 qos_tid &= IEEE80211_Q !! 340 * mode authentication are not allowed to collide, yet both are derived 347 IEEE80211_Q !! 341 * from this vector b_0. We only set L := 1 here to indicate that the 348 else !! 342 * data size can be represented in (L+1) bytes. The CCM layer will take 349 qos_tid &= IEEE80211_Q !! 343 * care of storing the data length in the top (L+1) bytes and setting >> 344 * and clearing the other bits as is required to derive the two IVs. >> 345 */ >> 346 b_0[0] = 0x1; 350 347 351 mask_fc &= ~cpu_to_le16(IEEE80 !! 348 /* Nonce: Nonce Flags | A2 | PN 352 len_a += 2; !! 349 * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7) 353 } else { !! 350 */ 354 qos_tid = 0; !! 351 b_0[1] = qos_tid | (mgmt << 4); 355 } !! 352 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); >> 353 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN); 356 354 357 /* AAD (extra authenticate-only data) 355 /* AAD (extra authenticate-only data) / masked 802.11 header 358 * FC | A1 | A2 | A3 | SC | [A4] | [QC 356 * FC | A1 | A2 | A3 | SC | [A4] | [QC] */ 359 put_unaligned_be16(len_a, &aad[0]); 357 put_unaligned_be16(len_a, &aad[0]); 360 put_unaligned(mask_fc, (__le16 *)&aad[ 358 put_unaligned(mask_fc, (__le16 *)&aad[2]); 361 memcpy(&aad[4], &hdr->addrs, 3 * ETH_A !! 359 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); 362 360 363 /* Mask Seq#, leave Frag# */ 361 /* Mask Seq#, leave Frag# */ 364 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0 362 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f; 365 aad[23] = 0; 363 aad[23] = 0; 366 364 367 if (a4_included) { 365 if (a4_included) { 368 memcpy(&aad[24], hdr->addr4, E 366 memcpy(&aad[24], hdr->addr4, ETH_ALEN); 369 aad[30] = qos_tid; 367 aad[30] = qos_tid; 370 aad[31] = 0; 368 aad[31] = 0; 371 } else { 369 } else { 372 memset(&aad[24], 0, ETH_ALEN + 370 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); 373 aad[24] = qos_tid; 371 aad[24] = qos_tid; 374 } 372 } 375 << 376 return qos_tid; << 377 } 373 } 378 374 379 static void ccmp_special_blocks(struct sk_buff << 380 bool spp_amsdu << 381 { << 382 struct ieee80211_hdr *hdr = (struct ie << 383 u8 qos_tid = ccmp_gcmp_aad(skb, aad, s << 384 << 385 /* In CCM, the initial vectors (IV) us << 386 * mode authentication are not allowed << 387 * from this vector b_0. We only set L << 388 * data size can be represented in (L+ << 389 * care of storing the data length in << 390 * and clearing the other bits as is r << 391 */ << 392 b_0[0] = 0x1; << 393 << 394 /* Nonce: Nonce Flags | A2 | PN << 395 * Nonce Flags: Priority (b0..b3) | Ma << 396 */ << 397 b_0[1] = qos_tid | (ieee80211_is_mgmt( << 398 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); << 399 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_ << 400 } << 401 375 402 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn 376 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id) 403 { 377 { 404 hdr[0] = pn[5]; 378 hdr[0] = pn[5]; 405 hdr[1] = pn[4]; 379 hdr[1] = pn[4]; 406 hdr[2] = 0; 380 hdr[2] = 0; 407 hdr[3] = 0x20 | (key_id << 6); 381 hdr[3] = 0x20 | (key_id << 6); 408 hdr[4] = pn[3]; 382 hdr[4] = pn[3]; 409 hdr[5] = pn[2]; 383 hdr[5] = pn[2]; 410 hdr[6] = pn[1]; 384 hdr[6] = pn[1]; 411 hdr[7] = pn[0]; 385 hdr[7] = pn[0]; 412 } 386 } 413 387 414 388 415 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr 389 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr) 416 { 390 { 417 pn[0] = hdr[7]; 391 pn[0] = hdr[7]; 418 pn[1] = hdr[6]; 392 pn[1] = hdr[6]; 419 pn[2] = hdr[5]; 393 pn[2] = hdr[5]; 420 pn[3] = hdr[4]; 394 pn[3] = hdr[4]; 421 pn[4] = hdr[1]; 395 pn[4] = hdr[1]; 422 pn[5] = hdr[0]; 396 pn[5] = hdr[0]; 423 } 397 } 424 398 425 399 426 static int ccmp_encrypt_skb(struct ieee80211_t 400 static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb, 427 unsigned int mic_l 401 unsigned int mic_len) 428 { 402 { 429 struct ieee80211_hdr *hdr = (struct ie 403 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 430 struct ieee80211_key *key = tx->key; 404 struct ieee80211_key *key = tx->key; 431 struct ieee80211_tx_info *info = IEEE8 405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 432 int hdrlen, len, tail; 406 int hdrlen, len, tail; 433 u8 *pos; 407 u8 *pos; 434 u8 pn[6]; 408 u8 pn[6]; 435 u64 pn64; 409 u64 pn64; 436 u8 aad[CCM_AAD_LEN]; 410 u8 aad[CCM_AAD_LEN]; 437 u8 b_0[AES_BLOCK_SIZE]; 411 u8 b_0[AES_BLOCK_SIZE]; 438 412 439 if (info->control.hw_key && 413 if (info->control.hw_key && 440 !(info->control.hw_key->flags & IE 414 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 441 !(info->control.hw_key->flags & IE 415 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 442 !((info->control.hw_key->flags & 416 !((info->control.hw_key->flags & 443 IEEE80211_KEY_FLAG_GENERATE_IV_ 417 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 444 ieee80211_is_mgmt(hdr->frame_con 418 ieee80211_is_mgmt(hdr->frame_control))) { 445 /* 419 /* 446 * hwaccel has no need for pre 420 * hwaccel has no need for preallocated room for CCMP 447 * header or MIC fields 421 * header or MIC fields 448 */ 422 */ 449 return 0; 423 return 0; 450 } 424 } 451 425 452 hdrlen = ieee80211_hdrlen(hdr->frame_c 426 hdrlen = ieee80211_hdrlen(hdr->frame_control); 453 len = skb->len - hdrlen; 427 len = skb->len - hdrlen; 454 428 455 if (info->control.hw_key) 429 if (info->control.hw_key) 456 tail = 0; 430 tail = 0; 457 else 431 else 458 tail = mic_len; 432 tail = mic_len; 459 433 460 if (WARN_ON(skb_tailroom(skb) < tail | 434 if (WARN_ON(skb_tailroom(skb) < tail || 461 skb_headroom(skb) < IEEE80 435 skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN)) 462 return -1; 436 return -1; 463 437 464 pos = skb_push(skb, IEEE80211_CCMP_HDR 438 pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN); 465 memmove(pos, pos + IEEE80211_CCMP_HDR_ 439 memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen); 466 440 467 /* the HW only needs room for the IV, 441 /* the HW only needs room for the IV, but not the actual IV */ 468 if (info->control.hw_key && 442 if (info->control.hw_key && 469 (info->control.hw_key->flags & IEE 443 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 470 return 0; 444 return 0; 471 445 >> 446 hdr = (struct ieee80211_hdr *) pos; 472 pos += hdrlen; 447 pos += hdrlen; 473 448 474 pn64 = atomic64_inc_return(&key->conf. 449 pn64 = atomic64_inc_return(&key->conf.tx_pn); 475 450 476 pn[5] = pn64; 451 pn[5] = pn64; 477 pn[4] = pn64 >> 8; 452 pn[4] = pn64 >> 8; 478 pn[3] = pn64 >> 16; 453 pn[3] = pn64 >> 16; 479 pn[2] = pn64 >> 24; 454 pn[2] = pn64 >> 24; 480 pn[1] = pn64 >> 32; 455 pn[1] = pn64 >> 32; 481 pn[0] = pn64 >> 40; 456 pn[0] = pn64 >> 40; 482 457 483 ccmp_pn2hdr(pos, pn, key->conf.keyidx) 458 ccmp_pn2hdr(pos, pn, key->conf.keyidx); 484 459 485 /* hwaccel - with software CCMP header 460 /* hwaccel - with software CCMP header */ 486 if (info->control.hw_key) 461 if (info->control.hw_key) 487 return 0; 462 return 0; 488 463 489 pos += IEEE80211_CCMP_HDR_LEN; 464 pos += IEEE80211_CCMP_HDR_LEN; 490 ccmp_special_blocks(skb, pn, b_0, aad, !! 465 ccmp_special_blocks(skb, pn, b_0, aad); 491 key->conf.flags & << 492 return ieee80211_aes_ccm_encrypt(key-> 466 return ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len, 493 skb_p !! 467 skb_put(skb, mic_len), mic_len); 494 } 468 } 495 469 496 470 497 ieee80211_tx_result 471 ieee80211_tx_result 498 ieee80211_crypto_ccmp_encrypt(struct ieee80211 472 ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx, 499 unsigned int mic 473 unsigned int mic_len) 500 { 474 { 501 struct sk_buff *skb; 475 struct sk_buff *skb; 502 476 503 ieee80211_tx_set_protected(tx); 477 ieee80211_tx_set_protected(tx); 504 478 505 skb_queue_walk(&tx->skbs, skb) { 479 skb_queue_walk(&tx->skbs, skb) { 506 if (ccmp_encrypt_skb(tx, skb, 480 if (ccmp_encrypt_skb(tx, skb, mic_len) < 0) 507 return TX_DROP; 481 return TX_DROP; 508 } 482 } 509 483 510 return TX_CONTINUE; 484 return TX_CONTINUE; 511 } 485 } 512 486 513 487 514 ieee80211_rx_result 488 ieee80211_rx_result 515 ieee80211_crypto_ccmp_decrypt(struct ieee80211 489 ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx, 516 unsigned int mic 490 unsigned int mic_len) 517 { 491 { 518 struct ieee80211_hdr *hdr = (struct ie 492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 519 int hdrlen; 493 int hdrlen; 520 struct ieee80211_key *key = rx->key; 494 struct ieee80211_key *key = rx->key; 521 struct sk_buff *skb = rx->skb; 495 struct sk_buff *skb = rx->skb; 522 struct ieee80211_rx_status *status = I 496 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 523 u8 pn[IEEE80211_CCMP_PN_LEN]; 497 u8 pn[IEEE80211_CCMP_PN_LEN]; 524 int data_len; 498 int data_len; 525 int queue; 499 int queue; 526 500 527 hdrlen = ieee80211_hdrlen(hdr->frame_c 501 hdrlen = ieee80211_hdrlen(hdr->frame_control); 528 502 529 if (!ieee80211_is_data(hdr->frame_cont 503 if (!ieee80211_is_data(hdr->frame_control) && 530 !ieee80211_is_robust_mgmt_frame(sk 504 !ieee80211_is_robust_mgmt_frame(skb)) 531 return RX_CONTINUE; 505 return RX_CONTINUE; 532 506 533 if (status->flag & RX_FLAG_DECRYPTED) 507 if (status->flag & RX_FLAG_DECRYPTED) { 534 if (!pskb_may_pull(rx->skb, hd 508 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN)) 535 return RX_DROP_U_SHORT !! 509 return RX_DROP_UNUSABLE; 536 if (status->flag & RX_FLAG_MIC 510 if (status->flag & RX_FLAG_MIC_STRIPPED) 537 mic_len = 0; 511 mic_len = 0; 538 } else { 512 } else { 539 if (skb_linearize(rx->skb)) 513 if (skb_linearize(rx->skb)) 540 return RX_DROP_U_OOM; !! 514 return RX_DROP_UNUSABLE; 541 } 515 } 542 516 543 /* reload hdr - skb might have been re << 544 hdr = (void *)rx->skb->data; << 545 << 546 data_len = skb->len - hdrlen - IEEE802 517 data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len; 547 if (!rx->sta || data_len < 0) 518 if (!rx->sta || data_len < 0) 548 return RX_DROP_U_SHORT_CCMP; !! 519 return RX_DROP_UNUSABLE; 549 520 550 if (!(status->flag & RX_FLAG_PN_VALIDA 521 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 551 int res; 522 int res; 552 523 553 ccmp_hdr2pn(pn, skb->data + hd 524 ccmp_hdr2pn(pn, skb->data + hdrlen); 554 525 555 queue = rx->security_idx; 526 queue = rx->security_idx; 556 527 557 res = memcmp(pn, key->u.ccmp.r 528 res = memcmp(pn, key->u.ccmp.rx_pn[queue], 558 IEEE80211_CCMP_PN 529 IEEE80211_CCMP_PN_LEN); 559 if (res < 0 || 530 if (res < 0 || 560 (!res && !(status->flag & 531 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 561 key->u.ccmp.replays++; 532 key->u.ccmp.replays++; 562 return RX_DROP_U_REPLA !! 533 return RX_DROP_UNUSABLE; 563 } 534 } 564 535 565 if (!(status->flag & RX_FLAG_D 536 if (!(status->flag & RX_FLAG_DECRYPTED)) { 566 u8 aad[2 * AES_BLOCK_S 537 u8 aad[2 * AES_BLOCK_SIZE]; 567 u8 b_0[AES_BLOCK_SIZE] 538 u8 b_0[AES_BLOCK_SIZE]; 568 /* hardware didn't dec 539 /* hardware didn't decrypt/verify MIC */ 569 ccmp_special_blocks(sk !! 540 ccmp_special_blocks(skb, pn, b_0, aad); 570 ke << 571 541 572 if (ieee80211_aes_ccm_ 542 if (ieee80211_aes_ccm_decrypt( 573 key->u.ccm 543 key->u.ccmp.tfm, b_0, aad, 574 skb->data 544 skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN, 575 data_len, 545 data_len, 576 skb->data !! 546 skb->data + skb->len - mic_len, mic_len)) 577 return RX_DROP !! 547 return RX_DROP_UNUSABLE; 578 } 548 } 579 549 580 memcpy(key->u.ccmp.rx_pn[queue 550 memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN); 581 if (unlikely(ieee80211_is_frag << 582 memcpy(rx->ccm_gcm.pn, << 583 } 551 } 584 552 585 /* Remove CCMP header and MIC */ 553 /* Remove CCMP header and MIC */ 586 if (pskb_trim(skb, skb->len - mic_len) 554 if (pskb_trim(skb, skb->len - mic_len)) 587 return RX_DROP_U_SHORT_CCMP_MI !! 555 return RX_DROP_UNUSABLE; 588 memmove(skb->data + IEEE80211_CCMP_HDR 556 memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen); 589 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 557 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 590 558 591 return RX_CONTINUE; 559 return RX_CONTINUE; 592 } 560 } 593 561 594 static void gcmp_special_blocks(struct sk_buff !! 562 static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad) 595 bool spp_amsdu << 596 { 563 { 597 struct ieee80211_hdr *hdr = (void *)sk !! 564 __le16 mask_fc; >> 565 u8 qos_tid; >> 566 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 598 567 599 memcpy(j_0, hdr->addr2, ETH_ALEN); 568 memcpy(j_0, hdr->addr2, ETH_ALEN); 600 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_G 569 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN); 601 j_0[13] = 0; 570 j_0[13] = 0; 602 j_0[14] = 0; 571 j_0[14] = 0; 603 j_0[AES_BLOCK_SIZE - 1] = 0x01; 572 j_0[AES_BLOCK_SIZE - 1] = 0x01; 604 573 605 ccmp_gcmp_aad(skb, aad, spp_amsdu); !! 574 /* AAD (extra authenticate-only data) / masked 802.11 header >> 575 * FC | A1 | A2 | A3 | SC | [A4] | [QC] >> 576 */ >> 577 put_unaligned_be16(ieee80211_hdrlen(hdr->frame_control) - 2, &aad[0]); >> 578 /* Mask FC: zero subtype b4 b5 b6 (if not mgmt) >> 579 * Retry, PwrMgt, MoreData; set Protected >> 580 */ >> 581 mask_fc = hdr->frame_control; >> 582 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | >> 583 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); >> 584 if (!ieee80211_is_mgmt(hdr->frame_control)) >> 585 mask_fc &= ~cpu_to_le16(0x0070); >> 586 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); >> 587 >> 588 put_unaligned(mask_fc, (__le16 *)&aad[2]); >> 589 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); >> 590 >> 591 /* Mask Seq#, leave Frag# */ >> 592 aad[22] = *((u8 *)&hdr->seq_ctrl) & 0x0f; >> 593 aad[23] = 0; >> 594 >> 595 if (ieee80211_is_data_qos(hdr->frame_control)) >> 596 qos_tid = *ieee80211_get_qos_ctl(hdr) & >> 597 IEEE80211_QOS_CTL_TID_MASK; >> 598 else >> 599 qos_tid = 0; >> 600 >> 601 if (ieee80211_has_a4(hdr->frame_control)) { >> 602 memcpy(&aad[24], hdr->addr4, ETH_ALEN); >> 603 aad[30] = qos_tid; >> 604 aad[31] = 0; >> 605 } else { >> 606 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); >> 607 aad[24] = qos_tid; >> 608 } 606 } 609 } 607 610 608 static inline void gcmp_pn2hdr(u8 *hdr, const 611 static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id) 609 { 612 { 610 hdr[0] = pn[5]; 613 hdr[0] = pn[5]; 611 hdr[1] = pn[4]; 614 hdr[1] = pn[4]; 612 hdr[2] = 0; 615 hdr[2] = 0; 613 hdr[3] = 0x20 | (key_id << 6); 616 hdr[3] = 0x20 | (key_id << 6); 614 hdr[4] = pn[3]; 617 hdr[4] = pn[3]; 615 hdr[5] = pn[2]; 618 hdr[5] = pn[2]; 616 hdr[6] = pn[1]; 619 hdr[6] = pn[1]; 617 hdr[7] = pn[0]; 620 hdr[7] = pn[0]; 618 } 621 } 619 622 620 static inline void gcmp_hdr2pn(u8 *pn, const u 623 static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr) 621 { 624 { 622 pn[0] = hdr[7]; 625 pn[0] = hdr[7]; 623 pn[1] = hdr[6]; 626 pn[1] = hdr[6]; 624 pn[2] = hdr[5]; 627 pn[2] = hdr[5]; 625 pn[3] = hdr[4]; 628 pn[3] = hdr[4]; 626 pn[4] = hdr[1]; 629 pn[4] = hdr[1]; 627 pn[5] = hdr[0]; 630 pn[5] = hdr[0]; 628 } 631 } 629 632 630 static int gcmp_encrypt_skb(struct ieee80211_t 633 static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 631 { 634 { 632 struct ieee80211_hdr *hdr = (struct ie 635 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 633 struct ieee80211_key *key = tx->key; 636 struct ieee80211_key *key = tx->key; 634 struct ieee80211_tx_info *info = IEEE8 637 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 635 int hdrlen, len, tail; 638 int hdrlen, len, tail; 636 u8 *pos; 639 u8 *pos; 637 u8 pn[6]; 640 u8 pn[6]; 638 u64 pn64; 641 u64 pn64; 639 u8 aad[GCM_AAD_LEN]; 642 u8 aad[GCM_AAD_LEN]; 640 u8 j_0[AES_BLOCK_SIZE]; 643 u8 j_0[AES_BLOCK_SIZE]; 641 644 642 if (info->control.hw_key && 645 if (info->control.hw_key && 643 !(info->control.hw_key->flags & IE 646 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 644 !(info->control.hw_key->flags & IE 647 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 645 !((info->control.hw_key->flags & 648 !((info->control.hw_key->flags & 646 IEEE80211_KEY_FLAG_GENERATE_IV_ 649 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 647 ieee80211_is_mgmt(hdr->frame_con 650 ieee80211_is_mgmt(hdr->frame_control))) { 648 /* hwaccel has no need for pre 651 /* hwaccel has no need for preallocated room for GCMP 649 * header or MIC fields 652 * header or MIC fields 650 */ 653 */ 651 return 0; 654 return 0; 652 } 655 } 653 656 654 hdrlen = ieee80211_hdrlen(hdr->frame_c 657 hdrlen = ieee80211_hdrlen(hdr->frame_control); 655 len = skb->len - hdrlen; 658 len = skb->len - hdrlen; 656 659 657 if (info->control.hw_key) 660 if (info->control.hw_key) 658 tail = 0; 661 tail = 0; 659 else 662 else 660 tail = IEEE80211_GCMP_MIC_LEN; 663 tail = IEEE80211_GCMP_MIC_LEN; 661 664 662 if (WARN_ON(skb_tailroom(skb) < tail | 665 if (WARN_ON(skb_tailroom(skb) < tail || 663 skb_headroom(skb) < IEEE80 666 skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN)) 664 return -1; 667 return -1; 665 668 666 pos = skb_push(skb, IEEE80211_GCMP_HDR 669 pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN); 667 memmove(pos, pos + IEEE80211_GCMP_HDR_ 670 memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen); 668 skb_set_network_header(skb, skb_networ 671 skb_set_network_header(skb, skb_network_offset(skb) + 669 IEEE80211_ 672 IEEE80211_GCMP_HDR_LEN); 670 673 671 /* the HW only needs room for the IV, 674 /* the HW only needs room for the IV, but not the actual IV */ 672 if (info->control.hw_key && 675 if (info->control.hw_key && 673 (info->control.hw_key->flags & IEE 676 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 674 return 0; 677 return 0; 675 678 >> 679 hdr = (struct ieee80211_hdr *)pos; 676 pos += hdrlen; 680 pos += hdrlen; 677 681 678 pn64 = atomic64_inc_return(&key->conf. 682 pn64 = atomic64_inc_return(&key->conf.tx_pn); 679 683 680 pn[5] = pn64; 684 pn[5] = pn64; 681 pn[4] = pn64 >> 8; 685 pn[4] = pn64 >> 8; 682 pn[3] = pn64 >> 16; 686 pn[3] = pn64 >> 16; 683 pn[2] = pn64 >> 24; 687 pn[2] = pn64 >> 24; 684 pn[1] = pn64 >> 32; 688 pn[1] = pn64 >> 32; 685 pn[0] = pn64 >> 40; 689 pn[0] = pn64 >> 40; 686 690 687 gcmp_pn2hdr(pos, pn, key->conf.keyidx) 691 gcmp_pn2hdr(pos, pn, key->conf.keyidx); 688 692 689 /* hwaccel - with software GCMP header 693 /* hwaccel - with software GCMP header */ 690 if (info->control.hw_key) 694 if (info->control.hw_key) 691 return 0; 695 return 0; 692 696 693 pos += IEEE80211_GCMP_HDR_LEN; 697 pos += IEEE80211_GCMP_HDR_LEN; 694 gcmp_special_blocks(skb, pn, j_0, aad, !! 698 gcmp_special_blocks(skb, pn, j_0, aad); 695 key->conf.flags & << 696 return ieee80211_aes_gcm_encrypt(key-> 699 return ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len, 697 skb_p 700 skb_put(skb, IEEE80211_GCMP_MIC_LEN)); 698 } 701 } 699 702 700 ieee80211_tx_result 703 ieee80211_tx_result 701 ieee80211_crypto_gcmp_encrypt(struct ieee80211 704 ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx) 702 { 705 { 703 struct sk_buff *skb; 706 struct sk_buff *skb; 704 707 705 ieee80211_tx_set_protected(tx); 708 ieee80211_tx_set_protected(tx); 706 709 707 skb_queue_walk(&tx->skbs, skb) { 710 skb_queue_walk(&tx->skbs, skb) { 708 if (gcmp_encrypt_skb(tx, skb) 711 if (gcmp_encrypt_skb(tx, skb) < 0) 709 return TX_DROP; 712 return TX_DROP; 710 } 713 } 711 714 712 return TX_CONTINUE; 715 return TX_CONTINUE; 713 } 716 } 714 717 715 ieee80211_rx_result 718 ieee80211_rx_result 716 ieee80211_crypto_gcmp_decrypt(struct ieee80211 719 ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx) 717 { 720 { 718 struct ieee80211_hdr *hdr = (struct ie 721 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 719 int hdrlen; 722 int hdrlen; 720 struct ieee80211_key *key = rx->key; 723 struct ieee80211_key *key = rx->key; 721 struct sk_buff *skb = rx->skb; 724 struct sk_buff *skb = rx->skb; 722 struct ieee80211_rx_status *status = I 725 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 723 u8 pn[IEEE80211_GCMP_PN_LEN]; 726 u8 pn[IEEE80211_GCMP_PN_LEN]; 724 int data_len, queue, mic_len = IEEE802 727 int data_len, queue, mic_len = IEEE80211_GCMP_MIC_LEN; 725 728 726 hdrlen = ieee80211_hdrlen(hdr->frame_c 729 hdrlen = ieee80211_hdrlen(hdr->frame_control); 727 730 728 if (!ieee80211_is_data(hdr->frame_cont 731 if (!ieee80211_is_data(hdr->frame_control) && 729 !ieee80211_is_robust_mgmt_frame(sk 732 !ieee80211_is_robust_mgmt_frame(skb)) 730 return RX_CONTINUE; 733 return RX_CONTINUE; 731 734 732 if (status->flag & RX_FLAG_DECRYPTED) 735 if (status->flag & RX_FLAG_DECRYPTED) { 733 if (!pskb_may_pull(rx->skb, hd 736 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN)) 734 return RX_DROP_U_SHORT !! 737 return RX_DROP_UNUSABLE; 735 if (status->flag & RX_FLAG_MIC 738 if (status->flag & RX_FLAG_MIC_STRIPPED) 736 mic_len = 0; 739 mic_len = 0; 737 } else { 740 } else { 738 if (skb_linearize(rx->skb)) 741 if (skb_linearize(rx->skb)) 739 return RX_DROP_U_OOM; !! 742 return RX_DROP_UNUSABLE; 740 } 743 } 741 744 742 /* reload hdr - skb might have been re << 743 hdr = (void *)rx->skb->data; << 744 << 745 data_len = skb->len - hdrlen - IEEE802 745 data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN - mic_len; 746 if (!rx->sta || data_len < 0) 746 if (!rx->sta || data_len < 0) 747 return RX_DROP_U_SHORT_GCMP; !! 747 return RX_DROP_UNUSABLE; 748 748 749 if (!(status->flag & RX_FLAG_PN_VALIDA 749 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 750 int res; 750 int res; 751 751 752 gcmp_hdr2pn(pn, skb->data + hd 752 gcmp_hdr2pn(pn, skb->data + hdrlen); 753 753 754 queue = rx->security_idx; 754 queue = rx->security_idx; 755 755 756 res = memcmp(pn, key->u.gcmp.r 756 res = memcmp(pn, key->u.gcmp.rx_pn[queue], 757 IEEE80211_GCMP_PN 757 IEEE80211_GCMP_PN_LEN); 758 if (res < 0 || 758 if (res < 0 || 759 (!res && !(status->flag & 759 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 760 key->u.gcmp.replays++; 760 key->u.gcmp.replays++; 761 return RX_DROP_U_REPLA !! 761 return RX_DROP_UNUSABLE; 762 } 762 } 763 763 764 if (!(status->flag & RX_FLAG_D 764 if (!(status->flag & RX_FLAG_DECRYPTED)) { 765 u8 aad[2 * AES_BLOCK_S 765 u8 aad[2 * AES_BLOCK_SIZE]; 766 u8 j_0[AES_BLOCK_SIZE] 766 u8 j_0[AES_BLOCK_SIZE]; 767 /* hardware didn't dec 767 /* hardware didn't decrypt/verify MIC */ 768 gcmp_special_blocks(sk !! 768 gcmp_special_blocks(skb, pn, j_0, aad); 769 ke << 770 769 771 if (ieee80211_aes_gcm_ 770 if (ieee80211_aes_gcm_decrypt( 772 key->u.gcm 771 key->u.gcmp.tfm, j_0, aad, 773 skb->data 772 skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN, 774 data_len, 773 data_len, 775 skb->data 774 skb->data + skb->len - 776 IEEE80211_ 775 IEEE80211_GCMP_MIC_LEN)) 777 return RX_DROP !! 776 return RX_DROP_UNUSABLE; 778 } 777 } 779 778 780 memcpy(key->u.gcmp.rx_pn[queue 779 memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN); 781 if (unlikely(ieee80211_is_frag << 782 memcpy(rx->ccm_gcm.pn, << 783 } 780 } 784 781 785 /* Remove GCMP header and MIC */ 782 /* Remove GCMP header and MIC */ 786 if (pskb_trim(skb, skb->len - mic_len) 783 if (pskb_trim(skb, skb->len - mic_len)) 787 return RX_DROP_U_SHORT_GCMP_MI !! 784 return RX_DROP_UNUSABLE; 788 memmove(skb->data + IEEE80211_GCMP_HDR 785 memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen); 789 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 786 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 790 787 791 return RX_CONTINUE; 788 return RX_CONTINUE; 792 } 789 } 793 790 >> 791 static ieee80211_tx_result >> 792 ieee80211_crypto_cs_encrypt(struct ieee80211_tx_data *tx, >> 793 struct sk_buff *skb) >> 794 { >> 795 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; >> 796 struct ieee80211_key *key = tx->key; >> 797 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); >> 798 int hdrlen; >> 799 u8 *pos, iv_len = key->conf.iv_len; >> 800 >> 801 if (info->control.hw_key && >> 802 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { >> 803 /* hwaccel has no need for preallocated head room */ >> 804 return TX_CONTINUE; >> 805 } >> 806 >> 807 if (unlikely(skb_headroom(skb) < iv_len && >> 808 pskb_expand_head(skb, iv_len, 0, GFP_ATOMIC))) >> 809 return TX_DROP; >> 810 >> 811 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 812 >> 813 pos = skb_push(skb, iv_len); >> 814 memmove(pos, pos + iv_len, hdrlen); >> 815 >> 816 return TX_CONTINUE; >> 817 } >> 818 >> 819 static inline int ieee80211_crypto_cs_pn_compare(u8 *pn1, u8 *pn2, int len) >> 820 { >> 821 int i; >> 822 >> 823 /* pn is little endian */ >> 824 for (i = len - 1; i >= 0; i--) { >> 825 if (pn1[i] < pn2[i]) >> 826 return -1; >> 827 else if (pn1[i] > pn2[i]) >> 828 return 1; >> 829 } >> 830 >> 831 return 0; >> 832 } >> 833 >> 834 static ieee80211_rx_result >> 835 ieee80211_crypto_cs_decrypt(struct ieee80211_rx_data *rx) >> 836 { >> 837 struct ieee80211_key *key = rx->key; >> 838 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; >> 839 const struct ieee80211_cipher_scheme *cs = NULL; >> 840 int hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 841 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); >> 842 int data_len; >> 843 u8 *rx_pn; >> 844 u8 *skb_pn; >> 845 u8 qos_tid; >> 846 >> 847 if (!rx->sta || !rx->sta->cipher_scheme || >> 848 !(status->flag & RX_FLAG_DECRYPTED)) >> 849 return RX_DROP_UNUSABLE; >> 850 >> 851 if (!ieee80211_is_data(hdr->frame_control)) >> 852 return RX_CONTINUE; >> 853 >> 854 cs = rx->sta->cipher_scheme; >> 855 >> 856 data_len = rx->skb->len - hdrlen - cs->hdr_len; >> 857 >> 858 if (data_len < 0) >> 859 return RX_DROP_UNUSABLE; >> 860 >> 861 if (ieee80211_is_data_qos(hdr->frame_control)) >> 862 qos_tid = *ieee80211_get_qos_ctl(hdr) & >> 863 IEEE80211_QOS_CTL_TID_MASK; >> 864 else >> 865 qos_tid = 0; >> 866 >> 867 if (skb_linearize(rx->skb)) >> 868 return RX_DROP_UNUSABLE; >> 869 >> 870 hdr = (struct ieee80211_hdr *)rx->skb->data; >> 871 >> 872 rx_pn = key->u.gen.rx_pn[qos_tid]; >> 873 skb_pn = rx->skb->data + hdrlen + cs->pn_off; >> 874 >> 875 if (ieee80211_crypto_cs_pn_compare(skb_pn, rx_pn, cs->pn_len) <= 0) >> 876 return RX_DROP_UNUSABLE; >> 877 >> 878 memcpy(rx_pn, skb_pn, cs->pn_len); >> 879 >> 880 /* remove security header and MIC */ >> 881 if (pskb_trim(rx->skb, rx->skb->len - cs->mic_len)) >> 882 return RX_DROP_UNUSABLE; >> 883 >> 884 memmove(rx->skb->data + cs->hdr_len, rx->skb->data, hdrlen); >> 885 skb_pull(rx->skb, cs->hdr_len); >> 886 >> 887 return RX_CONTINUE; >> 888 } >> 889 794 static void bip_aad(struct sk_buff *skb, u8 *a 890 static void bip_aad(struct sk_buff *skb, u8 *aad) 795 { 891 { 796 __le16 mask_fc; 892 __le16 mask_fc; 797 struct ieee80211_hdr *hdr = (struct ie 893 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 798 894 799 /* BIP AAD: FC(masked) || A1 || A2 || 895 /* BIP AAD: FC(masked) || A1 || A2 || A3 */ 800 896 801 /* FC type/subtype */ 897 /* FC type/subtype */ 802 /* Mask FC Retry, PwrMgt, MoreData fla 898 /* Mask FC Retry, PwrMgt, MoreData flags to zero */ 803 mask_fc = hdr->frame_control; 899 mask_fc = hdr->frame_control; 804 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 900 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM | 805 IEEE80211_FCTL 901 IEEE80211_FCTL_MOREDATA); 806 put_unaligned(mask_fc, (__le16 *) &aad 902 put_unaligned(mask_fc, (__le16 *) &aad[0]); 807 /* A1 || A2 || A3 */ 903 /* A1 || A2 || A3 */ 808 memcpy(aad + 2, &hdr->addrs, 3 * ETH_A !! 904 memcpy(aad + 2, &hdr->addr1, 3 * ETH_ALEN); 809 } 905 } 810 906 811 907 812 static inline void bip_ipn_set64(u8 *d, u64 pn 908 static inline void bip_ipn_set64(u8 *d, u64 pn) 813 { 909 { 814 *d++ = pn; 910 *d++ = pn; 815 *d++ = pn >> 8; 911 *d++ = pn >> 8; 816 *d++ = pn >> 16; 912 *d++ = pn >> 16; 817 *d++ = pn >> 24; 913 *d++ = pn >> 24; 818 *d++ = pn >> 32; 914 *d++ = pn >> 32; 819 *d = pn >> 40; 915 *d = pn >> 40; 820 } 916 } 821 917 822 static inline void bip_ipn_swap(u8 *d, const u 918 static inline void bip_ipn_swap(u8 *d, const u8 *s) 823 { 919 { 824 *d++ = s[5]; 920 *d++ = s[5]; 825 *d++ = s[4]; 921 *d++ = s[4]; 826 *d++ = s[3]; 922 *d++ = s[3]; 827 *d++ = s[2]; 923 *d++ = s[2]; 828 *d++ = s[1]; 924 *d++ = s[1]; 829 *d = s[0]; 925 *d = s[0]; 830 } 926 } 831 927 832 928 833 ieee80211_tx_result 929 ieee80211_tx_result 834 ieee80211_crypto_aes_cmac_encrypt(struct ieee8 930 ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx) 835 { 931 { 836 struct sk_buff *skb; 932 struct sk_buff *skb; 837 struct ieee80211_tx_info *info; 933 struct ieee80211_tx_info *info; 838 struct ieee80211_key *key = tx->key; 934 struct ieee80211_key *key = tx->key; 839 struct ieee80211_mmie *mmie; 935 struct ieee80211_mmie *mmie; 840 u8 aad[20]; 936 u8 aad[20]; 841 u64 pn64; 937 u64 pn64; 842 938 843 if (WARN_ON(skb_queue_len(&tx->skbs) ! 939 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 844 return TX_DROP; 940 return TX_DROP; 845 941 846 skb = skb_peek(&tx->skbs); 942 skb = skb_peek(&tx->skbs); 847 943 848 info = IEEE80211_SKB_CB(skb); 944 info = IEEE80211_SKB_CB(skb); 849 945 850 if (info->control.hw_key && !! 946 if (info->control.hw_key) 851 !(key->conf.flags & IEEE80211_KEY_ << 852 return TX_CONTINUE; 947 return TX_CONTINUE; 853 948 854 if (WARN_ON(skb_tailroom(skb) < sizeof 949 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 855 return TX_DROP; 950 return TX_DROP; 856 951 857 mmie = skb_put(skb, sizeof(*mmie)); !! 952 mmie = (struct ieee80211_mmie *) skb_put(skb, sizeof(*mmie)); 858 mmie->element_id = WLAN_EID_MMIE; 953 mmie->element_id = WLAN_EID_MMIE; 859 mmie->length = sizeof(*mmie) - 2; 954 mmie->length = sizeof(*mmie) - 2; 860 mmie->key_id = cpu_to_le16(key->conf.k 955 mmie->key_id = cpu_to_le16(key->conf.keyidx); 861 956 862 /* PN = PN + 1 */ 957 /* PN = PN + 1 */ 863 pn64 = atomic64_inc_return(&key->conf. 958 pn64 = atomic64_inc_return(&key->conf.tx_pn); 864 959 865 bip_ipn_set64(mmie->sequence_number, p 960 bip_ipn_set64(mmie->sequence_number, pn64); 866 961 867 if (info->control.hw_key) << 868 return TX_CONTINUE; << 869 << 870 bip_aad(skb, aad); 962 bip_aad(skb, aad); 871 963 872 /* 964 /* 873 * MIC = AES-128-CMAC(IGTK, AAD || Man 965 * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64) 874 */ 966 */ 875 ieee80211_aes_cmac(key->u.aes_cmac.tfm 967 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 876 skb->data + 24, skb 968 skb->data + 24, skb->len - 24, mmie->mic); 877 969 878 return TX_CONTINUE; 970 return TX_CONTINUE; 879 } 971 } 880 972 881 ieee80211_tx_result 973 ieee80211_tx_result 882 ieee80211_crypto_aes_cmac_256_encrypt(struct i 974 ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx) 883 { 975 { 884 struct sk_buff *skb; 976 struct sk_buff *skb; 885 struct ieee80211_tx_info *info; 977 struct ieee80211_tx_info *info; 886 struct ieee80211_key *key = tx->key; 978 struct ieee80211_key *key = tx->key; 887 struct ieee80211_mmie_16 *mmie; 979 struct ieee80211_mmie_16 *mmie; 888 u8 aad[20]; 980 u8 aad[20]; 889 u64 pn64; 981 u64 pn64; 890 982 891 if (WARN_ON(skb_queue_len(&tx->skbs) ! 983 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 892 return TX_DROP; 984 return TX_DROP; 893 985 894 skb = skb_peek(&tx->skbs); 986 skb = skb_peek(&tx->skbs); 895 987 896 info = IEEE80211_SKB_CB(skb); 988 info = IEEE80211_SKB_CB(skb); 897 989 898 if (info->control.hw_key && !! 990 if (info->control.hw_key) 899 !(key->conf.flags & IEEE80211_KEY_ << 900 return TX_CONTINUE; 991 return TX_CONTINUE; 901 992 902 if (WARN_ON(skb_tailroom(skb) < sizeof 993 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 903 return TX_DROP; 994 return TX_DROP; 904 995 905 mmie = skb_put(skb, sizeof(*mmie)); !! 996 mmie = (struct ieee80211_mmie_16 *)skb_put(skb, sizeof(*mmie)); 906 mmie->element_id = WLAN_EID_MMIE; 997 mmie->element_id = WLAN_EID_MMIE; 907 mmie->length = sizeof(*mmie) - 2; 998 mmie->length = sizeof(*mmie) - 2; 908 mmie->key_id = cpu_to_le16(key->conf.k 999 mmie->key_id = cpu_to_le16(key->conf.keyidx); 909 1000 910 /* PN = PN + 1 */ 1001 /* PN = PN + 1 */ 911 pn64 = atomic64_inc_return(&key->conf. 1002 pn64 = atomic64_inc_return(&key->conf.tx_pn); 912 1003 913 bip_ipn_set64(mmie->sequence_number, p 1004 bip_ipn_set64(mmie->sequence_number, pn64); 914 1005 915 if (info->control.hw_key) << 916 return TX_CONTINUE; << 917 << 918 bip_aad(skb, aad); 1006 bip_aad(skb, aad); 919 1007 920 /* MIC = AES-256-CMAC(IGTK, AAD || Man 1008 /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128) 921 */ 1009 */ 922 ieee80211_aes_cmac_256(key->u.aes_cmac 1010 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 923 skb->data + 24, 1011 skb->data + 24, skb->len - 24, mmie->mic); 924 1012 925 return TX_CONTINUE; 1013 return TX_CONTINUE; 926 } 1014 } 927 1015 928 ieee80211_rx_result 1016 ieee80211_rx_result 929 ieee80211_crypto_aes_cmac_decrypt(struct ieee8 1017 ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx) 930 { 1018 { 931 struct sk_buff *skb = rx->skb; 1019 struct sk_buff *skb = rx->skb; 932 struct ieee80211_rx_status *status = I 1020 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 933 struct ieee80211_key *key = rx->key; 1021 struct ieee80211_key *key = rx->key; 934 struct ieee80211_mmie *mmie; 1022 struct ieee80211_mmie *mmie; 935 u8 aad[20], mic[8], ipn[6]; 1023 u8 aad[20], mic[8], ipn[6]; 936 struct ieee80211_hdr *hdr = (struct ie 1024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 937 1025 938 if (!ieee80211_is_mgmt(hdr->frame_cont 1026 if (!ieee80211_is_mgmt(hdr->frame_control)) 939 return RX_CONTINUE; 1027 return RX_CONTINUE; 940 1028 941 /* management frames are already linea 1029 /* management frames are already linear */ 942 1030 943 if (skb->len < 24 + sizeof(*mmie)) 1031 if (skb->len < 24 + sizeof(*mmie)) 944 return RX_DROP_U_SHORT_CMAC; !! 1032 return RX_DROP_UNUSABLE; 945 1033 946 mmie = (struct ieee80211_mmie *) 1034 mmie = (struct ieee80211_mmie *) 947 (skb->data + skb->len - sizeof 1035 (skb->data + skb->len - sizeof(*mmie)); 948 if (mmie->element_id != WLAN_EID_MMIE 1036 if (mmie->element_id != WLAN_EID_MMIE || 949 mmie->length != sizeof(*mmie) - 2) 1037 mmie->length != sizeof(*mmie) - 2) 950 return RX_DROP_U_BAD_MMIE; /* !! 1038 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 951 1039 952 bip_ipn_swap(ipn, mmie->sequence_numbe 1040 bip_ipn_swap(ipn, mmie->sequence_number); 953 1041 954 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 1042 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 955 key->u.aes_cmac.replays++; 1043 key->u.aes_cmac.replays++; 956 return RX_DROP_U_REPLAY; !! 1044 return RX_DROP_UNUSABLE; 957 } 1045 } 958 1046 959 if (!(status->flag & RX_FLAG_DECRYPTED 1047 if (!(status->flag & RX_FLAG_DECRYPTED)) { 960 /* hardware didn't decrypt/ver 1048 /* hardware didn't decrypt/verify MIC */ 961 bip_aad(skb, aad); 1049 bip_aad(skb, aad); 962 ieee80211_aes_cmac(key->u.aes_ 1050 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 963 skb->data + 1051 skb->data + 24, skb->len - 24, mic); 964 if (crypto_memneq(mic, mmie->m 1052 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 965 key->u.aes_cmac.icverr 1053 key->u.aes_cmac.icverrors++; 966 return RX_DROP_U_MIC_F !! 1054 return RX_DROP_UNUSABLE; 967 } 1055 } 968 } 1056 } 969 1057 970 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1058 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 971 1059 972 /* Remove MMIE */ 1060 /* Remove MMIE */ 973 skb_trim(skb, skb->len - sizeof(*mmie) 1061 skb_trim(skb, skb->len - sizeof(*mmie)); 974 1062 975 return RX_CONTINUE; 1063 return RX_CONTINUE; 976 } 1064 } 977 1065 978 ieee80211_rx_result 1066 ieee80211_rx_result 979 ieee80211_crypto_aes_cmac_256_decrypt(struct i 1067 ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx) 980 { 1068 { 981 struct sk_buff *skb = rx->skb; 1069 struct sk_buff *skb = rx->skb; 982 struct ieee80211_rx_status *status = I 1070 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 983 struct ieee80211_key *key = rx->key; 1071 struct ieee80211_key *key = rx->key; 984 struct ieee80211_mmie_16 *mmie; 1072 struct ieee80211_mmie_16 *mmie; 985 u8 aad[20], mic[16], ipn[6]; 1073 u8 aad[20], mic[16], ipn[6]; 986 struct ieee80211_hdr *hdr = (struct ie 1074 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 987 1075 988 if (!ieee80211_is_mgmt(hdr->frame_cont 1076 if (!ieee80211_is_mgmt(hdr->frame_control)) 989 return RX_CONTINUE; 1077 return RX_CONTINUE; 990 1078 991 /* management frames are already linea 1079 /* management frames are already linear */ 992 1080 993 if (skb->len < 24 + sizeof(*mmie)) 1081 if (skb->len < 24 + sizeof(*mmie)) 994 return RX_DROP_U_SHORT_CMAC256 !! 1082 return RX_DROP_UNUSABLE; 995 1083 996 mmie = (struct ieee80211_mmie_16 *) 1084 mmie = (struct ieee80211_mmie_16 *) 997 (skb->data + skb->len - sizeof 1085 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id != WLAN_EID_MMIE 1086 if (mmie->element_id != WLAN_EID_MMIE || 999 mmie->length != sizeof(*mmie) - 2) 1087 mmie->length != sizeof(*mmie) - 2) 1000 return RX_DROP_U_BAD_MMIE; /* !! 1088 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1001 1089 1002 bip_ipn_swap(ipn, mmie->sequence_numb 1090 bip_ipn_swap(ipn, mmie->sequence_number); 1003 1091 1004 if (memcmp(ipn, key->u.aes_cmac.rx_pn 1092 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 1005 key->u.aes_cmac.replays++; 1093 key->u.aes_cmac.replays++; 1006 return RX_DROP_U_REPLAY; !! 1094 return RX_DROP_UNUSABLE; 1007 } 1095 } 1008 1096 1009 if (!(status->flag & RX_FLAG_DECRYPTE 1097 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1010 /* hardware didn't decrypt/ve 1098 /* hardware didn't decrypt/verify MIC */ 1011 bip_aad(skb, aad); 1099 bip_aad(skb, aad); 1012 ieee80211_aes_cmac_256(key->u 1100 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 1013 skb->d 1101 skb->data + 24, skb->len - 24, mic); 1014 if (crypto_memneq(mic, mmie-> 1102 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1015 key->u.aes_cmac.icver 1103 key->u.aes_cmac.icverrors++; 1016 return RX_DROP_U_MIC_ !! 1104 return RX_DROP_UNUSABLE; 1017 } 1105 } 1018 } 1106 } 1019 1107 1020 memcpy(key->u.aes_cmac.rx_pn, ipn, 6) 1108 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1021 1109 1022 /* Remove MMIE */ 1110 /* Remove MMIE */ 1023 skb_trim(skb, skb->len - sizeof(*mmie 1111 skb_trim(skb, skb->len - sizeof(*mmie)); 1024 1112 1025 return RX_CONTINUE; 1113 return RX_CONTINUE; 1026 } 1114 } 1027 1115 1028 ieee80211_tx_result 1116 ieee80211_tx_result 1029 ieee80211_crypto_aes_gmac_encrypt(struct ieee 1117 ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx) 1030 { 1118 { 1031 struct sk_buff *skb; 1119 struct sk_buff *skb; 1032 struct ieee80211_tx_info *info; 1120 struct ieee80211_tx_info *info; 1033 struct ieee80211_key *key = tx->key; 1121 struct ieee80211_key *key = tx->key; 1034 struct ieee80211_mmie_16 *mmie; 1122 struct ieee80211_mmie_16 *mmie; 1035 struct ieee80211_hdr *hdr; 1123 struct ieee80211_hdr *hdr; 1036 u8 aad[GMAC_AAD_LEN]; 1124 u8 aad[GMAC_AAD_LEN]; 1037 u64 pn64; 1125 u64 pn64; 1038 u8 nonce[GMAC_NONCE_LEN]; 1126 u8 nonce[GMAC_NONCE_LEN]; 1039 1127 1040 if (WARN_ON(skb_queue_len(&tx->skbs) 1128 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 1041 return TX_DROP; 1129 return TX_DROP; 1042 1130 1043 skb = skb_peek(&tx->skbs); 1131 skb = skb_peek(&tx->skbs); 1044 1132 1045 info = IEEE80211_SKB_CB(skb); 1133 info = IEEE80211_SKB_CB(skb); 1046 1134 1047 if (info->control.hw_key && !! 1135 if (info->control.hw_key) 1048 !(key->conf.flags & IEEE80211_KEY << 1049 return TX_CONTINUE; 1136 return TX_CONTINUE; 1050 1137 1051 if (WARN_ON(skb_tailroom(skb) < sizeo 1138 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 1052 return TX_DROP; 1139 return TX_DROP; 1053 1140 1054 mmie = skb_put(skb, sizeof(*mmie)); !! 1141 mmie = (struct ieee80211_mmie_16 *)skb_put(skb, sizeof(*mmie)); 1055 mmie->element_id = WLAN_EID_MMIE; 1142 mmie->element_id = WLAN_EID_MMIE; 1056 mmie->length = sizeof(*mmie) - 2; 1143 mmie->length = sizeof(*mmie) - 2; 1057 mmie->key_id = cpu_to_le16(key->conf. 1144 mmie->key_id = cpu_to_le16(key->conf.keyidx); 1058 1145 1059 /* PN = PN + 1 */ 1146 /* PN = PN + 1 */ 1060 pn64 = atomic64_inc_return(&key->conf 1147 pn64 = atomic64_inc_return(&key->conf.tx_pn); 1061 1148 1062 bip_ipn_set64(mmie->sequence_number, 1149 bip_ipn_set64(mmie->sequence_number, pn64); 1063 1150 1064 if (info->control.hw_key) << 1065 return TX_CONTINUE; << 1066 << 1067 bip_aad(skb, aad); 1151 bip_aad(skb, aad); 1068 1152 1069 hdr = (struct ieee80211_hdr *)skb->da 1153 hdr = (struct ieee80211_hdr *)skb->data; 1070 memcpy(nonce, hdr->addr2, ETH_ALEN); 1154 memcpy(nonce, hdr->addr2, ETH_ALEN); 1071 bip_ipn_swap(nonce + ETH_ALEN, mmie-> 1155 bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number); 1072 1156 1073 /* MIC = AES-GMAC(IGTK, AAD || Manage 1157 /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */ 1074 if (ieee80211_aes_gmac(key->u.aes_gma 1158 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1075 skb->data + 24 1159 skb->data + 24, skb->len - 24, mmie->mic) < 0) 1076 return TX_DROP; 1160 return TX_DROP; 1077 1161 1078 return TX_CONTINUE; 1162 return TX_CONTINUE; 1079 } 1163 } 1080 1164 1081 ieee80211_rx_result 1165 ieee80211_rx_result 1082 ieee80211_crypto_aes_gmac_decrypt(struct ieee 1166 ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx) 1083 { 1167 { 1084 struct sk_buff *skb = rx->skb; 1168 struct sk_buff *skb = rx->skb; 1085 struct ieee80211_rx_status *status = 1169 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1086 struct ieee80211_key *key = rx->key; 1170 struct ieee80211_key *key = rx->key; 1087 struct ieee80211_mmie_16 *mmie; 1171 struct ieee80211_mmie_16 *mmie; 1088 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], n !! 1172 u8 aad[GMAC_AAD_LEN], mic[GMAC_MIC_LEN], ipn[6], nonce[GMAC_NONCE_LEN]; 1089 struct ieee80211_hdr *hdr = (struct i 1173 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1090 1174 1091 if (!ieee80211_is_mgmt(hdr->frame_con 1175 if (!ieee80211_is_mgmt(hdr->frame_control)) 1092 return RX_CONTINUE; 1176 return RX_CONTINUE; 1093 1177 1094 /* management frames are already line 1178 /* management frames are already linear */ 1095 1179 1096 if (skb->len < 24 + sizeof(*mmie)) 1180 if (skb->len < 24 + sizeof(*mmie)) 1097 return RX_DROP_U_SHORT_GMAC; !! 1181 return RX_DROP_UNUSABLE; 1098 1182 1099 mmie = (struct ieee80211_mmie_16 *) 1183 mmie = (struct ieee80211_mmie_16 *) 1100 (skb->data + skb->len - sizeo 1184 (skb->data + skb->len - sizeof(*mmie)); 1101 if (mmie->element_id != WLAN_EID_MMIE 1185 if (mmie->element_id != WLAN_EID_MMIE || 1102 mmie->length != sizeof(*mmie) - 2 1186 mmie->length != sizeof(*mmie) - 2) 1103 return RX_DROP_U_BAD_MMIE; /* !! 1187 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1104 1188 1105 bip_ipn_swap(ipn, mmie->sequence_numb 1189 bip_ipn_swap(ipn, mmie->sequence_number); 1106 1190 1107 if (memcmp(ipn, key->u.aes_gmac.rx_pn 1191 if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) { 1108 key->u.aes_gmac.replays++; 1192 key->u.aes_gmac.replays++; 1109 return RX_DROP_U_REPLAY; !! 1193 return RX_DROP_UNUSABLE; 1110 } 1194 } 1111 1195 1112 if (!(status->flag & RX_FLAG_DECRYPTE 1196 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1113 /* hardware didn't decrypt/ve 1197 /* hardware didn't decrypt/verify MIC */ 1114 bip_aad(skb, aad); 1198 bip_aad(skb, aad); 1115 1199 1116 memcpy(nonce, hdr->addr2, ETH 1200 memcpy(nonce, hdr->addr2, ETH_ALEN); 1117 memcpy(nonce + ETH_ALEN, ipn, 1201 memcpy(nonce + ETH_ALEN, ipn, 6); 1118 1202 1119 mic = kmalloc(GMAC_MIC_LEN, G << 1120 if (!mic) << 1121 return RX_DROP_U_OOM; << 1122 if (ieee80211_aes_gmac(key->u 1203 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1123 skb->d 1204 skb->data + 24, skb->len - 24, 1124 mic) < 1205 mic) < 0 || 1125 crypto_memneq(mic, mmie-> 1206 crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1126 key->u.aes_gmac.icver 1207 key->u.aes_gmac.icverrors++; 1127 kfree(mic); !! 1208 return RX_DROP_UNUSABLE; 1128 return RX_DROP_U_MIC_ << 1129 } 1209 } 1130 kfree(mic); << 1131 } 1210 } 1132 1211 1133 memcpy(key->u.aes_gmac.rx_pn, ipn, 6) 1212 memcpy(key->u.aes_gmac.rx_pn, ipn, 6); 1134 1213 1135 /* Remove MMIE */ 1214 /* Remove MMIE */ 1136 skb_trim(skb, skb->len - sizeof(*mmie 1215 skb_trim(skb, skb->len - sizeof(*mmie)); 1137 1216 1138 return RX_CONTINUE; 1217 return RX_CONTINUE; >> 1218 } >> 1219 >> 1220 ieee80211_tx_result >> 1221 ieee80211_crypto_hw_encrypt(struct ieee80211_tx_data *tx) >> 1222 { >> 1223 struct sk_buff *skb; >> 1224 struct ieee80211_tx_info *info = NULL; >> 1225 ieee80211_tx_result res; >> 1226 >> 1227 skb_queue_walk(&tx->skbs, skb) { >> 1228 info = IEEE80211_SKB_CB(skb); >> 1229 >> 1230 /* handle hw-only algorithm */ >> 1231 if (!info->control.hw_key) >> 1232 return TX_DROP; >> 1233 >> 1234 if (tx->key->flags & KEY_FLAG_CIPHER_SCHEME) { >> 1235 res = ieee80211_crypto_cs_encrypt(tx, skb); >> 1236 if (res != TX_CONTINUE) >> 1237 return res; >> 1238 } >> 1239 } >> 1240 >> 1241 ieee80211_tx_set_protected(tx); >> 1242 >> 1243 return TX_CONTINUE; >> 1244 } >> 1245 >> 1246 ieee80211_rx_result >> 1247 ieee80211_crypto_hw_decrypt(struct ieee80211_rx_data *rx) >> 1248 { >> 1249 if (rx->sta && rx->sta->cipher_scheme) >> 1250 return ieee80211_crypto_cs_decrypt(rx); >> 1251 >> 1252 return RX_DROP_UNUSABLE; 1139 } 1253 } 1140 1254
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.