1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * Copyright 2002-2004, Instant802 Networks, I 2 * Copyright 2002-2004, Instant802 Networks, Inc. 4 * Copyright 2008, Jouni Malinen <j@w1.fi> 3 * Copyright 2008, Jouni Malinen <j@w1.fi> 5 * Copyright (C) 2016-2017 Intel Deutschland G !! 4 * Copyright (C) 2016 Intel Deutschland GmbH 6 * Copyright (C) 2020-2023 Intel Corporation !! 5 * >> 6 * This program is free software; you can redistribute it and/or modify >> 7 * it under the terms of the GNU General Public License version 2 as >> 8 * published by the Free Software Foundation. 7 */ 9 */ 8 10 9 #include <linux/netdevice.h> 11 #include <linux/netdevice.h> 10 #include <linux/types.h> 12 #include <linux/types.h> 11 #include <linux/skbuff.h> 13 #include <linux/skbuff.h> 12 #include <linux/compiler.h> 14 #include <linux/compiler.h> 13 #include <linux/ieee80211.h> 15 #include <linux/ieee80211.h> 14 #include <linux/gfp.h> 16 #include <linux/gfp.h> 15 #include <linux/unaligned.h> !! 17 #include <asm/unaligned.h> 16 #include <net/mac80211.h> 18 #include <net/mac80211.h> 17 #include <crypto/aes.h> 19 #include <crypto/aes.h> 18 #include <crypto/utils.h> !! 20 #include <crypto/algapi.h> 19 21 20 #include "ieee80211_i.h" 22 #include "ieee80211_i.h" 21 #include "michael.h" 23 #include "michael.h" 22 #include "tkip.h" 24 #include "tkip.h" 23 #include "aes_ccm.h" 25 #include "aes_ccm.h" 24 #include "aes_cmac.h" 26 #include "aes_cmac.h" 25 #include "aes_gmac.h" 27 #include "aes_gmac.h" 26 #include "aes_gcm.h" 28 #include "aes_gcm.h" 27 #include "wpa.h" 29 #include "wpa.h" 28 30 29 ieee80211_tx_result 31 ieee80211_tx_result 30 ieee80211_tx_h_michael_mic_add(struct ieee8021 32 ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx) 31 { 33 { 32 u8 *data, *key, *mic; 34 u8 *data, *key, *mic; 33 size_t data_len; 35 size_t data_len; 34 unsigned int hdrlen; 36 unsigned int hdrlen; 35 struct ieee80211_hdr *hdr; 37 struct ieee80211_hdr *hdr; 36 struct sk_buff *skb = tx->skb; 38 struct sk_buff *skb = tx->skb; 37 struct ieee80211_tx_info *info = IEEE8 39 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 38 int tail; 40 int tail; 39 41 40 hdr = (struct ieee80211_hdr *)skb->dat 42 hdr = (struct ieee80211_hdr *)skb->data; 41 if (!tx->key || tx->key->conf.cipher ! 43 if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 42 skb->len < 24 || !ieee80211_is_dat 44 skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control)) 43 return TX_CONTINUE; 45 return TX_CONTINUE; 44 46 45 hdrlen = ieee80211_hdrlen(hdr->frame_c 47 hdrlen = ieee80211_hdrlen(hdr->frame_control); 46 if (skb->len < hdrlen) 48 if (skb->len < hdrlen) 47 return TX_DROP; 49 return TX_DROP; 48 50 49 data = skb->data + hdrlen; 51 data = skb->data + hdrlen; 50 data_len = skb->len - hdrlen; 52 data_len = skb->len - hdrlen; 51 53 52 if (unlikely(info->flags & IEEE80211_T 54 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) { 53 /* Need to use software crypto 55 /* Need to use software crypto for the test */ 54 info->control.hw_key = NULL; 56 info->control.hw_key = NULL; 55 } 57 } 56 58 57 if (info->control.hw_key && 59 if (info->control.hw_key && 58 (info->flags & IEEE80211_TX_CTL_DO 60 (info->flags & IEEE80211_TX_CTL_DONTFRAG || 59 ieee80211_hw_check(&tx->local->hw 61 ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) && 60 !(tx->key->conf.flags & (IEEE80211 !! 62 !(tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) { 61 IEEE80211 !! 63 /* hwaccel - with no need for SW-generated MMIC */ 62 /* hwaccel - with no need for << 63 return TX_CONTINUE; 64 return TX_CONTINUE; 64 } 65 } 65 66 66 tail = MICHAEL_MIC_LEN; 67 tail = MICHAEL_MIC_LEN; 67 if (!info->control.hw_key) 68 if (!info->control.hw_key) 68 tail += IEEE80211_TKIP_ICV_LEN 69 tail += IEEE80211_TKIP_ICV_LEN; 69 70 70 if (WARN(skb_tailroom(skb) < tail || 71 if (WARN(skb_tailroom(skb) < tail || 71 skb_headroom(skb) < IEEE80211 72 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN, 72 "mmic: not enough head/tail ( 73 "mmic: not enough head/tail (%d/%d,%d/%d)\n", 73 skb_headroom(skb), IEEE80211_ 74 skb_headroom(skb), IEEE80211_TKIP_IV_LEN, 74 skb_tailroom(skb), tail)) 75 skb_tailroom(skb), tail)) 75 return TX_DROP; 76 return TX_DROP; 76 77 77 mic = skb_put(skb, MICHAEL_MIC_LEN); << 78 << 79 if (tx->key->conf.flags & IEEE80211_KE << 80 /* Zeroed MIC can help with de << 81 memset(mic, 0, MICHAEL_MIC_LEN << 82 return TX_CONTINUE; << 83 } << 84 << 85 key = &tx->key->conf.key[NL80211_TKIP_ 78 key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]; >> 79 mic = skb_put(skb, MICHAEL_MIC_LEN); 86 michael_mic(key, hdr, data, data_len, 80 michael_mic(key, hdr, data, data_len, mic); 87 if (unlikely(info->flags & IEEE80211_T 81 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) 88 mic[0]++; 82 mic[0]++; 89 83 90 return TX_CONTINUE; 84 return TX_CONTINUE; 91 } 85 } 92 86 93 87 94 ieee80211_rx_result 88 ieee80211_rx_result 95 ieee80211_rx_h_michael_mic_verify(struct ieee8 89 ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx) 96 { 90 { 97 u8 *data, *key = NULL; 91 u8 *data, *key = NULL; 98 size_t data_len; 92 size_t data_len; 99 unsigned int hdrlen; 93 unsigned int hdrlen; 100 u8 mic[MICHAEL_MIC_LEN]; 94 u8 mic[MICHAEL_MIC_LEN]; 101 struct sk_buff *skb = rx->skb; 95 struct sk_buff *skb = rx->skb; 102 struct ieee80211_rx_status *status = I 96 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 103 struct ieee80211_hdr *hdr = (struct ie 97 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 104 98 105 /* 99 /* 106 * it makes no sense to check for MIC 100 * it makes no sense to check for MIC errors on anything other 107 * than data frames. 101 * than data frames. 108 */ 102 */ 109 if (!ieee80211_is_data_present(hdr->fr 103 if (!ieee80211_is_data_present(hdr->frame_control)) 110 return RX_CONTINUE; 104 return RX_CONTINUE; 111 105 112 /* 106 /* 113 * No way to verify the MIC if the har 107 * No way to verify the MIC if the hardware stripped it or 114 * the IV with the key index. In this 108 * the IV with the key index. In this case we have solely rely 115 * on the driver to set RX_FLAG_MMIC_E 109 * on the driver to set RX_FLAG_MMIC_ERROR in the event of a 116 * MIC failure report. 110 * MIC failure report. 117 */ 111 */ 118 if (status->flag & (RX_FLAG_MMIC_STRIP 112 if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) { 119 if (status->flag & RX_FLAG_MMI 113 if (status->flag & RX_FLAG_MMIC_ERROR) 120 goto mic_fail_no_key; 114 goto mic_fail_no_key; 121 115 122 if (!(status->flag & RX_FLAG_I 116 if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key && 123 rx->key->conf.cipher == WL 117 rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP) 124 goto update_iv; 118 goto update_iv; 125 119 126 return RX_CONTINUE; 120 return RX_CONTINUE; 127 } 121 } 128 122 129 /* 123 /* 130 * Some hardware seems to generate Mic 124 * Some hardware seems to generate Michael MIC failure reports; even 131 * though, the frame was not encrypted 125 * though, the frame was not encrypted with TKIP and therefore has no 132 * MIC. Ignore the flag them to avoid 126 * MIC. Ignore the flag them to avoid triggering countermeasures. 133 */ 127 */ 134 if (!rx->key || rx->key->conf.cipher ! 128 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 135 !(status->flag & RX_FLAG_DECRYPTED 129 !(status->flag & RX_FLAG_DECRYPTED)) 136 return RX_CONTINUE; 130 return RX_CONTINUE; 137 131 138 if (rx->sdata->vif.type == NL80211_IFT 132 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) { 139 /* 133 /* 140 * APs with pairwise keys shou 134 * APs with pairwise keys should never receive Michael MIC 141 * errors for non-zero keyidx 135 * errors for non-zero keyidx because these are reserved for 142 * group keys and only the AP 136 * group keys and only the AP is sending real multicast 143 * frames in the BSS. 137 * frames in the BSS. 144 */ 138 */ 145 return RX_DROP_U_AP_RX_GROUPCA !! 139 return RX_DROP_UNUSABLE; 146 } 140 } 147 141 148 if (status->flag & RX_FLAG_MMIC_ERROR) 142 if (status->flag & RX_FLAG_MMIC_ERROR) 149 goto mic_fail; 143 goto mic_fail; 150 144 151 hdrlen = ieee80211_hdrlen(hdr->frame_c 145 hdrlen = ieee80211_hdrlen(hdr->frame_control); 152 if (skb->len < hdrlen + MICHAEL_MIC_LE 146 if (skb->len < hdrlen + MICHAEL_MIC_LEN) 153 return RX_DROP_U_SHORT_MMIC; !! 147 return RX_DROP_UNUSABLE; 154 148 155 if (skb_linearize(rx->skb)) 149 if (skb_linearize(rx->skb)) 156 return RX_DROP_U_OOM; !! 150 return RX_DROP_UNUSABLE; 157 hdr = (void *)skb->data; 151 hdr = (void *)skb->data; 158 152 159 data = skb->data + hdrlen; 153 data = skb->data + hdrlen; 160 data_len = skb->len - hdrlen - MICHAEL 154 data_len = skb->len - hdrlen - MICHAEL_MIC_LEN; 161 key = &rx->key->conf.key[NL80211_TKIP_ 155 key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; 162 michael_mic(key, hdr, data, data_len, 156 michael_mic(key, hdr, data, data_len, mic); 163 if (crypto_memneq(mic, data + data_len 157 if (crypto_memneq(mic, data + data_len, MICHAEL_MIC_LEN)) 164 goto mic_fail; 158 goto mic_fail; 165 159 166 /* remove Michael MIC from payload */ 160 /* remove Michael MIC from payload */ 167 skb_trim(skb, skb->len - MICHAEL_MIC_L 161 skb_trim(skb, skb->len - MICHAEL_MIC_LEN); 168 162 169 update_iv: 163 update_iv: 170 /* update IV in key information to be 164 /* update IV in key information to be able to detect replays */ 171 rx->key->u.tkip.rx[rx->security_idx].i 165 rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip.iv32; 172 rx->key->u.tkip.rx[rx->security_idx].i 166 rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip.iv16; 173 167 174 return RX_CONTINUE; 168 return RX_CONTINUE; 175 169 176 mic_fail: 170 mic_fail: 177 rx->key->u.tkip.mic_failures++; 171 rx->key->u.tkip.mic_failures++; 178 172 179 mic_fail_no_key: 173 mic_fail_no_key: 180 /* 174 /* 181 * In some cases the key can be unset 175 * In some cases the key can be unset - e.g. a multicast packet, in 182 * a driver that supports HW encryptio 176 * a driver that supports HW encryption. Send up the key idx only if 183 * the key is set. 177 * the key is set. 184 */ 178 */ 185 cfg80211_michael_mic_failure(rx->sdata 179 cfg80211_michael_mic_failure(rx->sdata->dev, hdr->addr2, 186 is_multic 180 is_multicast_ether_addr(hdr->addr1) ? 187 NL80211_K 181 NL80211_KEYTYPE_GROUP : 188 NL80211_K 182 NL80211_KEYTYPE_PAIRWISE, 189 rx->key ? 183 rx->key ? rx->key->conf.keyidx : -1, 190 NULL, GFP 184 NULL, GFP_ATOMIC); 191 return RX_DROP_U_MMIC_FAIL; !! 185 return RX_DROP_UNUSABLE; 192 } 186 } 193 187 194 static int tkip_encrypt_skb(struct ieee80211_t 188 static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 195 { 189 { 196 struct ieee80211_hdr *hdr = (struct ie 190 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 197 struct ieee80211_key *key = tx->key; 191 struct ieee80211_key *key = tx->key; 198 struct ieee80211_tx_info *info = IEEE8 192 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 199 unsigned int hdrlen; 193 unsigned int hdrlen; 200 int len, tail; 194 int len, tail; 201 u64 pn; 195 u64 pn; 202 u8 *pos; 196 u8 *pos; 203 197 204 if (info->control.hw_key && 198 if (info->control.hw_key && 205 !(info->control.hw_key->flags & IE 199 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 206 !(info->control.hw_key->flags & IE 200 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { 207 /* hwaccel - with no need for 201 /* hwaccel - with no need for software-generated IV */ 208 return 0; 202 return 0; 209 } 203 } 210 204 211 hdrlen = ieee80211_hdrlen(hdr->frame_c 205 hdrlen = ieee80211_hdrlen(hdr->frame_control); 212 len = skb->len - hdrlen; 206 len = skb->len - hdrlen; 213 207 214 if (info->control.hw_key) 208 if (info->control.hw_key) 215 tail = 0; 209 tail = 0; 216 else 210 else 217 tail = IEEE80211_TKIP_ICV_LEN; 211 tail = IEEE80211_TKIP_ICV_LEN; 218 212 219 if (WARN_ON(skb_tailroom(skb) < tail | 213 if (WARN_ON(skb_tailroom(skb) < tail || 220 skb_headroom(skb) < IEEE80 214 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN)) 221 return -1; 215 return -1; 222 216 223 pos = skb_push(skb, IEEE80211_TKIP_IV_ 217 pos = skb_push(skb, IEEE80211_TKIP_IV_LEN); 224 memmove(pos, pos + IEEE80211_TKIP_IV_L 218 memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen); 225 pos += hdrlen; 219 pos += hdrlen; 226 220 227 /* the HW only needs room for the IV, 221 /* the HW only needs room for the IV, but not the actual IV */ 228 if (info->control.hw_key && 222 if (info->control.hw_key && 229 (info->control.hw_key->flags & IEE 223 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 230 return 0; 224 return 0; 231 225 232 /* Increase IV for the frame */ 226 /* Increase IV for the frame */ 233 pn = atomic64_inc_return(&key->conf.tx 227 pn = atomic64_inc_return(&key->conf.tx_pn); 234 pos = ieee80211_tkip_add_iv(pos, &key- 228 pos = ieee80211_tkip_add_iv(pos, &key->conf, pn); 235 229 236 /* hwaccel - with software IV */ 230 /* hwaccel - with software IV */ 237 if (info->control.hw_key) 231 if (info->control.hw_key) 238 return 0; 232 return 0; 239 233 240 /* Add room for ICV */ 234 /* Add room for ICV */ 241 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 235 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 242 236 243 return ieee80211_tkip_encrypt_data(&tx !! 237 return ieee80211_tkip_encrypt_data(tx->local->wep_tx_tfm, 244 key 238 key, skb, pos, len); 245 } 239 } 246 240 247 241 248 ieee80211_tx_result 242 ieee80211_tx_result 249 ieee80211_crypto_tkip_encrypt(struct ieee80211 243 ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx) 250 { 244 { 251 struct sk_buff *skb; 245 struct sk_buff *skb; 252 246 253 ieee80211_tx_set_protected(tx); 247 ieee80211_tx_set_protected(tx); 254 248 255 skb_queue_walk(&tx->skbs, skb) { 249 skb_queue_walk(&tx->skbs, skb) { 256 if (tkip_encrypt_skb(tx, skb) 250 if (tkip_encrypt_skb(tx, skb) < 0) 257 return TX_DROP; 251 return TX_DROP; 258 } 252 } 259 253 260 return TX_CONTINUE; 254 return TX_CONTINUE; 261 } 255 } 262 256 263 257 264 ieee80211_rx_result 258 ieee80211_rx_result 265 ieee80211_crypto_tkip_decrypt(struct ieee80211 259 ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx) 266 { 260 { 267 struct ieee80211_hdr *hdr = (struct ie 261 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; 268 int hdrlen, res, hwaccel = 0; 262 int hdrlen, res, hwaccel = 0; 269 struct ieee80211_key *key = rx->key; 263 struct ieee80211_key *key = rx->key; 270 struct sk_buff *skb = rx->skb; 264 struct sk_buff *skb = rx->skb; 271 struct ieee80211_rx_status *status = I 265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 272 266 273 hdrlen = ieee80211_hdrlen(hdr->frame_c 267 hdrlen = ieee80211_hdrlen(hdr->frame_control); 274 268 275 if (!ieee80211_is_data(hdr->frame_cont 269 if (!ieee80211_is_data(hdr->frame_control)) 276 return RX_CONTINUE; 270 return RX_CONTINUE; 277 271 278 if (!rx->sta || skb->len - hdrlen < 12 272 if (!rx->sta || skb->len - hdrlen < 12) 279 return RX_DROP_U_SHORT_TKIP; !! 273 return RX_DROP_UNUSABLE; 280 274 281 /* it may be possible to optimize this 275 /* it may be possible to optimize this a bit more */ 282 if (skb_linearize(rx->skb)) 276 if (skb_linearize(rx->skb)) 283 return RX_DROP_U_OOM; !! 277 return RX_DROP_UNUSABLE; 284 hdr = (void *)skb->data; 278 hdr = (void *)skb->data; 285 279 286 /* 280 /* 287 * Let TKIP code verify IV, but skip d 281 * Let TKIP code verify IV, but skip decryption. 288 * In the case where hardware checks t 282 * In the case where hardware checks the IV as well, 289 * we don't even get here, see ieee802 283 * we don't even get here, see ieee80211_rx_h_decrypt() 290 */ 284 */ 291 if (status->flag & RX_FLAG_DECRYPTED) 285 if (status->flag & RX_FLAG_DECRYPTED) 292 hwaccel = 1; 286 hwaccel = 1; 293 287 294 res = ieee80211_tkip_decrypt_data(&rx- !! 288 res = ieee80211_tkip_decrypt_data(rx->local->wep_rx_tfm, 295 key, 289 key, skb->data + hdrlen, 296 skb- 290 skb->len - hdrlen, rx->sta->sta.addr, 297 hdr- 291 hdr->addr1, hwaccel, rx->security_idx, 298 &rx- 292 &rx->tkip.iv32, 299 &rx- 293 &rx->tkip.iv16); 300 if (res != TKIP_DECRYPT_OK) 294 if (res != TKIP_DECRYPT_OK) 301 return RX_DROP_U_TKIP_FAIL; !! 295 return RX_DROP_UNUSABLE; 302 296 303 /* Trim ICV */ 297 /* Trim ICV */ 304 if (!(status->flag & RX_FLAG_ICV_STRIP 298 if (!(status->flag & RX_FLAG_ICV_STRIPPED)) 305 skb_trim(skb, skb->len - IEEE8 299 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 306 300 307 /* Remove IV */ 301 /* Remove IV */ 308 memmove(skb->data + IEEE80211_TKIP_IV_ 302 memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen); 309 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 303 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 310 304 311 return RX_CONTINUE; 305 return RX_CONTINUE; 312 } 306 } 313 307 314 /* !! 308 315 * Calculate AAD for CCMP/GCMP, returning qos_ !! 309 static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad) 316 * need that in CCMP also for b_0. << 317 */ << 318 static u8 ccmp_gcmp_aad(struct sk_buff *skb, u << 319 { 310 { 320 struct ieee80211_hdr *hdr = (void *)sk << 321 __le16 mask_fc; 311 __le16 mask_fc; 322 int a4_included, mgmt; 312 int a4_included, mgmt; 323 u8 qos_tid; 313 u8 qos_tid; 324 u16 len_a = 22; !! 314 u16 len_a; >> 315 unsigned int hdrlen; >> 316 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 325 317 326 /* 318 /* 327 * Mask FC: zero subtype b4 b5 b6 (if 319 * Mask FC: zero subtype b4 b5 b6 (if not mgmt) 328 * Retry, PwrMgt, MoreData, Order (if !! 320 * Retry, PwrMgt, MoreData; set Protected 329 */ 321 */ 330 mgmt = ieee80211_is_mgmt(hdr->frame_co 322 mgmt = ieee80211_is_mgmt(hdr->frame_control); 331 mask_fc = hdr->frame_control; 323 mask_fc = hdr->frame_control; 332 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 324 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | 333 IEEE80211_FCTL 325 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); 334 if (!mgmt) 326 if (!mgmt) 335 mask_fc &= ~cpu_to_le16(0x0070 327 mask_fc &= ~cpu_to_le16(0x0070); 336 mask_fc |= cpu_to_le16(IEEE80211_FCTL_ 328 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 337 329 >> 330 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 331 len_a = hdrlen - 2; 338 a4_included = ieee80211_has_a4(hdr->fr 332 a4_included = ieee80211_has_a4(hdr->frame_control); 339 if (a4_included) << 340 len_a += 6; << 341 333 342 if (ieee80211_is_data_qos(hdr->frame_c !! 334 if (ieee80211_is_data_qos(hdr->frame_control)) 343 qos_tid = *ieee80211_get_qos_c !! 335 qos_tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; >> 336 else >> 337 qos_tid = 0; 344 338 345 if (spp_amsdu) !! 339 /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC 346 qos_tid &= IEEE80211_Q !! 340 * mode authentication are not allowed to collide, yet both are derived 347 IEEE80211_Q !! 341 * from this vector b_0. We only set L := 1 here to indicate that the 348 else !! 342 * data size can be represented in (L+1) bytes. The CCM layer will take 349 qos_tid &= IEEE80211_Q !! 343 * care of storing the data length in the top (L+1) bytes and setting >> 344 * and clearing the other bits as is required to derive the two IVs. >> 345 */ >> 346 b_0[0] = 0x1; 350 347 351 mask_fc &= ~cpu_to_le16(IEEE80 !! 348 /* Nonce: Nonce Flags | A2 | PN 352 len_a += 2; !! 349 * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7) 353 } else { !! 350 */ 354 qos_tid = 0; !! 351 b_0[1] = qos_tid | (mgmt << 4); 355 } !! 352 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); >> 353 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN); 356 354 357 /* AAD (extra authenticate-only data) 355 /* AAD (extra authenticate-only data) / masked 802.11 header 358 * FC | A1 | A2 | A3 | SC | [A4] | [QC 356 * FC | A1 | A2 | A3 | SC | [A4] | [QC] */ 359 put_unaligned_be16(len_a, &aad[0]); 357 put_unaligned_be16(len_a, &aad[0]); 360 put_unaligned(mask_fc, (__le16 *)&aad[ 358 put_unaligned(mask_fc, (__le16 *)&aad[2]); 361 memcpy(&aad[4], &hdr->addrs, 3 * ETH_A !! 359 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); 362 360 363 /* Mask Seq#, leave Frag# */ 361 /* Mask Seq#, leave Frag# */ 364 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0 362 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f; 365 aad[23] = 0; 363 aad[23] = 0; 366 364 367 if (a4_included) { 365 if (a4_included) { 368 memcpy(&aad[24], hdr->addr4, E 366 memcpy(&aad[24], hdr->addr4, ETH_ALEN); 369 aad[30] = qos_tid; 367 aad[30] = qos_tid; 370 aad[31] = 0; 368 aad[31] = 0; 371 } else { 369 } else { 372 memset(&aad[24], 0, ETH_ALEN + 370 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); 373 aad[24] = qos_tid; 371 aad[24] = qos_tid; 374 } 372 } 375 << 376 return qos_tid; << 377 } 373 } 378 374 379 static void ccmp_special_blocks(struct sk_buff << 380 bool spp_amsdu << 381 { << 382 struct ieee80211_hdr *hdr = (struct ie << 383 u8 qos_tid = ccmp_gcmp_aad(skb, aad, s << 384 << 385 /* In CCM, the initial vectors (IV) us << 386 * mode authentication are not allowed << 387 * from this vector b_0. We only set L << 388 * data size can be represented in (L+ << 389 * care of storing the data length in << 390 * and clearing the other bits as is r << 391 */ << 392 b_0[0] = 0x1; << 393 << 394 /* Nonce: Nonce Flags | A2 | PN << 395 * Nonce Flags: Priority (b0..b3) | Ma << 396 */ << 397 b_0[1] = qos_tid | (ieee80211_is_mgmt( << 398 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); << 399 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_ << 400 } << 401 375 402 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn 376 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id) 403 { 377 { 404 hdr[0] = pn[5]; 378 hdr[0] = pn[5]; 405 hdr[1] = pn[4]; 379 hdr[1] = pn[4]; 406 hdr[2] = 0; 380 hdr[2] = 0; 407 hdr[3] = 0x20 | (key_id << 6); 381 hdr[3] = 0x20 | (key_id << 6); 408 hdr[4] = pn[3]; 382 hdr[4] = pn[3]; 409 hdr[5] = pn[2]; 383 hdr[5] = pn[2]; 410 hdr[6] = pn[1]; 384 hdr[6] = pn[1]; 411 hdr[7] = pn[0]; 385 hdr[7] = pn[0]; 412 } 386 } 413 387 414 388 415 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr 389 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr) 416 { 390 { 417 pn[0] = hdr[7]; 391 pn[0] = hdr[7]; 418 pn[1] = hdr[6]; 392 pn[1] = hdr[6]; 419 pn[2] = hdr[5]; 393 pn[2] = hdr[5]; 420 pn[3] = hdr[4]; 394 pn[3] = hdr[4]; 421 pn[4] = hdr[1]; 395 pn[4] = hdr[1]; 422 pn[5] = hdr[0]; 396 pn[5] = hdr[0]; 423 } 397 } 424 398 425 399 426 static int ccmp_encrypt_skb(struct ieee80211_t 400 static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb, 427 unsigned int mic_l 401 unsigned int mic_len) 428 { 402 { 429 struct ieee80211_hdr *hdr = (struct ie 403 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 430 struct ieee80211_key *key = tx->key; 404 struct ieee80211_key *key = tx->key; 431 struct ieee80211_tx_info *info = IEEE8 405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 432 int hdrlen, len, tail; 406 int hdrlen, len, tail; 433 u8 *pos; 407 u8 *pos; 434 u8 pn[6]; 408 u8 pn[6]; 435 u64 pn64; 409 u64 pn64; 436 u8 aad[CCM_AAD_LEN]; 410 u8 aad[CCM_AAD_LEN]; 437 u8 b_0[AES_BLOCK_SIZE]; 411 u8 b_0[AES_BLOCK_SIZE]; 438 412 439 if (info->control.hw_key && 413 if (info->control.hw_key && 440 !(info->control.hw_key->flags & IE 414 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 441 !(info->control.hw_key->flags & IE 415 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 442 !((info->control.hw_key->flags & 416 !((info->control.hw_key->flags & 443 IEEE80211_KEY_FLAG_GENERATE_IV_ 417 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 444 ieee80211_is_mgmt(hdr->frame_con 418 ieee80211_is_mgmt(hdr->frame_control))) { 445 /* 419 /* 446 * hwaccel has no need for pre 420 * hwaccel has no need for preallocated room for CCMP 447 * header or MIC fields 421 * header or MIC fields 448 */ 422 */ 449 return 0; 423 return 0; 450 } 424 } 451 425 452 hdrlen = ieee80211_hdrlen(hdr->frame_c 426 hdrlen = ieee80211_hdrlen(hdr->frame_control); 453 len = skb->len - hdrlen; 427 len = skb->len - hdrlen; 454 428 455 if (info->control.hw_key) 429 if (info->control.hw_key) 456 tail = 0; 430 tail = 0; 457 else 431 else 458 tail = mic_len; 432 tail = mic_len; 459 433 460 if (WARN_ON(skb_tailroom(skb) < tail | 434 if (WARN_ON(skb_tailroom(skb) < tail || 461 skb_headroom(skb) < IEEE80 435 skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN)) 462 return -1; 436 return -1; 463 437 464 pos = skb_push(skb, IEEE80211_CCMP_HDR 438 pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN); 465 memmove(pos, pos + IEEE80211_CCMP_HDR_ 439 memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen); 466 440 467 /* the HW only needs room for the IV, 441 /* the HW only needs room for the IV, but not the actual IV */ 468 if (info->control.hw_key && 442 if (info->control.hw_key && 469 (info->control.hw_key->flags & IEE 443 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 470 return 0; 444 return 0; 471 445 >> 446 hdr = (struct ieee80211_hdr *) pos; 472 pos += hdrlen; 447 pos += hdrlen; 473 448 474 pn64 = atomic64_inc_return(&key->conf. 449 pn64 = atomic64_inc_return(&key->conf.tx_pn); 475 450 476 pn[5] = pn64; 451 pn[5] = pn64; 477 pn[4] = pn64 >> 8; 452 pn[4] = pn64 >> 8; 478 pn[3] = pn64 >> 16; 453 pn[3] = pn64 >> 16; 479 pn[2] = pn64 >> 24; 454 pn[2] = pn64 >> 24; 480 pn[1] = pn64 >> 32; 455 pn[1] = pn64 >> 32; 481 pn[0] = pn64 >> 40; 456 pn[0] = pn64 >> 40; 482 457 483 ccmp_pn2hdr(pos, pn, key->conf.keyidx) 458 ccmp_pn2hdr(pos, pn, key->conf.keyidx); 484 459 485 /* hwaccel - with software CCMP header 460 /* hwaccel - with software CCMP header */ 486 if (info->control.hw_key) 461 if (info->control.hw_key) 487 return 0; 462 return 0; 488 463 489 pos += IEEE80211_CCMP_HDR_LEN; 464 pos += IEEE80211_CCMP_HDR_LEN; 490 ccmp_special_blocks(skb, pn, b_0, aad, !! 465 ccmp_special_blocks(skb, pn, b_0, aad); 491 key->conf.flags & << 492 return ieee80211_aes_ccm_encrypt(key-> 466 return ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len, 493 skb_p !! 467 skb_put(skb, mic_len), mic_len); 494 } 468 } 495 469 496 470 497 ieee80211_tx_result 471 ieee80211_tx_result 498 ieee80211_crypto_ccmp_encrypt(struct ieee80211 472 ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx, 499 unsigned int mic 473 unsigned int mic_len) 500 { 474 { 501 struct sk_buff *skb; 475 struct sk_buff *skb; 502 476 503 ieee80211_tx_set_protected(tx); 477 ieee80211_tx_set_protected(tx); 504 478 505 skb_queue_walk(&tx->skbs, skb) { 479 skb_queue_walk(&tx->skbs, skb) { 506 if (ccmp_encrypt_skb(tx, skb, 480 if (ccmp_encrypt_skb(tx, skb, mic_len) < 0) 507 return TX_DROP; 481 return TX_DROP; 508 } 482 } 509 483 510 return TX_CONTINUE; 484 return TX_CONTINUE; 511 } 485 } 512 486 513 487 514 ieee80211_rx_result 488 ieee80211_rx_result 515 ieee80211_crypto_ccmp_decrypt(struct ieee80211 489 ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx, 516 unsigned int mic 490 unsigned int mic_len) 517 { 491 { 518 struct ieee80211_hdr *hdr = (struct ie 492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 519 int hdrlen; 493 int hdrlen; 520 struct ieee80211_key *key = rx->key; 494 struct ieee80211_key *key = rx->key; 521 struct sk_buff *skb = rx->skb; 495 struct sk_buff *skb = rx->skb; 522 struct ieee80211_rx_status *status = I 496 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 523 u8 pn[IEEE80211_CCMP_PN_LEN]; 497 u8 pn[IEEE80211_CCMP_PN_LEN]; 524 int data_len; 498 int data_len; 525 int queue; 499 int queue; 526 500 527 hdrlen = ieee80211_hdrlen(hdr->frame_c 501 hdrlen = ieee80211_hdrlen(hdr->frame_control); 528 502 529 if (!ieee80211_is_data(hdr->frame_cont 503 if (!ieee80211_is_data(hdr->frame_control) && 530 !ieee80211_is_robust_mgmt_frame(sk 504 !ieee80211_is_robust_mgmt_frame(skb)) 531 return RX_CONTINUE; 505 return RX_CONTINUE; 532 506 533 if (status->flag & RX_FLAG_DECRYPTED) 507 if (status->flag & RX_FLAG_DECRYPTED) { 534 if (!pskb_may_pull(rx->skb, hd 508 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN)) 535 return RX_DROP_U_SHORT !! 509 return RX_DROP_UNUSABLE; 536 if (status->flag & RX_FLAG_MIC 510 if (status->flag & RX_FLAG_MIC_STRIPPED) 537 mic_len = 0; 511 mic_len = 0; 538 } else { 512 } else { 539 if (skb_linearize(rx->skb)) 513 if (skb_linearize(rx->skb)) 540 return RX_DROP_U_OOM; !! 514 return RX_DROP_UNUSABLE; 541 } 515 } 542 516 543 /* reload hdr - skb might have been re 517 /* reload hdr - skb might have been reallocated */ 544 hdr = (void *)rx->skb->data; 518 hdr = (void *)rx->skb->data; 545 519 546 data_len = skb->len - hdrlen - IEEE802 520 data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len; 547 if (!rx->sta || data_len < 0) 521 if (!rx->sta || data_len < 0) 548 return RX_DROP_U_SHORT_CCMP; !! 522 return RX_DROP_UNUSABLE; 549 523 550 if (!(status->flag & RX_FLAG_PN_VALIDA 524 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 551 int res; 525 int res; 552 526 553 ccmp_hdr2pn(pn, skb->data + hd 527 ccmp_hdr2pn(pn, skb->data + hdrlen); 554 528 555 queue = rx->security_idx; 529 queue = rx->security_idx; 556 530 557 res = memcmp(pn, key->u.ccmp.r 531 res = memcmp(pn, key->u.ccmp.rx_pn[queue], 558 IEEE80211_CCMP_PN 532 IEEE80211_CCMP_PN_LEN); 559 if (res < 0 || 533 if (res < 0 || 560 (!res && !(status->flag & 534 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 561 key->u.ccmp.replays++; 535 key->u.ccmp.replays++; 562 return RX_DROP_U_REPLA !! 536 return RX_DROP_UNUSABLE; 563 } 537 } 564 538 565 if (!(status->flag & RX_FLAG_D 539 if (!(status->flag & RX_FLAG_DECRYPTED)) { 566 u8 aad[2 * AES_BLOCK_S 540 u8 aad[2 * AES_BLOCK_SIZE]; 567 u8 b_0[AES_BLOCK_SIZE] 541 u8 b_0[AES_BLOCK_SIZE]; 568 /* hardware didn't dec 542 /* hardware didn't decrypt/verify MIC */ 569 ccmp_special_blocks(sk !! 543 ccmp_special_blocks(skb, pn, b_0, aad); 570 ke << 571 544 572 if (ieee80211_aes_ccm_ 545 if (ieee80211_aes_ccm_decrypt( 573 key->u.ccm 546 key->u.ccmp.tfm, b_0, aad, 574 skb->data 547 skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN, 575 data_len, 548 data_len, 576 skb->data !! 549 skb->data + skb->len - mic_len, mic_len)) 577 return RX_DROP !! 550 return RX_DROP_UNUSABLE; 578 } 551 } 579 552 580 memcpy(key->u.ccmp.rx_pn[queue 553 memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN); 581 if (unlikely(ieee80211_is_frag 554 if (unlikely(ieee80211_is_frag(hdr))) 582 memcpy(rx->ccm_gcm.pn, 555 memcpy(rx->ccm_gcm.pn, pn, IEEE80211_CCMP_PN_LEN); 583 } 556 } 584 557 585 /* Remove CCMP header and MIC */ 558 /* Remove CCMP header and MIC */ 586 if (pskb_trim(skb, skb->len - mic_len) 559 if (pskb_trim(skb, skb->len - mic_len)) 587 return RX_DROP_U_SHORT_CCMP_MI !! 560 return RX_DROP_UNUSABLE; 588 memmove(skb->data + IEEE80211_CCMP_HDR 561 memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen); 589 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 562 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 590 563 591 return RX_CONTINUE; 564 return RX_CONTINUE; 592 } 565 } 593 566 594 static void gcmp_special_blocks(struct sk_buff !! 567 static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad) 595 bool spp_amsdu << 596 { 568 { 597 struct ieee80211_hdr *hdr = (void *)sk !! 569 __le16 mask_fc; >> 570 u8 qos_tid; >> 571 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 598 572 599 memcpy(j_0, hdr->addr2, ETH_ALEN); 573 memcpy(j_0, hdr->addr2, ETH_ALEN); 600 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_G 574 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN); 601 j_0[13] = 0; 575 j_0[13] = 0; 602 j_0[14] = 0; 576 j_0[14] = 0; 603 j_0[AES_BLOCK_SIZE - 1] = 0x01; 577 j_0[AES_BLOCK_SIZE - 1] = 0x01; 604 578 605 ccmp_gcmp_aad(skb, aad, spp_amsdu); !! 579 /* AAD (extra authenticate-only data) / masked 802.11 header >> 580 * FC | A1 | A2 | A3 | SC | [A4] | [QC] >> 581 */ >> 582 put_unaligned_be16(ieee80211_hdrlen(hdr->frame_control) - 2, &aad[0]); >> 583 /* Mask FC: zero subtype b4 b5 b6 (if not mgmt) >> 584 * Retry, PwrMgt, MoreData; set Protected >> 585 */ >> 586 mask_fc = hdr->frame_control; >> 587 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | >> 588 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); >> 589 if (!ieee80211_is_mgmt(hdr->frame_control)) >> 590 mask_fc &= ~cpu_to_le16(0x0070); >> 591 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); >> 592 >> 593 put_unaligned(mask_fc, (__le16 *)&aad[2]); >> 594 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); >> 595 >> 596 /* Mask Seq#, leave Frag# */ >> 597 aad[22] = *((u8 *)&hdr->seq_ctrl) & 0x0f; >> 598 aad[23] = 0; >> 599 >> 600 if (ieee80211_is_data_qos(hdr->frame_control)) >> 601 qos_tid = *ieee80211_get_qos_ctl(hdr) & >> 602 IEEE80211_QOS_CTL_TID_MASK; >> 603 else >> 604 qos_tid = 0; >> 605 >> 606 if (ieee80211_has_a4(hdr->frame_control)) { >> 607 memcpy(&aad[24], hdr->addr4, ETH_ALEN); >> 608 aad[30] = qos_tid; >> 609 aad[31] = 0; >> 610 } else { >> 611 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); >> 612 aad[24] = qos_tid; >> 613 } 606 } 614 } 607 615 608 static inline void gcmp_pn2hdr(u8 *hdr, const 616 static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id) 609 { 617 { 610 hdr[0] = pn[5]; 618 hdr[0] = pn[5]; 611 hdr[1] = pn[4]; 619 hdr[1] = pn[4]; 612 hdr[2] = 0; 620 hdr[2] = 0; 613 hdr[3] = 0x20 | (key_id << 6); 621 hdr[3] = 0x20 | (key_id << 6); 614 hdr[4] = pn[3]; 622 hdr[4] = pn[3]; 615 hdr[5] = pn[2]; 623 hdr[5] = pn[2]; 616 hdr[6] = pn[1]; 624 hdr[6] = pn[1]; 617 hdr[7] = pn[0]; 625 hdr[7] = pn[0]; 618 } 626 } 619 627 620 static inline void gcmp_hdr2pn(u8 *pn, const u 628 static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr) 621 { 629 { 622 pn[0] = hdr[7]; 630 pn[0] = hdr[7]; 623 pn[1] = hdr[6]; 631 pn[1] = hdr[6]; 624 pn[2] = hdr[5]; 632 pn[2] = hdr[5]; 625 pn[3] = hdr[4]; 633 pn[3] = hdr[4]; 626 pn[4] = hdr[1]; 634 pn[4] = hdr[1]; 627 pn[5] = hdr[0]; 635 pn[5] = hdr[0]; 628 } 636 } 629 637 630 static int gcmp_encrypt_skb(struct ieee80211_t 638 static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 631 { 639 { 632 struct ieee80211_hdr *hdr = (struct ie 640 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 633 struct ieee80211_key *key = tx->key; 641 struct ieee80211_key *key = tx->key; 634 struct ieee80211_tx_info *info = IEEE8 642 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 635 int hdrlen, len, tail; 643 int hdrlen, len, tail; 636 u8 *pos; 644 u8 *pos; 637 u8 pn[6]; 645 u8 pn[6]; 638 u64 pn64; 646 u64 pn64; 639 u8 aad[GCM_AAD_LEN]; 647 u8 aad[GCM_AAD_LEN]; 640 u8 j_0[AES_BLOCK_SIZE]; 648 u8 j_0[AES_BLOCK_SIZE]; 641 649 642 if (info->control.hw_key && 650 if (info->control.hw_key && 643 !(info->control.hw_key->flags & IE 651 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 644 !(info->control.hw_key->flags & IE 652 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 645 !((info->control.hw_key->flags & 653 !((info->control.hw_key->flags & 646 IEEE80211_KEY_FLAG_GENERATE_IV_ 654 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 647 ieee80211_is_mgmt(hdr->frame_con 655 ieee80211_is_mgmt(hdr->frame_control))) { 648 /* hwaccel has no need for pre 656 /* hwaccel has no need for preallocated room for GCMP 649 * header or MIC fields 657 * header or MIC fields 650 */ 658 */ 651 return 0; 659 return 0; 652 } 660 } 653 661 654 hdrlen = ieee80211_hdrlen(hdr->frame_c 662 hdrlen = ieee80211_hdrlen(hdr->frame_control); 655 len = skb->len - hdrlen; 663 len = skb->len - hdrlen; 656 664 657 if (info->control.hw_key) 665 if (info->control.hw_key) 658 tail = 0; 666 tail = 0; 659 else 667 else 660 tail = IEEE80211_GCMP_MIC_LEN; 668 tail = IEEE80211_GCMP_MIC_LEN; 661 669 662 if (WARN_ON(skb_tailroom(skb) < tail | 670 if (WARN_ON(skb_tailroom(skb) < tail || 663 skb_headroom(skb) < IEEE80 671 skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN)) 664 return -1; 672 return -1; 665 673 666 pos = skb_push(skb, IEEE80211_GCMP_HDR 674 pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN); 667 memmove(pos, pos + IEEE80211_GCMP_HDR_ 675 memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen); 668 skb_set_network_header(skb, skb_networ 676 skb_set_network_header(skb, skb_network_offset(skb) + 669 IEEE80211_ 677 IEEE80211_GCMP_HDR_LEN); 670 678 671 /* the HW only needs room for the IV, 679 /* the HW only needs room for the IV, but not the actual IV */ 672 if (info->control.hw_key && 680 if (info->control.hw_key && 673 (info->control.hw_key->flags & IEE 681 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 674 return 0; 682 return 0; 675 683 >> 684 hdr = (struct ieee80211_hdr *)pos; 676 pos += hdrlen; 685 pos += hdrlen; 677 686 678 pn64 = atomic64_inc_return(&key->conf. 687 pn64 = atomic64_inc_return(&key->conf.tx_pn); 679 688 680 pn[5] = pn64; 689 pn[5] = pn64; 681 pn[4] = pn64 >> 8; 690 pn[4] = pn64 >> 8; 682 pn[3] = pn64 >> 16; 691 pn[3] = pn64 >> 16; 683 pn[2] = pn64 >> 24; 692 pn[2] = pn64 >> 24; 684 pn[1] = pn64 >> 32; 693 pn[1] = pn64 >> 32; 685 pn[0] = pn64 >> 40; 694 pn[0] = pn64 >> 40; 686 695 687 gcmp_pn2hdr(pos, pn, key->conf.keyidx) 696 gcmp_pn2hdr(pos, pn, key->conf.keyidx); 688 697 689 /* hwaccel - with software GCMP header 698 /* hwaccel - with software GCMP header */ 690 if (info->control.hw_key) 699 if (info->control.hw_key) 691 return 0; 700 return 0; 692 701 693 pos += IEEE80211_GCMP_HDR_LEN; 702 pos += IEEE80211_GCMP_HDR_LEN; 694 gcmp_special_blocks(skb, pn, j_0, aad, !! 703 gcmp_special_blocks(skb, pn, j_0, aad); 695 key->conf.flags & << 696 return ieee80211_aes_gcm_encrypt(key-> 704 return ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len, 697 skb_p 705 skb_put(skb, IEEE80211_GCMP_MIC_LEN)); 698 } 706 } 699 707 700 ieee80211_tx_result 708 ieee80211_tx_result 701 ieee80211_crypto_gcmp_encrypt(struct ieee80211 709 ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx) 702 { 710 { 703 struct sk_buff *skb; 711 struct sk_buff *skb; 704 712 705 ieee80211_tx_set_protected(tx); 713 ieee80211_tx_set_protected(tx); 706 714 707 skb_queue_walk(&tx->skbs, skb) { 715 skb_queue_walk(&tx->skbs, skb) { 708 if (gcmp_encrypt_skb(tx, skb) 716 if (gcmp_encrypt_skb(tx, skb) < 0) 709 return TX_DROP; 717 return TX_DROP; 710 } 718 } 711 719 712 return TX_CONTINUE; 720 return TX_CONTINUE; 713 } 721 } 714 722 715 ieee80211_rx_result 723 ieee80211_rx_result 716 ieee80211_crypto_gcmp_decrypt(struct ieee80211 724 ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx) 717 { 725 { 718 struct ieee80211_hdr *hdr = (struct ie 726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 719 int hdrlen; 727 int hdrlen; 720 struct ieee80211_key *key = rx->key; 728 struct ieee80211_key *key = rx->key; 721 struct sk_buff *skb = rx->skb; 729 struct sk_buff *skb = rx->skb; 722 struct ieee80211_rx_status *status = I 730 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 723 u8 pn[IEEE80211_GCMP_PN_LEN]; 731 u8 pn[IEEE80211_GCMP_PN_LEN]; 724 int data_len, queue, mic_len = IEEE802 732 int data_len, queue, mic_len = IEEE80211_GCMP_MIC_LEN; 725 733 726 hdrlen = ieee80211_hdrlen(hdr->frame_c 734 hdrlen = ieee80211_hdrlen(hdr->frame_control); 727 735 728 if (!ieee80211_is_data(hdr->frame_cont 736 if (!ieee80211_is_data(hdr->frame_control) && 729 !ieee80211_is_robust_mgmt_frame(sk 737 !ieee80211_is_robust_mgmt_frame(skb)) 730 return RX_CONTINUE; 738 return RX_CONTINUE; 731 739 732 if (status->flag & RX_FLAG_DECRYPTED) 740 if (status->flag & RX_FLAG_DECRYPTED) { 733 if (!pskb_may_pull(rx->skb, hd 741 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN)) 734 return RX_DROP_U_SHORT !! 742 return RX_DROP_UNUSABLE; 735 if (status->flag & RX_FLAG_MIC 743 if (status->flag & RX_FLAG_MIC_STRIPPED) 736 mic_len = 0; 744 mic_len = 0; 737 } else { 745 } else { 738 if (skb_linearize(rx->skb)) 746 if (skb_linearize(rx->skb)) 739 return RX_DROP_U_OOM; !! 747 return RX_DROP_UNUSABLE; 740 } 748 } 741 749 742 /* reload hdr - skb might have been re 750 /* reload hdr - skb might have been reallocated */ 743 hdr = (void *)rx->skb->data; 751 hdr = (void *)rx->skb->data; 744 752 745 data_len = skb->len - hdrlen - IEEE802 753 data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN - mic_len; 746 if (!rx->sta || data_len < 0) 754 if (!rx->sta || data_len < 0) 747 return RX_DROP_U_SHORT_GCMP; !! 755 return RX_DROP_UNUSABLE; 748 756 749 if (!(status->flag & RX_FLAG_PN_VALIDA 757 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 750 int res; 758 int res; 751 759 752 gcmp_hdr2pn(pn, skb->data + hd 760 gcmp_hdr2pn(pn, skb->data + hdrlen); 753 761 754 queue = rx->security_idx; 762 queue = rx->security_idx; 755 763 756 res = memcmp(pn, key->u.gcmp.r 764 res = memcmp(pn, key->u.gcmp.rx_pn[queue], 757 IEEE80211_GCMP_PN 765 IEEE80211_GCMP_PN_LEN); 758 if (res < 0 || 766 if (res < 0 || 759 (!res && !(status->flag & 767 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 760 key->u.gcmp.replays++; 768 key->u.gcmp.replays++; 761 return RX_DROP_U_REPLA !! 769 return RX_DROP_UNUSABLE; 762 } 770 } 763 771 764 if (!(status->flag & RX_FLAG_D 772 if (!(status->flag & RX_FLAG_DECRYPTED)) { 765 u8 aad[2 * AES_BLOCK_S 773 u8 aad[2 * AES_BLOCK_SIZE]; 766 u8 j_0[AES_BLOCK_SIZE] 774 u8 j_0[AES_BLOCK_SIZE]; 767 /* hardware didn't dec 775 /* hardware didn't decrypt/verify MIC */ 768 gcmp_special_blocks(sk !! 776 gcmp_special_blocks(skb, pn, j_0, aad); 769 ke << 770 777 771 if (ieee80211_aes_gcm_ 778 if (ieee80211_aes_gcm_decrypt( 772 key->u.gcm 779 key->u.gcmp.tfm, j_0, aad, 773 skb->data 780 skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN, 774 data_len, 781 data_len, 775 skb->data 782 skb->data + skb->len - 776 IEEE80211_ 783 IEEE80211_GCMP_MIC_LEN)) 777 return RX_DROP !! 784 return RX_DROP_UNUSABLE; 778 } 785 } 779 786 780 memcpy(key->u.gcmp.rx_pn[queue 787 memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN); 781 if (unlikely(ieee80211_is_frag 788 if (unlikely(ieee80211_is_frag(hdr))) 782 memcpy(rx->ccm_gcm.pn, 789 memcpy(rx->ccm_gcm.pn, pn, IEEE80211_CCMP_PN_LEN); 783 } 790 } 784 791 785 /* Remove GCMP header and MIC */ 792 /* Remove GCMP header and MIC */ 786 if (pskb_trim(skb, skb->len - mic_len) 793 if (pskb_trim(skb, skb->len - mic_len)) 787 return RX_DROP_U_SHORT_GCMP_MI !! 794 return RX_DROP_UNUSABLE; 788 memmove(skb->data + IEEE80211_GCMP_HDR 795 memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen); 789 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 796 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 790 797 791 return RX_CONTINUE; 798 return RX_CONTINUE; 792 } 799 } 793 800 >> 801 static ieee80211_tx_result >> 802 ieee80211_crypto_cs_encrypt(struct ieee80211_tx_data *tx, >> 803 struct sk_buff *skb) >> 804 { >> 805 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; >> 806 struct ieee80211_key *key = tx->key; >> 807 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); >> 808 int hdrlen; >> 809 u8 *pos, iv_len = key->conf.iv_len; >> 810 >> 811 if (info->control.hw_key && >> 812 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { >> 813 /* hwaccel has no need for preallocated head room */ >> 814 return TX_CONTINUE; >> 815 } >> 816 >> 817 if (unlikely(skb_headroom(skb) < iv_len && >> 818 pskb_expand_head(skb, iv_len, 0, GFP_ATOMIC))) >> 819 return TX_DROP; >> 820 >> 821 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 822 >> 823 pos = skb_push(skb, iv_len); >> 824 memmove(pos, pos + iv_len, hdrlen); >> 825 >> 826 return TX_CONTINUE; >> 827 } >> 828 >> 829 static inline int ieee80211_crypto_cs_pn_compare(u8 *pn1, u8 *pn2, int len) >> 830 { >> 831 int i; >> 832 >> 833 /* pn is little endian */ >> 834 for (i = len - 1; i >= 0; i--) { >> 835 if (pn1[i] < pn2[i]) >> 836 return -1; >> 837 else if (pn1[i] > pn2[i]) >> 838 return 1; >> 839 } >> 840 >> 841 return 0; >> 842 } >> 843 >> 844 static ieee80211_rx_result >> 845 ieee80211_crypto_cs_decrypt(struct ieee80211_rx_data *rx) >> 846 { >> 847 struct ieee80211_key *key = rx->key; >> 848 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; >> 849 const struct ieee80211_cipher_scheme *cs = NULL; >> 850 int hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 851 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); >> 852 int data_len; >> 853 u8 *rx_pn; >> 854 u8 *skb_pn; >> 855 u8 qos_tid; >> 856 >> 857 if (!rx->sta || !rx->sta->cipher_scheme || >> 858 !(status->flag & RX_FLAG_DECRYPTED)) >> 859 return RX_DROP_UNUSABLE; >> 860 >> 861 if (!ieee80211_is_data(hdr->frame_control)) >> 862 return RX_CONTINUE; >> 863 >> 864 cs = rx->sta->cipher_scheme; >> 865 >> 866 data_len = rx->skb->len - hdrlen - cs->hdr_len; >> 867 >> 868 if (data_len < 0) >> 869 return RX_DROP_UNUSABLE; >> 870 >> 871 if (ieee80211_is_data_qos(hdr->frame_control)) >> 872 qos_tid = *ieee80211_get_qos_ctl(hdr) & >> 873 IEEE80211_QOS_CTL_TID_MASK; >> 874 else >> 875 qos_tid = 0; >> 876 >> 877 if (skb_linearize(rx->skb)) >> 878 return RX_DROP_UNUSABLE; >> 879 >> 880 hdr = (struct ieee80211_hdr *)rx->skb->data; >> 881 >> 882 rx_pn = key->u.gen.rx_pn[qos_tid]; >> 883 skb_pn = rx->skb->data + hdrlen + cs->pn_off; >> 884 >> 885 if (ieee80211_crypto_cs_pn_compare(skb_pn, rx_pn, cs->pn_len) <= 0) >> 886 return RX_DROP_UNUSABLE; >> 887 >> 888 memcpy(rx_pn, skb_pn, cs->pn_len); >> 889 >> 890 /* remove security header and MIC */ >> 891 if (pskb_trim(rx->skb, rx->skb->len - cs->mic_len)) >> 892 return RX_DROP_UNUSABLE; >> 893 >> 894 memmove(rx->skb->data + cs->hdr_len, rx->skb->data, hdrlen); >> 895 skb_pull(rx->skb, cs->hdr_len); >> 896 >> 897 return RX_CONTINUE; >> 898 } >> 899 794 static void bip_aad(struct sk_buff *skb, u8 *a 900 static void bip_aad(struct sk_buff *skb, u8 *aad) 795 { 901 { 796 __le16 mask_fc; 902 __le16 mask_fc; 797 struct ieee80211_hdr *hdr = (struct ie 903 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 798 904 799 /* BIP AAD: FC(masked) || A1 || A2 || 905 /* BIP AAD: FC(masked) || A1 || A2 || A3 */ 800 906 801 /* FC type/subtype */ 907 /* FC type/subtype */ 802 /* Mask FC Retry, PwrMgt, MoreData fla 908 /* Mask FC Retry, PwrMgt, MoreData flags to zero */ 803 mask_fc = hdr->frame_control; 909 mask_fc = hdr->frame_control; 804 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 910 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM | 805 IEEE80211_FCTL 911 IEEE80211_FCTL_MOREDATA); 806 put_unaligned(mask_fc, (__le16 *) &aad 912 put_unaligned(mask_fc, (__le16 *) &aad[0]); 807 /* A1 || A2 || A3 */ 913 /* A1 || A2 || A3 */ 808 memcpy(aad + 2, &hdr->addrs, 3 * ETH_A !! 914 memcpy(aad + 2, &hdr->addr1, 3 * ETH_ALEN); 809 } 915 } 810 916 811 917 812 static inline void bip_ipn_set64(u8 *d, u64 pn 918 static inline void bip_ipn_set64(u8 *d, u64 pn) 813 { 919 { 814 *d++ = pn; 920 *d++ = pn; 815 *d++ = pn >> 8; 921 *d++ = pn >> 8; 816 *d++ = pn >> 16; 922 *d++ = pn >> 16; 817 *d++ = pn >> 24; 923 *d++ = pn >> 24; 818 *d++ = pn >> 32; 924 *d++ = pn >> 32; 819 *d = pn >> 40; 925 *d = pn >> 40; 820 } 926 } 821 927 822 static inline void bip_ipn_swap(u8 *d, const u 928 static inline void bip_ipn_swap(u8 *d, const u8 *s) 823 { 929 { 824 *d++ = s[5]; 930 *d++ = s[5]; 825 *d++ = s[4]; 931 *d++ = s[4]; 826 *d++ = s[3]; 932 *d++ = s[3]; 827 *d++ = s[2]; 933 *d++ = s[2]; 828 *d++ = s[1]; 934 *d++ = s[1]; 829 *d = s[0]; 935 *d = s[0]; 830 } 936 } 831 937 832 938 833 ieee80211_tx_result 939 ieee80211_tx_result 834 ieee80211_crypto_aes_cmac_encrypt(struct ieee8 940 ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx) 835 { 941 { 836 struct sk_buff *skb; 942 struct sk_buff *skb; 837 struct ieee80211_tx_info *info; 943 struct ieee80211_tx_info *info; 838 struct ieee80211_key *key = tx->key; 944 struct ieee80211_key *key = tx->key; 839 struct ieee80211_mmie *mmie; 945 struct ieee80211_mmie *mmie; 840 u8 aad[20]; 946 u8 aad[20]; 841 u64 pn64; 947 u64 pn64; 842 948 843 if (WARN_ON(skb_queue_len(&tx->skbs) ! 949 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 844 return TX_DROP; 950 return TX_DROP; 845 951 846 skb = skb_peek(&tx->skbs); 952 skb = skb_peek(&tx->skbs); 847 953 848 info = IEEE80211_SKB_CB(skb); 954 info = IEEE80211_SKB_CB(skb); 849 955 850 if (info->control.hw_key && !! 956 if (info->control.hw_key) 851 !(key->conf.flags & IEEE80211_KEY_ << 852 return TX_CONTINUE; 957 return TX_CONTINUE; 853 958 854 if (WARN_ON(skb_tailroom(skb) < sizeof 959 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 855 return TX_DROP; 960 return TX_DROP; 856 961 857 mmie = skb_put(skb, sizeof(*mmie)); 962 mmie = skb_put(skb, sizeof(*mmie)); 858 mmie->element_id = WLAN_EID_MMIE; 963 mmie->element_id = WLAN_EID_MMIE; 859 mmie->length = sizeof(*mmie) - 2; 964 mmie->length = sizeof(*mmie) - 2; 860 mmie->key_id = cpu_to_le16(key->conf.k 965 mmie->key_id = cpu_to_le16(key->conf.keyidx); 861 966 862 /* PN = PN + 1 */ 967 /* PN = PN + 1 */ 863 pn64 = atomic64_inc_return(&key->conf. 968 pn64 = atomic64_inc_return(&key->conf.tx_pn); 864 969 865 bip_ipn_set64(mmie->sequence_number, p 970 bip_ipn_set64(mmie->sequence_number, pn64); 866 971 867 if (info->control.hw_key) << 868 return TX_CONTINUE; << 869 << 870 bip_aad(skb, aad); 972 bip_aad(skb, aad); 871 973 872 /* 974 /* 873 * MIC = AES-128-CMAC(IGTK, AAD || Man 975 * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64) 874 */ 976 */ 875 ieee80211_aes_cmac(key->u.aes_cmac.tfm 977 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 876 skb->data + 24, skb 978 skb->data + 24, skb->len - 24, mmie->mic); 877 979 878 return TX_CONTINUE; 980 return TX_CONTINUE; 879 } 981 } 880 982 881 ieee80211_tx_result 983 ieee80211_tx_result 882 ieee80211_crypto_aes_cmac_256_encrypt(struct i 984 ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx) 883 { 985 { 884 struct sk_buff *skb; 986 struct sk_buff *skb; 885 struct ieee80211_tx_info *info; 987 struct ieee80211_tx_info *info; 886 struct ieee80211_key *key = tx->key; 988 struct ieee80211_key *key = tx->key; 887 struct ieee80211_mmie_16 *mmie; 989 struct ieee80211_mmie_16 *mmie; 888 u8 aad[20]; 990 u8 aad[20]; 889 u64 pn64; 991 u64 pn64; 890 992 891 if (WARN_ON(skb_queue_len(&tx->skbs) ! 993 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 892 return TX_DROP; 994 return TX_DROP; 893 995 894 skb = skb_peek(&tx->skbs); 996 skb = skb_peek(&tx->skbs); 895 997 896 info = IEEE80211_SKB_CB(skb); 998 info = IEEE80211_SKB_CB(skb); 897 999 898 if (info->control.hw_key && !! 1000 if (info->control.hw_key) 899 !(key->conf.flags & IEEE80211_KEY_ << 900 return TX_CONTINUE; 1001 return TX_CONTINUE; 901 1002 902 if (WARN_ON(skb_tailroom(skb) < sizeof 1003 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 903 return TX_DROP; 1004 return TX_DROP; 904 1005 905 mmie = skb_put(skb, sizeof(*mmie)); 1006 mmie = skb_put(skb, sizeof(*mmie)); 906 mmie->element_id = WLAN_EID_MMIE; 1007 mmie->element_id = WLAN_EID_MMIE; 907 mmie->length = sizeof(*mmie) - 2; 1008 mmie->length = sizeof(*mmie) - 2; 908 mmie->key_id = cpu_to_le16(key->conf.k 1009 mmie->key_id = cpu_to_le16(key->conf.keyidx); 909 1010 910 /* PN = PN + 1 */ 1011 /* PN = PN + 1 */ 911 pn64 = atomic64_inc_return(&key->conf. 1012 pn64 = atomic64_inc_return(&key->conf.tx_pn); 912 1013 913 bip_ipn_set64(mmie->sequence_number, p 1014 bip_ipn_set64(mmie->sequence_number, pn64); 914 1015 915 if (info->control.hw_key) << 916 return TX_CONTINUE; << 917 << 918 bip_aad(skb, aad); 1016 bip_aad(skb, aad); 919 1017 920 /* MIC = AES-256-CMAC(IGTK, AAD || Man 1018 /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128) 921 */ 1019 */ 922 ieee80211_aes_cmac_256(key->u.aes_cmac 1020 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 923 skb->data + 24, 1021 skb->data + 24, skb->len - 24, mmie->mic); 924 1022 925 return TX_CONTINUE; 1023 return TX_CONTINUE; 926 } 1024 } 927 1025 928 ieee80211_rx_result 1026 ieee80211_rx_result 929 ieee80211_crypto_aes_cmac_decrypt(struct ieee8 1027 ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx) 930 { 1028 { 931 struct sk_buff *skb = rx->skb; 1029 struct sk_buff *skb = rx->skb; 932 struct ieee80211_rx_status *status = I 1030 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 933 struct ieee80211_key *key = rx->key; 1031 struct ieee80211_key *key = rx->key; 934 struct ieee80211_mmie *mmie; 1032 struct ieee80211_mmie *mmie; 935 u8 aad[20], mic[8], ipn[6]; 1033 u8 aad[20], mic[8], ipn[6]; 936 struct ieee80211_hdr *hdr = (struct ie 1034 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 937 1035 938 if (!ieee80211_is_mgmt(hdr->frame_cont 1036 if (!ieee80211_is_mgmt(hdr->frame_control)) 939 return RX_CONTINUE; 1037 return RX_CONTINUE; 940 1038 941 /* management frames are already linea 1039 /* management frames are already linear */ 942 1040 943 if (skb->len < 24 + sizeof(*mmie)) 1041 if (skb->len < 24 + sizeof(*mmie)) 944 return RX_DROP_U_SHORT_CMAC; !! 1042 return RX_DROP_UNUSABLE; 945 1043 946 mmie = (struct ieee80211_mmie *) 1044 mmie = (struct ieee80211_mmie *) 947 (skb->data + skb->len - sizeof 1045 (skb->data + skb->len - sizeof(*mmie)); 948 if (mmie->element_id != WLAN_EID_MMIE 1046 if (mmie->element_id != WLAN_EID_MMIE || 949 mmie->length != sizeof(*mmie) - 2) 1047 mmie->length != sizeof(*mmie) - 2) 950 return RX_DROP_U_BAD_MMIE; /* !! 1048 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 951 1049 952 bip_ipn_swap(ipn, mmie->sequence_numbe 1050 bip_ipn_swap(ipn, mmie->sequence_number); 953 1051 954 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 1052 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 955 key->u.aes_cmac.replays++; 1053 key->u.aes_cmac.replays++; 956 return RX_DROP_U_REPLAY; !! 1054 return RX_DROP_UNUSABLE; 957 } 1055 } 958 1056 959 if (!(status->flag & RX_FLAG_DECRYPTED 1057 if (!(status->flag & RX_FLAG_DECRYPTED)) { 960 /* hardware didn't decrypt/ver 1058 /* hardware didn't decrypt/verify MIC */ 961 bip_aad(skb, aad); 1059 bip_aad(skb, aad); 962 ieee80211_aes_cmac(key->u.aes_ 1060 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 963 skb->data + 1061 skb->data + 24, skb->len - 24, mic); 964 if (crypto_memneq(mic, mmie->m 1062 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 965 key->u.aes_cmac.icverr 1063 key->u.aes_cmac.icverrors++; 966 return RX_DROP_U_MIC_F !! 1064 return RX_DROP_UNUSABLE; 967 } 1065 } 968 } 1066 } 969 1067 970 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1068 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 971 1069 972 /* Remove MMIE */ 1070 /* Remove MMIE */ 973 skb_trim(skb, skb->len - sizeof(*mmie) 1071 skb_trim(skb, skb->len - sizeof(*mmie)); 974 1072 975 return RX_CONTINUE; 1073 return RX_CONTINUE; 976 } 1074 } 977 1075 978 ieee80211_rx_result 1076 ieee80211_rx_result 979 ieee80211_crypto_aes_cmac_256_decrypt(struct i 1077 ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx) 980 { 1078 { 981 struct sk_buff *skb = rx->skb; 1079 struct sk_buff *skb = rx->skb; 982 struct ieee80211_rx_status *status = I 1080 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 983 struct ieee80211_key *key = rx->key; 1081 struct ieee80211_key *key = rx->key; 984 struct ieee80211_mmie_16 *mmie; 1082 struct ieee80211_mmie_16 *mmie; 985 u8 aad[20], mic[16], ipn[6]; 1083 u8 aad[20], mic[16], ipn[6]; 986 struct ieee80211_hdr *hdr = (struct ie 1084 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 987 1085 988 if (!ieee80211_is_mgmt(hdr->frame_cont 1086 if (!ieee80211_is_mgmt(hdr->frame_control)) 989 return RX_CONTINUE; 1087 return RX_CONTINUE; 990 1088 991 /* management frames are already linea 1089 /* management frames are already linear */ 992 1090 993 if (skb->len < 24 + sizeof(*mmie)) 1091 if (skb->len < 24 + sizeof(*mmie)) 994 return RX_DROP_U_SHORT_CMAC256 !! 1092 return RX_DROP_UNUSABLE; 995 1093 996 mmie = (struct ieee80211_mmie_16 *) 1094 mmie = (struct ieee80211_mmie_16 *) 997 (skb->data + skb->len - sizeof 1095 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id != WLAN_EID_MMIE 1096 if (mmie->element_id != WLAN_EID_MMIE || 999 mmie->length != sizeof(*mmie) - 2) 1097 mmie->length != sizeof(*mmie) - 2) 1000 return RX_DROP_U_BAD_MMIE; /* !! 1098 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1001 1099 1002 bip_ipn_swap(ipn, mmie->sequence_numb 1100 bip_ipn_swap(ipn, mmie->sequence_number); 1003 1101 1004 if (memcmp(ipn, key->u.aes_cmac.rx_pn 1102 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 1005 key->u.aes_cmac.replays++; 1103 key->u.aes_cmac.replays++; 1006 return RX_DROP_U_REPLAY; !! 1104 return RX_DROP_UNUSABLE; 1007 } 1105 } 1008 1106 1009 if (!(status->flag & RX_FLAG_DECRYPTE 1107 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1010 /* hardware didn't decrypt/ve 1108 /* hardware didn't decrypt/verify MIC */ 1011 bip_aad(skb, aad); 1109 bip_aad(skb, aad); 1012 ieee80211_aes_cmac_256(key->u 1110 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 1013 skb->d 1111 skb->data + 24, skb->len - 24, mic); 1014 if (crypto_memneq(mic, mmie-> 1112 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1015 key->u.aes_cmac.icver 1113 key->u.aes_cmac.icverrors++; 1016 return RX_DROP_U_MIC_ !! 1114 return RX_DROP_UNUSABLE; 1017 } 1115 } 1018 } 1116 } 1019 1117 1020 memcpy(key->u.aes_cmac.rx_pn, ipn, 6) 1118 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1021 1119 1022 /* Remove MMIE */ 1120 /* Remove MMIE */ 1023 skb_trim(skb, skb->len - sizeof(*mmie 1121 skb_trim(skb, skb->len - sizeof(*mmie)); 1024 1122 1025 return RX_CONTINUE; 1123 return RX_CONTINUE; 1026 } 1124 } 1027 1125 1028 ieee80211_tx_result 1126 ieee80211_tx_result 1029 ieee80211_crypto_aes_gmac_encrypt(struct ieee 1127 ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx) 1030 { 1128 { 1031 struct sk_buff *skb; 1129 struct sk_buff *skb; 1032 struct ieee80211_tx_info *info; 1130 struct ieee80211_tx_info *info; 1033 struct ieee80211_key *key = tx->key; 1131 struct ieee80211_key *key = tx->key; 1034 struct ieee80211_mmie_16 *mmie; 1132 struct ieee80211_mmie_16 *mmie; 1035 struct ieee80211_hdr *hdr; 1133 struct ieee80211_hdr *hdr; 1036 u8 aad[GMAC_AAD_LEN]; 1134 u8 aad[GMAC_AAD_LEN]; 1037 u64 pn64; 1135 u64 pn64; 1038 u8 nonce[GMAC_NONCE_LEN]; 1136 u8 nonce[GMAC_NONCE_LEN]; 1039 1137 1040 if (WARN_ON(skb_queue_len(&tx->skbs) 1138 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 1041 return TX_DROP; 1139 return TX_DROP; 1042 1140 1043 skb = skb_peek(&tx->skbs); 1141 skb = skb_peek(&tx->skbs); 1044 1142 1045 info = IEEE80211_SKB_CB(skb); 1143 info = IEEE80211_SKB_CB(skb); 1046 1144 1047 if (info->control.hw_key && !! 1145 if (info->control.hw_key) 1048 !(key->conf.flags & IEEE80211_KEY << 1049 return TX_CONTINUE; 1146 return TX_CONTINUE; 1050 1147 1051 if (WARN_ON(skb_tailroom(skb) < sizeo 1148 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 1052 return TX_DROP; 1149 return TX_DROP; 1053 1150 1054 mmie = skb_put(skb, sizeof(*mmie)); 1151 mmie = skb_put(skb, sizeof(*mmie)); 1055 mmie->element_id = WLAN_EID_MMIE; 1152 mmie->element_id = WLAN_EID_MMIE; 1056 mmie->length = sizeof(*mmie) - 2; 1153 mmie->length = sizeof(*mmie) - 2; 1057 mmie->key_id = cpu_to_le16(key->conf. 1154 mmie->key_id = cpu_to_le16(key->conf.keyidx); 1058 1155 1059 /* PN = PN + 1 */ 1156 /* PN = PN + 1 */ 1060 pn64 = atomic64_inc_return(&key->conf 1157 pn64 = atomic64_inc_return(&key->conf.tx_pn); 1061 1158 1062 bip_ipn_set64(mmie->sequence_number, 1159 bip_ipn_set64(mmie->sequence_number, pn64); 1063 1160 1064 if (info->control.hw_key) << 1065 return TX_CONTINUE; << 1066 << 1067 bip_aad(skb, aad); 1161 bip_aad(skb, aad); 1068 1162 1069 hdr = (struct ieee80211_hdr *)skb->da 1163 hdr = (struct ieee80211_hdr *)skb->data; 1070 memcpy(nonce, hdr->addr2, ETH_ALEN); 1164 memcpy(nonce, hdr->addr2, ETH_ALEN); 1071 bip_ipn_swap(nonce + ETH_ALEN, mmie-> 1165 bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number); 1072 1166 1073 /* MIC = AES-GMAC(IGTK, AAD || Manage 1167 /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */ 1074 if (ieee80211_aes_gmac(key->u.aes_gma 1168 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1075 skb->data + 24 1169 skb->data + 24, skb->len - 24, mmie->mic) < 0) 1076 return TX_DROP; 1170 return TX_DROP; 1077 1171 1078 return TX_CONTINUE; 1172 return TX_CONTINUE; 1079 } 1173 } 1080 1174 1081 ieee80211_rx_result 1175 ieee80211_rx_result 1082 ieee80211_crypto_aes_gmac_decrypt(struct ieee 1176 ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx) 1083 { 1177 { 1084 struct sk_buff *skb = rx->skb; 1178 struct sk_buff *skb = rx->skb; 1085 struct ieee80211_rx_status *status = 1179 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1086 struct ieee80211_key *key = rx->key; 1180 struct ieee80211_key *key = rx->key; 1087 struct ieee80211_mmie_16 *mmie; 1181 struct ieee80211_mmie_16 *mmie; 1088 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], n 1182 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], nonce[GMAC_NONCE_LEN]; 1089 struct ieee80211_hdr *hdr = (struct i 1183 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1090 1184 1091 if (!ieee80211_is_mgmt(hdr->frame_con 1185 if (!ieee80211_is_mgmt(hdr->frame_control)) 1092 return RX_CONTINUE; 1186 return RX_CONTINUE; 1093 1187 1094 /* management frames are already line 1188 /* management frames are already linear */ 1095 1189 1096 if (skb->len < 24 + sizeof(*mmie)) 1190 if (skb->len < 24 + sizeof(*mmie)) 1097 return RX_DROP_U_SHORT_GMAC; !! 1191 return RX_DROP_UNUSABLE; 1098 1192 1099 mmie = (struct ieee80211_mmie_16 *) 1193 mmie = (struct ieee80211_mmie_16 *) 1100 (skb->data + skb->len - sizeo 1194 (skb->data + skb->len - sizeof(*mmie)); 1101 if (mmie->element_id != WLAN_EID_MMIE 1195 if (mmie->element_id != WLAN_EID_MMIE || 1102 mmie->length != sizeof(*mmie) - 2 1196 mmie->length != sizeof(*mmie) - 2) 1103 return RX_DROP_U_BAD_MMIE; /* !! 1197 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1104 1198 1105 bip_ipn_swap(ipn, mmie->sequence_numb 1199 bip_ipn_swap(ipn, mmie->sequence_number); 1106 1200 1107 if (memcmp(ipn, key->u.aes_gmac.rx_pn 1201 if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) { 1108 key->u.aes_gmac.replays++; 1202 key->u.aes_gmac.replays++; 1109 return RX_DROP_U_REPLAY; !! 1203 return RX_DROP_UNUSABLE; 1110 } 1204 } 1111 1205 1112 if (!(status->flag & RX_FLAG_DECRYPTE 1206 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1113 /* hardware didn't decrypt/ve 1207 /* hardware didn't decrypt/verify MIC */ 1114 bip_aad(skb, aad); 1208 bip_aad(skb, aad); 1115 1209 1116 memcpy(nonce, hdr->addr2, ETH 1210 memcpy(nonce, hdr->addr2, ETH_ALEN); 1117 memcpy(nonce + ETH_ALEN, ipn, 1211 memcpy(nonce + ETH_ALEN, ipn, 6); 1118 1212 1119 mic = kmalloc(GMAC_MIC_LEN, G 1213 mic = kmalloc(GMAC_MIC_LEN, GFP_ATOMIC); 1120 if (!mic) 1214 if (!mic) 1121 return RX_DROP_U_OOM; !! 1215 return RX_DROP_UNUSABLE; 1122 if (ieee80211_aes_gmac(key->u 1216 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1123 skb->d 1217 skb->data + 24, skb->len - 24, 1124 mic) < 1218 mic) < 0 || 1125 crypto_memneq(mic, mmie-> 1219 crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1126 key->u.aes_gmac.icver 1220 key->u.aes_gmac.icverrors++; 1127 kfree(mic); 1221 kfree(mic); 1128 return RX_DROP_U_MIC_ !! 1222 return RX_DROP_UNUSABLE; 1129 } 1223 } 1130 kfree(mic); 1224 kfree(mic); 1131 } 1225 } 1132 1226 1133 memcpy(key->u.aes_gmac.rx_pn, ipn, 6) 1227 memcpy(key->u.aes_gmac.rx_pn, ipn, 6); 1134 1228 1135 /* Remove MMIE */ 1229 /* Remove MMIE */ 1136 skb_trim(skb, skb->len - sizeof(*mmie 1230 skb_trim(skb, skb->len - sizeof(*mmie)); 1137 1231 1138 return RX_CONTINUE; 1232 return RX_CONTINUE; >> 1233 } >> 1234 >> 1235 ieee80211_tx_result >> 1236 ieee80211_crypto_hw_encrypt(struct ieee80211_tx_data *tx) >> 1237 { >> 1238 struct sk_buff *skb; >> 1239 struct ieee80211_tx_info *info = NULL; >> 1240 ieee80211_tx_result res; >> 1241 >> 1242 skb_queue_walk(&tx->skbs, skb) { >> 1243 info = IEEE80211_SKB_CB(skb); >> 1244 >> 1245 /* handle hw-only algorithm */ >> 1246 if (!info->control.hw_key) >> 1247 return TX_DROP; >> 1248 >> 1249 if (tx->key->flags & KEY_FLAG_CIPHER_SCHEME) { >> 1250 res = ieee80211_crypto_cs_encrypt(tx, skb); >> 1251 if (res != TX_CONTINUE) >> 1252 return res; >> 1253 } >> 1254 } >> 1255 >> 1256 ieee80211_tx_set_protected(tx); >> 1257 >> 1258 return TX_CONTINUE; >> 1259 } >> 1260 >> 1261 ieee80211_rx_result >> 1262 ieee80211_crypto_hw_decrypt(struct ieee80211_rx_data *rx) >> 1263 { >> 1264 if (rx->sta && rx->sta->cipher_scheme) >> 1265 return ieee80211_crypto_cs_decrypt(rx); >> 1266 >> 1267 return RX_DROP_UNUSABLE; 1139 } 1268 } 1140 1269
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.