1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Copyright 2002-2004, Instant802 Networks, I 3 * Copyright 2002-2004, Instant802 Networks, Inc. 4 * Copyright 2008, Jouni Malinen <j@w1.fi> 4 * Copyright 2008, Jouni Malinen <j@w1.fi> 5 * Copyright (C) 2016-2017 Intel Deutschland G 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 * Copyright (C) 2020-2023 Intel Corporation !! 6 * Copyright (C) 2020-2021 Intel Corporation 7 */ 7 */ 8 8 9 #include <linux/netdevice.h> 9 #include <linux/netdevice.h> 10 #include <linux/types.h> 10 #include <linux/types.h> 11 #include <linux/skbuff.h> 11 #include <linux/skbuff.h> 12 #include <linux/compiler.h> 12 #include <linux/compiler.h> 13 #include <linux/ieee80211.h> 13 #include <linux/ieee80211.h> 14 #include <linux/gfp.h> 14 #include <linux/gfp.h> 15 #include <linux/unaligned.h> !! 15 #include <asm/unaligned.h> 16 #include <net/mac80211.h> 16 #include <net/mac80211.h> 17 #include <crypto/aes.h> 17 #include <crypto/aes.h> 18 #include <crypto/utils.h> !! 18 #include <crypto/algapi.h> 19 19 20 #include "ieee80211_i.h" 20 #include "ieee80211_i.h" 21 #include "michael.h" 21 #include "michael.h" 22 #include "tkip.h" 22 #include "tkip.h" 23 #include "aes_ccm.h" 23 #include "aes_ccm.h" 24 #include "aes_cmac.h" 24 #include "aes_cmac.h" 25 #include "aes_gmac.h" 25 #include "aes_gmac.h" 26 #include "aes_gcm.h" 26 #include "aes_gcm.h" 27 #include "wpa.h" 27 #include "wpa.h" 28 28 29 ieee80211_tx_result 29 ieee80211_tx_result 30 ieee80211_tx_h_michael_mic_add(struct ieee8021 30 ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx) 31 { 31 { 32 u8 *data, *key, *mic; 32 u8 *data, *key, *mic; 33 size_t data_len; 33 size_t data_len; 34 unsigned int hdrlen; 34 unsigned int hdrlen; 35 struct ieee80211_hdr *hdr; 35 struct ieee80211_hdr *hdr; 36 struct sk_buff *skb = tx->skb; 36 struct sk_buff *skb = tx->skb; 37 struct ieee80211_tx_info *info = IEEE8 37 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 38 int tail; 38 int tail; 39 39 40 hdr = (struct ieee80211_hdr *)skb->dat 40 hdr = (struct ieee80211_hdr *)skb->data; 41 if (!tx->key || tx->key->conf.cipher ! 41 if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 42 skb->len < 24 || !ieee80211_is_dat 42 skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control)) 43 return TX_CONTINUE; 43 return TX_CONTINUE; 44 44 45 hdrlen = ieee80211_hdrlen(hdr->frame_c 45 hdrlen = ieee80211_hdrlen(hdr->frame_control); 46 if (skb->len < hdrlen) 46 if (skb->len < hdrlen) 47 return TX_DROP; 47 return TX_DROP; 48 48 49 data = skb->data + hdrlen; 49 data = skb->data + hdrlen; 50 data_len = skb->len - hdrlen; 50 data_len = skb->len - hdrlen; 51 51 52 if (unlikely(info->flags & IEEE80211_T 52 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) { 53 /* Need to use software crypto 53 /* Need to use software crypto for the test */ 54 info->control.hw_key = NULL; 54 info->control.hw_key = NULL; 55 } 55 } 56 56 57 if (info->control.hw_key && 57 if (info->control.hw_key && 58 (info->flags & IEEE80211_TX_CTL_DO 58 (info->flags & IEEE80211_TX_CTL_DONTFRAG || 59 ieee80211_hw_check(&tx->local->hw 59 ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) && 60 !(tx->key->conf.flags & (IEEE80211 60 !(tx->key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 61 IEEE80211 61 IEEE80211_KEY_FLAG_PUT_MIC_SPACE))) { 62 /* hwaccel - with no need for 62 /* hwaccel - with no need for SW-generated MMIC or MIC space */ 63 return TX_CONTINUE; 63 return TX_CONTINUE; 64 } 64 } 65 65 66 tail = MICHAEL_MIC_LEN; 66 tail = MICHAEL_MIC_LEN; 67 if (!info->control.hw_key) 67 if (!info->control.hw_key) 68 tail += IEEE80211_TKIP_ICV_LEN 68 tail += IEEE80211_TKIP_ICV_LEN; 69 69 70 if (WARN(skb_tailroom(skb) < tail || 70 if (WARN(skb_tailroom(skb) < tail || 71 skb_headroom(skb) < IEEE80211 71 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN, 72 "mmic: not enough head/tail ( 72 "mmic: not enough head/tail (%d/%d,%d/%d)\n", 73 skb_headroom(skb), IEEE80211_ 73 skb_headroom(skb), IEEE80211_TKIP_IV_LEN, 74 skb_tailroom(skb), tail)) 74 skb_tailroom(skb), tail)) 75 return TX_DROP; 75 return TX_DROP; 76 76 77 mic = skb_put(skb, MICHAEL_MIC_LEN); 77 mic = skb_put(skb, MICHAEL_MIC_LEN); 78 78 79 if (tx->key->conf.flags & IEEE80211_KE 79 if (tx->key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) { 80 /* Zeroed MIC can help with de 80 /* Zeroed MIC can help with debug */ 81 memset(mic, 0, MICHAEL_MIC_LEN 81 memset(mic, 0, MICHAEL_MIC_LEN); 82 return TX_CONTINUE; 82 return TX_CONTINUE; 83 } 83 } 84 84 85 key = &tx->key->conf.key[NL80211_TKIP_ 85 key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]; 86 michael_mic(key, hdr, data, data_len, 86 michael_mic(key, hdr, data, data_len, mic); 87 if (unlikely(info->flags & IEEE80211_T 87 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) 88 mic[0]++; 88 mic[0]++; 89 89 90 return TX_CONTINUE; 90 return TX_CONTINUE; 91 } 91 } 92 92 93 93 94 ieee80211_rx_result 94 ieee80211_rx_result 95 ieee80211_rx_h_michael_mic_verify(struct ieee8 95 ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx) 96 { 96 { 97 u8 *data, *key = NULL; 97 u8 *data, *key = NULL; 98 size_t data_len; 98 size_t data_len; 99 unsigned int hdrlen; 99 unsigned int hdrlen; 100 u8 mic[MICHAEL_MIC_LEN]; 100 u8 mic[MICHAEL_MIC_LEN]; 101 struct sk_buff *skb = rx->skb; 101 struct sk_buff *skb = rx->skb; 102 struct ieee80211_rx_status *status = I 102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 103 struct ieee80211_hdr *hdr = (struct ie 103 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 104 104 105 /* 105 /* 106 * it makes no sense to check for MIC 106 * it makes no sense to check for MIC errors on anything other 107 * than data frames. 107 * than data frames. 108 */ 108 */ 109 if (!ieee80211_is_data_present(hdr->fr 109 if (!ieee80211_is_data_present(hdr->frame_control)) 110 return RX_CONTINUE; 110 return RX_CONTINUE; 111 111 112 /* 112 /* 113 * No way to verify the MIC if the har 113 * No way to verify the MIC if the hardware stripped it or 114 * the IV with the key index. In this 114 * the IV with the key index. In this case we have solely rely 115 * on the driver to set RX_FLAG_MMIC_E 115 * on the driver to set RX_FLAG_MMIC_ERROR in the event of a 116 * MIC failure report. 116 * MIC failure report. 117 */ 117 */ 118 if (status->flag & (RX_FLAG_MMIC_STRIP 118 if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) { 119 if (status->flag & RX_FLAG_MMI 119 if (status->flag & RX_FLAG_MMIC_ERROR) 120 goto mic_fail_no_key; 120 goto mic_fail_no_key; 121 121 122 if (!(status->flag & RX_FLAG_I 122 if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key && 123 rx->key->conf.cipher == WL 123 rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP) 124 goto update_iv; 124 goto update_iv; 125 125 126 return RX_CONTINUE; 126 return RX_CONTINUE; 127 } 127 } 128 128 129 /* 129 /* 130 * Some hardware seems to generate Mic 130 * Some hardware seems to generate Michael MIC failure reports; even 131 * though, the frame was not encrypted 131 * though, the frame was not encrypted with TKIP and therefore has no 132 * MIC. Ignore the flag them to avoid 132 * MIC. Ignore the flag them to avoid triggering countermeasures. 133 */ 133 */ 134 if (!rx->key || rx->key->conf.cipher ! 134 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 135 !(status->flag & RX_FLAG_DECRYPTED 135 !(status->flag & RX_FLAG_DECRYPTED)) 136 return RX_CONTINUE; 136 return RX_CONTINUE; 137 137 138 if (rx->sdata->vif.type == NL80211_IFT 138 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) { 139 /* 139 /* 140 * APs with pairwise keys shou 140 * APs with pairwise keys should never receive Michael MIC 141 * errors for non-zero keyidx 141 * errors for non-zero keyidx because these are reserved for 142 * group keys and only the AP 142 * group keys and only the AP is sending real multicast 143 * frames in the BSS. 143 * frames in the BSS. 144 */ 144 */ 145 return RX_DROP_U_AP_RX_GROUPCA !! 145 return RX_DROP_UNUSABLE; 146 } 146 } 147 147 148 if (status->flag & RX_FLAG_MMIC_ERROR) 148 if (status->flag & RX_FLAG_MMIC_ERROR) 149 goto mic_fail; 149 goto mic_fail; 150 150 151 hdrlen = ieee80211_hdrlen(hdr->frame_c 151 hdrlen = ieee80211_hdrlen(hdr->frame_control); 152 if (skb->len < hdrlen + MICHAEL_MIC_LE 152 if (skb->len < hdrlen + MICHAEL_MIC_LEN) 153 return RX_DROP_U_SHORT_MMIC; !! 153 return RX_DROP_UNUSABLE; 154 154 155 if (skb_linearize(rx->skb)) 155 if (skb_linearize(rx->skb)) 156 return RX_DROP_U_OOM; !! 156 return RX_DROP_UNUSABLE; 157 hdr = (void *)skb->data; 157 hdr = (void *)skb->data; 158 158 159 data = skb->data + hdrlen; 159 data = skb->data + hdrlen; 160 data_len = skb->len - hdrlen - MICHAEL 160 data_len = skb->len - hdrlen - MICHAEL_MIC_LEN; 161 key = &rx->key->conf.key[NL80211_TKIP_ 161 key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; 162 michael_mic(key, hdr, data, data_len, 162 michael_mic(key, hdr, data, data_len, mic); 163 if (crypto_memneq(mic, data + data_len 163 if (crypto_memneq(mic, data + data_len, MICHAEL_MIC_LEN)) 164 goto mic_fail; 164 goto mic_fail; 165 165 166 /* remove Michael MIC from payload */ 166 /* remove Michael MIC from payload */ 167 skb_trim(skb, skb->len - MICHAEL_MIC_L 167 skb_trim(skb, skb->len - MICHAEL_MIC_LEN); 168 168 169 update_iv: 169 update_iv: 170 /* update IV in key information to be 170 /* update IV in key information to be able to detect replays */ 171 rx->key->u.tkip.rx[rx->security_idx].i 171 rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip.iv32; 172 rx->key->u.tkip.rx[rx->security_idx].i 172 rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip.iv16; 173 173 174 return RX_CONTINUE; 174 return RX_CONTINUE; 175 175 176 mic_fail: 176 mic_fail: 177 rx->key->u.tkip.mic_failures++; 177 rx->key->u.tkip.mic_failures++; 178 178 179 mic_fail_no_key: 179 mic_fail_no_key: 180 /* 180 /* 181 * In some cases the key can be unset 181 * In some cases the key can be unset - e.g. a multicast packet, in 182 * a driver that supports HW encryptio 182 * a driver that supports HW encryption. Send up the key idx only if 183 * the key is set. 183 * the key is set. 184 */ 184 */ 185 cfg80211_michael_mic_failure(rx->sdata 185 cfg80211_michael_mic_failure(rx->sdata->dev, hdr->addr2, 186 is_multic 186 is_multicast_ether_addr(hdr->addr1) ? 187 NL80211_K 187 NL80211_KEYTYPE_GROUP : 188 NL80211_K 188 NL80211_KEYTYPE_PAIRWISE, 189 rx->key ? 189 rx->key ? rx->key->conf.keyidx : -1, 190 NULL, GFP 190 NULL, GFP_ATOMIC); 191 return RX_DROP_U_MMIC_FAIL; !! 191 return RX_DROP_UNUSABLE; 192 } 192 } 193 193 194 static int tkip_encrypt_skb(struct ieee80211_t 194 static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 195 { 195 { 196 struct ieee80211_hdr *hdr = (struct ie 196 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 197 struct ieee80211_key *key = tx->key; 197 struct ieee80211_key *key = tx->key; 198 struct ieee80211_tx_info *info = IEEE8 198 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 199 unsigned int hdrlen; 199 unsigned int hdrlen; 200 int len, tail; 200 int len, tail; 201 u64 pn; 201 u64 pn; 202 u8 *pos; 202 u8 *pos; 203 203 204 if (info->control.hw_key && 204 if (info->control.hw_key && 205 !(info->control.hw_key->flags & IE 205 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 206 !(info->control.hw_key->flags & IE 206 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { 207 /* hwaccel - with no need for 207 /* hwaccel - with no need for software-generated IV */ 208 return 0; 208 return 0; 209 } 209 } 210 210 211 hdrlen = ieee80211_hdrlen(hdr->frame_c 211 hdrlen = ieee80211_hdrlen(hdr->frame_control); 212 len = skb->len - hdrlen; 212 len = skb->len - hdrlen; 213 213 214 if (info->control.hw_key) 214 if (info->control.hw_key) 215 tail = 0; 215 tail = 0; 216 else 216 else 217 tail = IEEE80211_TKIP_ICV_LEN; 217 tail = IEEE80211_TKIP_ICV_LEN; 218 218 219 if (WARN_ON(skb_tailroom(skb) < tail | 219 if (WARN_ON(skb_tailroom(skb) < tail || 220 skb_headroom(skb) < IEEE80 220 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN)) 221 return -1; 221 return -1; 222 222 223 pos = skb_push(skb, IEEE80211_TKIP_IV_ 223 pos = skb_push(skb, IEEE80211_TKIP_IV_LEN); 224 memmove(pos, pos + IEEE80211_TKIP_IV_L 224 memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen); 225 pos += hdrlen; 225 pos += hdrlen; 226 226 227 /* the HW only needs room for the IV, 227 /* the HW only needs room for the IV, but not the actual IV */ 228 if (info->control.hw_key && 228 if (info->control.hw_key && 229 (info->control.hw_key->flags & IEE 229 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 230 return 0; 230 return 0; 231 231 232 /* Increase IV for the frame */ 232 /* Increase IV for the frame */ 233 pn = atomic64_inc_return(&key->conf.tx 233 pn = atomic64_inc_return(&key->conf.tx_pn); 234 pos = ieee80211_tkip_add_iv(pos, &key- 234 pos = ieee80211_tkip_add_iv(pos, &key->conf, pn); 235 235 236 /* hwaccel - with software IV */ 236 /* hwaccel - with software IV */ 237 if (info->control.hw_key) 237 if (info->control.hw_key) 238 return 0; 238 return 0; 239 239 240 /* Add room for ICV */ 240 /* Add room for ICV */ 241 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 241 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 242 242 243 return ieee80211_tkip_encrypt_data(&tx 243 return ieee80211_tkip_encrypt_data(&tx->local->wep_tx_ctx, 244 key 244 key, skb, pos, len); 245 } 245 } 246 246 247 247 248 ieee80211_tx_result 248 ieee80211_tx_result 249 ieee80211_crypto_tkip_encrypt(struct ieee80211 249 ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx) 250 { 250 { 251 struct sk_buff *skb; 251 struct sk_buff *skb; 252 252 253 ieee80211_tx_set_protected(tx); 253 ieee80211_tx_set_protected(tx); 254 254 255 skb_queue_walk(&tx->skbs, skb) { 255 skb_queue_walk(&tx->skbs, skb) { 256 if (tkip_encrypt_skb(tx, skb) 256 if (tkip_encrypt_skb(tx, skb) < 0) 257 return TX_DROP; 257 return TX_DROP; 258 } 258 } 259 259 260 return TX_CONTINUE; 260 return TX_CONTINUE; 261 } 261 } 262 262 263 263 264 ieee80211_rx_result 264 ieee80211_rx_result 265 ieee80211_crypto_tkip_decrypt(struct ieee80211 265 ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx) 266 { 266 { 267 struct ieee80211_hdr *hdr = (struct ie 267 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; 268 int hdrlen, res, hwaccel = 0; 268 int hdrlen, res, hwaccel = 0; 269 struct ieee80211_key *key = rx->key; 269 struct ieee80211_key *key = rx->key; 270 struct sk_buff *skb = rx->skb; 270 struct sk_buff *skb = rx->skb; 271 struct ieee80211_rx_status *status = I 271 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 272 272 273 hdrlen = ieee80211_hdrlen(hdr->frame_c 273 hdrlen = ieee80211_hdrlen(hdr->frame_control); 274 274 275 if (!ieee80211_is_data(hdr->frame_cont 275 if (!ieee80211_is_data(hdr->frame_control)) 276 return RX_CONTINUE; 276 return RX_CONTINUE; 277 277 278 if (!rx->sta || skb->len - hdrlen < 12 278 if (!rx->sta || skb->len - hdrlen < 12) 279 return RX_DROP_U_SHORT_TKIP; !! 279 return RX_DROP_UNUSABLE; 280 280 281 /* it may be possible to optimize this 281 /* it may be possible to optimize this a bit more */ 282 if (skb_linearize(rx->skb)) 282 if (skb_linearize(rx->skb)) 283 return RX_DROP_U_OOM; !! 283 return RX_DROP_UNUSABLE; 284 hdr = (void *)skb->data; 284 hdr = (void *)skb->data; 285 285 286 /* 286 /* 287 * Let TKIP code verify IV, but skip d 287 * Let TKIP code verify IV, but skip decryption. 288 * In the case where hardware checks t 288 * In the case where hardware checks the IV as well, 289 * we don't even get here, see ieee802 289 * we don't even get here, see ieee80211_rx_h_decrypt() 290 */ 290 */ 291 if (status->flag & RX_FLAG_DECRYPTED) 291 if (status->flag & RX_FLAG_DECRYPTED) 292 hwaccel = 1; 292 hwaccel = 1; 293 293 294 res = ieee80211_tkip_decrypt_data(&rx- 294 res = ieee80211_tkip_decrypt_data(&rx->local->wep_rx_ctx, 295 key, 295 key, skb->data + hdrlen, 296 skb- 296 skb->len - hdrlen, rx->sta->sta.addr, 297 hdr- 297 hdr->addr1, hwaccel, rx->security_idx, 298 &rx- 298 &rx->tkip.iv32, 299 &rx- 299 &rx->tkip.iv16); 300 if (res != TKIP_DECRYPT_OK) 300 if (res != TKIP_DECRYPT_OK) 301 return RX_DROP_U_TKIP_FAIL; !! 301 return RX_DROP_UNUSABLE; 302 302 303 /* Trim ICV */ 303 /* Trim ICV */ 304 if (!(status->flag & RX_FLAG_ICV_STRIP 304 if (!(status->flag & RX_FLAG_ICV_STRIPPED)) 305 skb_trim(skb, skb->len - IEEE8 305 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 306 306 307 /* Remove IV */ 307 /* Remove IV */ 308 memmove(skb->data + IEEE80211_TKIP_IV_ 308 memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen); 309 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 309 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 310 310 311 return RX_CONTINUE; 311 return RX_CONTINUE; 312 } 312 } 313 313 314 /* !! 314 315 * Calculate AAD for CCMP/GCMP, returning qos_ !! 315 static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad) 316 * need that in CCMP also for b_0. << 317 */ << 318 static u8 ccmp_gcmp_aad(struct sk_buff *skb, u << 319 { 316 { 320 struct ieee80211_hdr *hdr = (void *)sk << 321 __le16 mask_fc; 317 __le16 mask_fc; 322 int a4_included, mgmt; 318 int a4_included, mgmt; 323 u8 qos_tid; 319 u8 qos_tid; 324 u16 len_a = 22; !! 320 u16 len_a; >> 321 unsigned int hdrlen; >> 322 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 325 323 326 /* 324 /* 327 * Mask FC: zero subtype b4 b5 b6 (if 325 * Mask FC: zero subtype b4 b5 b6 (if not mgmt) 328 * Retry, PwrMgt, MoreData, Order (if !! 326 * Retry, PwrMgt, MoreData; set Protected 329 */ 327 */ 330 mgmt = ieee80211_is_mgmt(hdr->frame_co 328 mgmt = ieee80211_is_mgmt(hdr->frame_control); 331 mask_fc = hdr->frame_control; 329 mask_fc = hdr->frame_control; 332 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 330 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | 333 IEEE80211_FCTL 331 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); 334 if (!mgmt) 332 if (!mgmt) 335 mask_fc &= ~cpu_to_le16(0x0070 333 mask_fc &= ~cpu_to_le16(0x0070); 336 mask_fc |= cpu_to_le16(IEEE80211_FCTL_ 334 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 337 335 >> 336 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 337 len_a = hdrlen - 2; 338 a4_included = ieee80211_has_a4(hdr->fr 338 a4_included = ieee80211_has_a4(hdr->frame_control); 339 if (a4_included) << 340 len_a += 6; << 341 339 342 if (ieee80211_is_data_qos(hdr->frame_c !! 340 if (ieee80211_is_data_qos(hdr->frame_control)) 343 qos_tid = *ieee80211_get_qos_c !! 341 qos_tid = ieee80211_get_tid(hdr); >> 342 else >> 343 qos_tid = 0; 344 344 345 if (spp_amsdu) !! 345 /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC 346 qos_tid &= IEEE80211_Q !! 346 * mode authentication are not allowed to collide, yet both are derived 347 IEEE80211_Q !! 347 * from this vector b_0. We only set L := 1 here to indicate that the 348 else !! 348 * data size can be represented in (L+1) bytes. The CCM layer will take 349 qos_tid &= IEEE80211_Q !! 349 * care of storing the data length in the top (L+1) bytes and setting >> 350 * and clearing the other bits as is required to derive the two IVs. >> 351 */ >> 352 b_0[0] = 0x1; 350 353 351 mask_fc &= ~cpu_to_le16(IEEE80 !! 354 /* Nonce: Nonce Flags | A2 | PN 352 len_a += 2; !! 355 * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7) 353 } else { !! 356 */ 354 qos_tid = 0; !! 357 b_0[1] = qos_tid | (mgmt << 4); 355 } !! 358 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); >> 359 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN); 356 360 357 /* AAD (extra authenticate-only data) 361 /* AAD (extra authenticate-only data) / masked 802.11 header 358 * FC | A1 | A2 | A3 | SC | [A4] | [QC 362 * FC | A1 | A2 | A3 | SC | [A4] | [QC] */ 359 put_unaligned_be16(len_a, &aad[0]); 363 put_unaligned_be16(len_a, &aad[0]); 360 put_unaligned(mask_fc, (__le16 *)&aad[ 364 put_unaligned(mask_fc, (__le16 *)&aad[2]); 361 memcpy(&aad[4], &hdr->addrs, 3 * ETH_A !! 365 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); 362 366 363 /* Mask Seq#, leave Frag# */ 367 /* Mask Seq#, leave Frag# */ 364 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0 368 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f; 365 aad[23] = 0; 369 aad[23] = 0; 366 370 367 if (a4_included) { 371 if (a4_included) { 368 memcpy(&aad[24], hdr->addr4, E 372 memcpy(&aad[24], hdr->addr4, ETH_ALEN); 369 aad[30] = qos_tid; 373 aad[30] = qos_tid; 370 aad[31] = 0; 374 aad[31] = 0; 371 } else { 375 } else { 372 memset(&aad[24], 0, ETH_ALEN + 376 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); 373 aad[24] = qos_tid; 377 aad[24] = qos_tid; 374 } 378 } 375 << 376 return qos_tid; << 377 } 379 } 378 380 379 static void ccmp_special_blocks(struct sk_buff << 380 bool spp_amsdu << 381 { << 382 struct ieee80211_hdr *hdr = (struct ie << 383 u8 qos_tid = ccmp_gcmp_aad(skb, aad, s << 384 << 385 /* In CCM, the initial vectors (IV) us << 386 * mode authentication are not allowed << 387 * from this vector b_0. We only set L << 388 * data size can be represented in (L+ << 389 * care of storing the data length in << 390 * and clearing the other bits as is r << 391 */ << 392 b_0[0] = 0x1; << 393 << 394 /* Nonce: Nonce Flags | A2 | PN << 395 * Nonce Flags: Priority (b0..b3) | Ma << 396 */ << 397 b_0[1] = qos_tid | (ieee80211_is_mgmt( << 398 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); << 399 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_ << 400 } << 401 381 402 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn 382 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id) 403 { 383 { 404 hdr[0] = pn[5]; 384 hdr[0] = pn[5]; 405 hdr[1] = pn[4]; 385 hdr[1] = pn[4]; 406 hdr[2] = 0; 386 hdr[2] = 0; 407 hdr[3] = 0x20 | (key_id << 6); 387 hdr[3] = 0x20 | (key_id << 6); 408 hdr[4] = pn[3]; 388 hdr[4] = pn[3]; 409 hdr[5] = pn[2]; 389 hdr[5] = pn[2]; 410 hdr[6] = pn[1]; 390 hdr[6] = pn[1]; 411 hdr[7] = pn[0]; 391 hdr[7] = pn[0]; 412 } 392 } 413 393 414 394 415 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr 395 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr) 416 { 396 { 417 pn[0] = hdr[7]; 397 pn[0] = hdr[7]; 418 pn[1] = hdr[6]; 398 pn[1] = hdr[6]; 419 pn[2] = hdr[5]; 399 pn[2] = hdr[5]; 420 pn[3] = hdr[4]; 400 pn[3] = hdr[4]; 421 pn[4] = hdr[1]; 401 pn[4] = hdr[1]; 422 pn[5] = hdr[0]; 402 pn[5] = hdr[0]; 423 } 403 } 424 404 425 405 426 static int ccmp_encrypt_skb(struct ieee80211_t 406 static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb, 427 unsigned int mic_l 407 unsigned int mic_len) 428 { 408 { 429 struct ieee80211_hdr *hdr = (struct ie 409 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 430 struct ieee80211_key *key = tx->key; 410 struct ieee80211_key *key = tx->key; 431 struct ieee80211_tx_info *info = IEEE8 411 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 432 int hdrlen, len, tail; 412 int hdrlen, len, tail; 433 u8 *pos; 413 u8 *pos; 434 u8 pn[6]; 414 u8 pn[6]; 435 u64 pn64; 415 u64 pn64; 436 u8 aad[CCM_AAD_LEN]; 416 u8 aad[CCM_AAD_LEN]; 437 u8 b_0[AES_BLOCK_SIZE]; 417 u8 b_0[AES_BLOCK_SIZE]; 438 418 439 if (info->control.hw_key && 419 if (info->control.hw_key && 440 !(info->control.hw_key->flags & IE 420 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 441 !(info->control.hw_key->flags & IE 421 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 442 !((info->control.hw_key->flags & 422 !((info->control.hw_key->flags & 443 IEEE80211_KEY_FLAG_GENERATE_IV_ 423 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 444 ieee80211_is_mgmt(hdr->frame_con 424 ieee80211_is_mgmt(hdr->frame_control))) { 445 /* 425 /* 446 * hwaccel has no need for pre 426 * hwaccel has no need for preallocated room for CCMP 447 * header or MIC fields 427 * header or MIC fields 448 */ 428 */ 449 return 0; 429 return 0; 450 } 430 } 451 431 452 hdrlen = ieee80211_hdrlen(hdr->frame_c 432 hdrlen = ieee80211_hdrlen(hdr->frame_control); 453 len = skb->len - hdrlen; 433 len = skb->len - hdrlen; 454 434 455 if (info->control.hw_key) 435 if (info->control.hw_key) 456 tail = 0; 436 tail = 0; 457 else 437 else 458 tail = mic_len; 438 tail = mic_len; 459 439 460 if (WARN_ON(skb_tailroom(skb) < tail | 440 if (WARN_ON(skb_tailroom(skb) < tail || 461 skb_headroom(skb) < IEEE80 441 skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN)) 462 return -1; 442 return -1; 463 443 464 pos = skb_push(skb, IEEE80211_CCMP_HDR 444 pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN); 465 memmove(pos, pos + IEEE80211_CCMP_HDR_ 445 memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen); 466 446 467 /* the HW only needs room for the IV, 447 /* the HW only needs room for the IV, but not the actual IV */ 468 if (info->control.hw_key && 448 if (info->control.hw_key && 469 (info->control.hw_key->flags & IEE 449 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 470 return 0; 450 return 0; 471 451 >> 452 hdr = (struct ieee80211_hdr *) pos; 472 pos += hdrlen; 453 pos += hdrlen; 473 454 474 pn64 = atomic64_inc_return(&key->conf. 455 pn64 = atomic64_inc_return(&key->conf.tx_pn); 475 456 476 pn[5] = pn64; 457 pn[5] = pn64; 477 pn[4] = pn64 >> 8; 458 pn[4] = pn64 >> 8; 478 pn[3] = pn64 >> 16; 459 pn[3] = pn64 >> 16; 479 pn[2] = pn64 >> 24; 460 pn[2] = pn64 >> 24; 480 pn[1] = pn64 >> 32; 461 pn[1] = pn64 >> 32; 481 pn[0] = pn64 >> 40; 462 pn[0] = pn64 >> 40; 482 463 483 ccmp_pn2hdr(pos, pn, key->conf.keyidx) 464 ccmp_pn2hdr(pos, pn, key->conf.keyidx); 484 465 485 /* hwaccel - with software CCMP header 466 /* hwaccel - with software CCMP header */ 486 if (info->control.hw_key) 467 if (info->control.hw_key) 487 return 0; 468 return 0; 488 469 489 pos += IEEE80211_CCMP_HDR_LEN; 470 pos += IEEE80211_CCMP_HDR_LEN; 490 ccmp_special_blocks(skb, pn, b_0, aad, !! 471 ccmp_special_blocks(skb, pn, b_0, aad); 491 key->conf.flags & << 492 return ieee80211_aes_ccm_encrypt(key-> 472 return ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len, 493 skb_p 473 skb_put(skb, mic_len)); 494 } 474 } 495 475 496 476 497 ieee80211_tx_result 477 ieee80211_tx_result 498 ieee80211_crypto_ccmp_encrypt(struct ieee80211 478 ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx, 499 unsigned int mic 479 unsigned int mic_len) 500 { 480 { 501 struct sk_buff *skb; 481 struct sk_buff *skb; 502 482 503 ieee80211_tx_set_protected(tx); 483 ieee80211_tx_set_protected(tx); 504 484 505 skb_queue_walk(&tx->skbs, skb) { 485 skb_queue_walk(&tx->skbs, skb) { 506 if (ccmp_encrypt_skb(tx, skb, 486 if (ccmp_encrypt_skb(tx, skb, mic_len) < 0) 507 return TX_DROP; 487 return TX_DROP; 508 } 488 } 509 489 510 return TX_CONTINUE; 490 return TX_CONTINUE; 511 } 491 } 512 492 513 493 514 ieee80211_rx_result 494 ieee80211_rx_result 515 ieee80211_crypto_ccmp_decrypt(struct ieee80211 495 ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx, 516 unsigned int mic 496 unsigned int mic_len) 517 { 497 { 518 struct ieee80211_hdr *hdr = (struct ie 498 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 519 int hdrlen; 499 int hdrlen; 520 struct ieee80211_key *key = rx->key; 500 struct ieee80211_key *key = rx->key; 521 struct sk_buff *skb = rx->skb; 501 struct sk_buff *skb = rx->skb; 522 struct ieee80211_rx_status *status = I 502 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 523 u8 pn[IEEE80211_CCMP_PN_LEN]; 503 u8 pn[IEEE80211_CCMP_PN_LEN]; 524 int data_len; 504 int data_len; 525 int queue; 505 int queue; 526 506 527 hdrlen = ieee80211_hdrlen(hdr->frame_c 507 hdrlen = ieee80211_hdrlen(hdr->frame_control); 528 508 529 if (!ieee80211_is_data(hdr->frame_cont 509 if (!ieee80211_is_data(hdr->frame_control) && 530 !ieee80211_is_robust_mgmt_frame(sk 510 !ieee80211_is_robust_mgmt_frame(skb)) 531 return RX_CONTINUE; 511 return RX_CONTINUE; 532 512 533 if (status->flag & RX_FLAG_DECRYPTED) 513 if (status->flag & RX_FLAG_DECRYPTED) { 534 if (!pskb_may_pull(rx->skb, hd 514 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN)) 535 return RX_DROP_U_SHORT !! 515 return RX_DROP_UNUSABLE; 536 if (status->flag & RX_FLAG_MIC 516 if (status->flag & RX_FLAG_MIC_STRIPPED) 537 mic_len = 0; 517 mic_len = 0; 538 } else { 518 } else { 539 if (skb_linearize(rx->skb)) 519 if (skb_linearize(rx->skb)) 540 return RX_DROP_U_OOM; !! 520 return RX_DROP_UNUSABLE; 541 } 521 } 542 522 543 /* reload hdr - skb might have been re << 544 hdr = (void *)rx->skb->data; << 545 << 546 data_len = skb->len - hdrlen - IEEE802 523 data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len; 547 if (!rx->sta || data_len < 0) 524 if (!rx->sta || data_len < 0) 548 return RX_DROP_U_SHORT_CCMP; !! 525 return RX_DROP_UNUSABLE; 549 526 550 if (!(status->flag & RX_FLAG_PN_VALIDA 527 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 551 int res; 528 int res; 552 529 553 ccmp_hdr2pn(pn, skb->data + hd 530 ccmp_hdr2pn(pn, skb->data + hdrlen); 554 531 555 queue = rx->security_idx; 532 queue = rx->security_idx; 556 533 557 res = memcmp(pn, key->u.ccmp.r 534 res = memcmp(pn, key->u.ccmp.rx_pn[queue], 558 IEEE80211_CCMP_PN 535 IEEE80211_CCMP_PN_LEN); 559 if (res < 0 || 536 if (res < 0 || 560 (!res && !(status->flag & 537 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 561 key->u.ccmp.replays++; 538 key->u.ccmp.replays++; 562 return RX_DROP_U_REPLA !! 539 return RX_DROP_UNUSABLE; 563 } 540 } 564 541 565 if (!(status->flag & RX_FLAG_D 542 if (!(status->flag & RX_FLAG_DECRYPTED)) { 566 u8 aad[2 * AES_BLOCK_S 543 u8 aad[2 * AES_BLOCK_SIZE]; 567 u8 b_0[AES_BLOCK_SIZE] 544 u8 b_0[AES_BLOCK_SIZE]; 568 /* hardware didn't dec 545 /* hardware didn't decrypt/verify MIC */ 569 ccmp_special_blocks(sk !! 546 ccmp_special_blocks(skb, pn, b_0, aad); 570 ke << 571 547 572 if (ieee80211_aes_ccm_ 548 if (ieee80211_aes_ccm_decrypt( 573 key->u.ccm 549 key->u.ccmp.tfm, b_0, aad, 574 skb->data 550 skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN, 575 data_len, 551 data_len, 576 skb->data 552 skb->data + skb->len - mic_len)) 577 return RX_DROP !! 553 return RX_DROP_UNUSABLE; 578 } 554 } 579 555 580 memcpy(key->u.ccmp.rx_pn[queue 556 memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN); 581 if (unlikely(ieee80211_is_frag 557 if (unlikely(ieee80211_is_frag(hdr))) 582 memcpy(rx->ccm_gcm.pn, 558 memcpy(rx->ccm_gcm.pn, pn, IEEE80211_CCMP_PN_LEN); 583 } 559 } 584 560 585 /* Remove CCMP header and MIC */ 561 /* Remove CCMP header and MIC */ 586 if (pskb_trim(skb, skb->len - mic_len) 562 if (pskb_trim(skb, skb->len - mic_len)) 587 return RX_DROP_U_SHORT_CCMP_MI !! 563 return RX_DROP_UNUSABLE; 588 memmove(skb->data + IEEE80211_CCMP_HDR 564 memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen); 589 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 565 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 590 566 591 return RX_CONTINUE; 567 return RX_CONTINUE; 592 } 568 } 593 569 594 static void gcmp_special_blocks(struct sk_buff !! 570 static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad) 595 bool spp_amsdu << 596 { 571 { 597 struct ieee80211_hdr *hdr = (void *)sk !! 572 __le16 mask_fc; >> 573 u8 qos_tid; >> 574 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 598 575 599 memcpy(j_0, hdr->addr2, ETH_ALEN); 576 memcpy(j_0, hdr->addr2, ETH_ALEN); 600 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_G 577 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN); 601 j_0[13] = 0; 578 j_0[13] = 0; 602 j_0[14] = 0; 579 j_0[14] = 0; 603 j_0[AES_BLOCK_SIZE - 1] = 0x01; 580 j_0[AES_BLOCK_SIZE - 1] = 0x01; 604 581 605 ccmp_gcmp_aad(skb, aad, spp_amsdu); !! 582 /* AAD (extra authenticate-only data) / masked 802.11 header >> 583 * FC | A1 | A2 | A3 | SC | [A4] | [QC] >> 584 */ >> 585 put_unaligned_be16(ieee80211_hdrlen(hdr->frame_control) - 2, &aad[0]); >> 586 /* Mask FC: zero subtype b4 b5 b6 (if not mgmt) >> 587 * Retry, PwrMgt, MoreData; set Protected >> 588 */ >> 589 mask_fc = hdr->frame_control; >> 590 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | >> 591 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); >> 592 if (!ieee80211_is_mgmt(hdr->frame_control)) >> 593 mask_fc &= ~cpu_to_le16(0x0070); >> 594 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); >> 595 >> 596 put_unaligned(mask_fc, (__le16 *)&aad[2]); >> 597 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); >> 598 >> 599 /* Mask Seq#, leave Frag# */ >> 600 aad[22] = *((u8 *)&hdr->seq_ctrl) & 0x0f; >> 601 aad[23] = 0; >> 602 >> 603 if (ieee80211_is_data_qos(hdr->frame_control)) >> 604 qos_tid = ieee80211_get_tid(hdr); >> 605 else >> 606 qos_tid = 0; >> 607 >> 608 if (ieee80211_has_a4(hdr->frame_control)) { >> 609 memcpy(&aad[24], hdr->addr4, ETH_ALEN); >> 610 aad[30] = qos_tid; >> 611 aad[31] = 0; >> 612 } else { >> 613 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); >> 614 aad[24] = qos_tid; >> 615 } 606 } 616 } 607 617 608 static inline void gcmp_pn2hdr(u8 *hdr, const 618 static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id) 609 { 619 { 610 hdr[0] = pn[5]; 620 hdr[0] = pn[5]; 611 hdr[1] = pn[4]; 621 hdr[1] = pn[4]; 612 hdr[2] = 0; 622 hdr[2] = 0; 613 hdr[3] = 0x20 | (key_id << 6); 623 hdr[3] = 0x20 | (key_id << 6); 614 hdr[4] = pn[3]; 624 hdr[4] = pn[3]; 615 hdr[5] = pn[2]; 625 hdr[5] = pn[2]; 616 hdr[6] = pn[1]; 626 hdr[6] = pn[1]; 617 hdr[7] = pn[0]; 627 hdr[7] = pn[0]; 618 } 628 } 619 629 620 static inline void gcmp_hdr2pn(u8 *pn, const u 630 static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr) 621 { 631 { 622 pn[0] = hdr[7]; 632 pn[0] = hdr[7]; 623 pn[1] = hdr[6]; 633 pn[1] = hdr[6]; 624 pn[2] = hdr[5]; 634 pn[2] = hdr[5]; 625 pn[3] = hdr[4]; 635 pn[3] = hdr[4]; 626 pn[4] = hdr[1]; 636 pn[4] = hdr[1]; 627 pn[5] = hdr[0]; 637 pn[5] = hdr[0]; 628 } 638 } 629 639 630 static int gcmp_encrypt_skb(struct ieee80211_t 640 static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 631 { 641 { 632 struct ieee80211_hdr *hdr = (struct ie 642 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 633 struct ieee80211_key *key = tx->key; 643 struct ieee80211_key *key = tx->key; 634 struct ieee80211_tx_info *info = IEEE8 644 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 635 int hdrlen, len, tail; 645 int hdrlen, len, tail; 636 u8 *pos; 646 u8 *pos; 637 u8 pn[6]; 647 u8 pn[6]; 638 u64 pn64; 648 u64 pn64; 639 u8 aad[GCM_AAD_LEN]; 649 u8 aad[GCM_AAD_LEN]; 640 u8 j_0[AES_BLOCK_SIZE]; 650 u8 j_0[AES_BLOCK_SIZE]; 641 651 642 if (info->control.hw_key && 652 if (info->control.hw_key && 643 !(info->control.hw_key->flags & IE 653 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 644 !(info->control.hw_key->flags & IE 654 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 645 !((info->control.hw_key->flags & 655 !((info->control.hw_key->flags & 646 IEEE80211_KEY_FLAG_GENERATE_IV_ 656 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 647 ieee80211_is_mgmt(hdr->frame_con 657 ieee80211_is_mgmt(hdr->frame_control))) { 648 /* hwaccel has no need for pre 658 /* hwaccel has no need for preallocated room for GCMP 649 * header or MIC fields 659 * header or MIC fields 650 */ 660 */ 651 return 0; 661 return 0; 652 } 662 } 653 663 654 hdrlen = ieee80211_hdrlen(hdr->frame_c 664 hdrlen = ieee80211_hdrlen(hdr->frame_control); 655 len = skb->len - hdrlen; 665 len = skb->len - hdrlen; 656 666 657 if (info->control.hw_key) 667 if (info->control.hw_key) 658 tail = 0; 668 tail = 0; 659 else 669 else 660 tail = IEEE80211_GCMP_MIC_LEN; 670 tail = IEEE80211_GCMP_MIC_LEN; 661 671 662 if (WARN_ON(skb_tailroom(skb) < tail | 672 if (WARN_ON(skb_tailroom(skb) < tail || 663 skb_headroom(skb) < IEEE80 673 skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN)) 664 return -1; 674 return -1; 665 675 666 pos = skb_push(skb, IEEE80211_GCMP_HDR 676 pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN); 667 memmove(pos, pos + IEEE80211_GCMP_HDR_ 677 memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen); 668 skb_set_network_header(skb, skb_networ 678 skb_set_network_header(skb, skb_network_offset(skb) + 669 IEEE80211_ 679 IEEE80211_GCMP_HDR_LEN); 670 680 671 /* the HW only needs room for the IV, 681 /* the HW only needs room for the IV, but not the actual IV */ 672 if (info->control.hw_key && 682 if (info->control.hw_key && 673 (info->control.hw_key->flags & IEE 683 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 674 return 0; 684 return 0; 675 685 >> 686 hdr = (struct ieee80211_hdr *)pos; 676 pos += hdrlen; 687 pos += hdrlen; 677 688 678 pn64 = atomic64_inc_return(&key->conf. 689 pn64 = atomic64_inc_return(&key->conf.tx_pn); 679 690 680 pn[5] = pn64; 691 pn[5] = pn64; 681 pn[4] = pn64 >> 8; 692 pn[4] = pn64 >> 8; 682 pn[3] = pn64 >> 16; 693 pn[3] = pn64 >> 16; 683 pn[2] = pn64 >> 24; 694 pn[2] = pn64 >> 24; 684 pn[1] = pn64 >> 32; 695 pn[1] = pn64 >> 32; 685 pn[0] = pn64 >> 40; 696 pn[0] = pn64 >> 40; 686 697 687 gcmp_pn2hdr(pos, pn, key->conf.keyidx) 698 gcmp_pn2hdr(pos, pn, key->conf.keyidx); 688 699 689 /* hwaccel - with software GCMP header 700 /* hwaccel - with software GCMP header */ 690 if (info->control.hw_key) 701 if (info->control.hw_key) 691 return 0; 702 return 0; 692 703 693 pos += IEEE80211_GCMP_HDR_LEN; 704 pos += IEEE80211_GCMP_HDR_LEN; 694 gcmp_special_blocks(skb, pn, j_0, aad, !! 705 gcmp_special_blocks(skb, pn, j_0, aad); 695 key->conf.flags & << 696 return ieee80211_aes_gcm_encrypt(key-> 706 return ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len, 697 skb_p 707 skb_put(skb, IEEE80211_GCMP_MIC_LEN)); 698 } 708 } 699 709 700 ieee80211_tx_result 710 ieee80211_tx_result 701 ieee80211_crypto_gcmp_encrypt(struct ieee80211 711 ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx) 702 { 712 { 703 struct sk_buff *skb; 713 struct sk_buff *skb; 704 714 705 ieee80211_tx_set_protected(tx); 715 ieee80211_tx_set_protected(tx); 706 716 707 skb_queue_walk(&tx->skbs, skb) { 717 skb_queue_walk(&tx->skbs, skb) { 708 if (gcmp_encrypt_skb(tx, skb) 718 if (gcmp_encrypt_skb(tx, skb) < 0) 709 return TX_DROP; 719 return TX_DROP; 710 } 720 } 711 721 712 return TX_CONTINUE; 722 return TX_CONTINUE; 713 } 723 } 714 724 715 ieee80211_rx_result 725 ieee80211_rx_result 716 ieee80211_crypto_gcmp_decrypt(struct ieee80211 726 ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx) 717 { 727 { 718 struct ieee80211_hdr *hdr = (struct ie 728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 719 int hdrlen; 729 int hdrlen; 720 struct ieee80211_key *key = rx->key; 730 struct ieee80211_key *key = rx->key; 721 struct sk_buff *skb = rx->skb; 731 struct sk_buff *skb = rx->skb; 722 struct ieee80211_rx_status *status = I 732 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 723 u8 pn[IEEE80211_GCMP_PN_LEN]; 733 u8 pn[IEEE80211_GCMP_PN_LEN]; 724 int data_len, queue, mic_len = IEEE802 734 int data_len, queue, mic_len = IEEE80211_GCMP_MIC_LEN; 725 735 726 hdrlen = ieee80211_hdrlen(hdr->frame_c 736 hdrlen = ieee80211_hdrlen(hdr->frame_control); 727 737 728 if (!ieee80211_is_data(hdr->frame_cont 738 if (!ieee80211_is_data(hdr->frame_control) && 729 !ieee80211_is_robust_mgmt_frame(sk 739 !ieee80211_is_robust_mgmt_frame(skb)) 730 return RX_CONTINUE; 740 return RX_CONTINUE; 731 741 732 if (status->flag & RX_FLAG_DECRYPTED) 742 if (status->flag & RX_FLAG_DECRYPTED) { 733 if (!pskb_may_pull(rx->skb, hd 743 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN)) 734 return RX_DROP_U_SHORT !! 744 return RX_DROP_UNUSABLE; 735 if (status->flag & RX_FLAG_MIC 745 if (status->flag & RX_FLAG_MIC_STRIPPED) 736 mic_len = 0; 746 mic_len = 0; 737 } else { 747 } else { 738 if (skb_linearize(rx->skb)) 748 if (skb_linearize(rx->skb)) 739 return RX_DROP_U_OOM; !! 749 return RX_DROP_UNUSABLE; 740 } 750 } 741 751 742 /* reload hdr - skb might have been re << 743 hdr = (void *)rx->skb->data; << 744 << 745 data_len = skb->len - hdrlen - IEEE802 752 data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN - mic_len; 746 if (!rx->sta || data_len < 0) 753 if (!rx->sta || data_len < 0) 747 return RX_DROP_U_SHORT_GCMP; !! 754 return RX_DROP_UNUSABLE; 748 755 749 if (!(status->flag & RX_FLAG_PN_VALIDA 756 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 750 int res; 757 int res; 751 758 752 gcmp_hdr2pn(pn, skb->data + hd 759 gcmp_hdr2pn(pn, skb->data + hdrlen); 753 760 754 queue = rx->security_idx; 761 queue = rx->security_idx; 755 762 756 res = memcmp(pn, key->u.gcmp.r 763 res = memcmp(pn, key->u.gcmp.rx_pn[queue], 757 IEEE80211_GCMP_PN 764 IEEE80211_GCMP_PN_LEN); 758 if (res < 0 || 765 if (res < 0 || 759 (!res && !(status->flag & 766 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 760 key->u.gcmp.replays++; 767 key->u.gcmp.replays++; 761 return RX_DROP_U_REPLA !! 768 return RX_DROP_UNUSABLE; 762 } 769 } 763 770 764 if (!(status->flag & RX_FLAG_D 771 if (!(status->flag & RX_FLAG_DECRYPTED)) { 765 u8 aad[2 * AES_BLOCK_S 772 u8 aad[2 * AES_BLOCK_SIZE]; 766 u8 j_0[AES_BLOCK_SIZE] 773 u8 j_0[AES_BLOCK_SIZE]; 767 /* hardware didn't dec 774 /* hardware didn't decrypt/verify MIC */ 768 gcmp_special_blocks(sk !! 775 gcmp_special_blocks(skb, pn, j_0, aad); 769 ke << 770 776 771 if (ieee80211_aes_gcm_ 777 if (ieee80211_aes_gcm_decrypt( 772 key->u.gcm 778 key->u.gcmp.tfm, j_0, aad, 773 skb->data 779 skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN, 774 data_len, 780 data_len, 775 skb->data 781 skb->data + skb->len - 776 IEEE80211_ 782 IEEE80211_GCMP_MIC_LEN)) 777 return RX_DROP !! 783 return RX_DROP_UNUSABLE; 778 } 784 } 779 785 780 memcpy(key->u.gcmp.rx_pn[queue 786 memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN); 781 if (unlikely(ieee80211_is_frag 787 if (unlikely(ieee80211_is_frag(hdr))) 782 memcpy(rx->ccm_gcm.pn, 788 memcpy(rx->ccm_gcm.pn, pn, IEEE80211_CCMP_PN_LEN); 783 } 789 } 784 790 785 /* Remove GCMP header and MIC */ 791 /* Remove GCMP header and MIC */ 786 if (pskb_trim(skb, skb->len - mic_len) 792 if (pskb_trim(skb, skb->len - mic_len)) 787 return RX_DROP_U_SHORT_GCMP_MI !! 793 return RX_DROP_UNUSABLE; 788 memmove(skb->data + IEEE80211_GCMP_HDR 794 memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen); 789 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 795 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 790 796 791 return RX_CONTINUE; 797 return RX_CONTINUE; 792 } 798 } 793 799 >> 800 static ieee80211_tx_result >> 801 ieee80211_crypto_cs_encrypt(struct ieee80211_tx_data *tx, >> 802 struct sk_buff *skb) >> 803 { >> 804 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; >> 805 struct ieee80211_key *key = tx->key; >> 806 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); >> 807 int hdrlen; >> 808 u8 *pos, iv_len = key->conf.iv_len; >> 809 >> 810 if (info->control.hw_key && >> 811 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { >> 812 /* hwaccel has no need for preallocated head room */ >> 813 return TX_CONTINUE; >> 814 } >> 815 >> 816 if (unlikely(skb_headroom(skb) < iv_len && >> 817 pskb_expand_head(skb, iv_len, 0, GFP_ATOMIC))) >> 818 return TX_DROP; >> 819 >> 820 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 821 >> 822 pos = skb_push(skb, iv_len); >> 823 memmove(pos, pos + iv_len, hdrlen); >> 824 >> 825 return TX_CONTINUE; >> 826 } >> 827 >> 828 static inline int ieee80211_crypto_cs_pn_compare(u8 *pn1, u8 *pn2, int len) >> 829 { >> 830 int i; >> 831 >> 832 /* pn is little endian */ >> 833 for (i = len - 1; i >= 0; i--) { >> 834 if (pn1[i] < pn2[i]) >> 835 return -1; >> 836 else if (pn1[i] > pn2[i]) >> 837 return 1; >> 838 } >> 839 >> 840 return 0; >> 841 } >> 842 >> 843 static ieee80211_rx_result >> 844 ieee80211_crypto_cs_decrypt(struct ieee80211_rx_data *rx) >> 845 { >> 846 struct ieee80211_key *key = rx->key; >> 847 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; >> 848 const struct ieee80211_cipher_scheme *cs = NULL; >> 849 int hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 850 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); >> 851 int data_len; >> 852 u8 *rx_pn; >> 853 u8 *skb_pn; >> 854 u8 qos_tid; >> 855 >> 856 if (!rx->sta || !rx->sta->cipher_scheme || >> 857 !(status->flag & RX_FLAG_DECRYPTED)) >> 858 return RX_DROP_UNUSABLE; >> 859 >> 860 if (!ieee80211_is_data(hdr->frame_control)) >> 861 return RX_CONTINUE; >> 862 >> 863 cs = rx->sta->cipher_scheme; >> 864 >> 865 data_len = rx->skb->len - hdrlen - cs->hdr_len; >> 866 >> 867 if (data_len < 0) >> 868 return RX_DROP_UNUSABLE; >> 869 >> 870 if (ieee80211_is_data_qos(hdr->frame_control)) >> 871 qos_tid = ieee80211_get_tid(hdr); >> 872 else >> 873 qos_tid = 0; >> 874 >> 875 if (skb_linearize(rx->skb)) >> 876 return RX_DROP_UNUSABLE; >> 877 >> 878 hdr = (struct ieee80211_hdr *)rx->skb->data; >> 879 >> 880 rx_pn = key->u.gen.rx_pn[qos_tid]; >> 881 skb_pn = rx->skb->data + hdrlen + cs->pn_off; >> 882 >> 883 if (ieee80211_crypto_cs_pn_compare(skb_pn, rx_pn, cs->pn_len) <= 0) >> 884 return RX_DROP_UNUSABLE; >> 885 >> 886 memcpy(rx_pn, skb_pn, cs->pn_len); >> 887 >> 888 /* remove security header and MIC */ >> 889 if (pskb_trim(rx->skb, rx->skb->len - cs->mic_len)) >> 890 return RX_DROP_UNUSABLE; >> 891 >> 892 memmove(rx->skb->data + cs->hdr_len, rx->skb->data, hdrlen); >> 893 skb_pull(rx->skb, cs->hdr_len); >> 894 >> 895 return RX_CONTINUE; >> 896 } >> 897 794 static void bip_aad(struct sk_buff *skb, u8 *a 898 static void bip_aad(struct sk_buff *skb, u8 *aad) 795 { 899 { 796 __le16 mask_fc; 900 __le16 mask_fc; 797 struct ieee80211_hdr *hdr = (struct ie 901 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 798 902 799 /* BIP AAD: FC(masked) || A1 || A2 || 903 /* BIP AAD: FC(masked) || A1 || A2 || A3 */ 800 904 801 /* FC type/subtype */ 905 /* FC type/subtype */ 802 /* Mask FC Retry, PwrMgt, MoreData fla 906 /* Mask FC Retry, PwrMgt, MoreData flags to zero */ 803 mask_fc = hdr->frame_control; 907 mask_fc = hdr->frame_control; 804 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 908 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM | 805 IEEE80211_FCTL 909 IEEE80211_FCTL_MOREDATA); 806 put_unaligned(mask_fc, (__le16 *) &aad 910 put_unaligned(mask_fc, (__le16 *) &aad[0]); 807 /* A1 || A2 || A3 */ 911 /* A1 || A2 || A3 */ 808 memcpy(aad + 2, &hdr->addrs, 3 * ETH_A !! 912 memcpy(aad + 2, &hdr->addr1, 3 * ETH_ALEN); 809 } 913 } 810 914 811 915 812 static inline void bip_ipn_set64(u8 *d, u64 pn 916 static inline void bip_ipn_set64(u8 *d, u64 pn) 813 { 917 { 814 *d++ = pn; 918 *d++ = pn; 815 *d++ = pn >> 8; 919 *d++ = pn >> 8; 816 *d++ = pn >> 16; 920 *d++ = pn >> 16; 817 *d++ = pn >> 24; 921 *d++ = pn >> 24; 818 *d++ = pn >> 32; 922 *d++ = pn >> 32; 819 *d = pn >> 40; 923 *d = pn >> 40; 820 } 924 } 821 925 822 static inline void bip_ipn_swap(u8 *d, const u 926 static inline void bip_ipn_swap(u8 *d, const u8 *s) 823 { 927 { 824 *d++ = s[5]; 928 *d++ = s[5]; 825 *d++ = s[4]; 929 *d++ = s[4]; 826 *d++ = s[3]; 930 *d++ = s[3]; 827 *d++ = s[2]; 931 *d++ = s[2]; 828 *d++ = s[1]; 932 *d++ = s[1]; 829 *d = s[0]; 933 *d = s[0]; 830 } 934 } 831 935 832 936 833 ieee80211_tx_result 937 ieee80211_tx_result 834 ieee80211_crypto_aes_cmac_encrypt(struct ieee8 938 ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx) 835 { 939 { 836 struct sk_buff *skb; 940 struct sk_buff *skb; 837 struct ieee80211_tx_info *info; 941 struct ieee80211_tx_info *info; 838 struct ieee80211_key *key = tx->key; 942 struct ieee80211_key *key = tx->key; 839 struct ieee80211_mmie *mmie; 943 struct ieee80211_mmie *mmie; 840 u8 aad[20]; 944 u8 aad[20]; 841 u64 pn64; 945 u64 pn64; 842 946 843 if (WARN_ON(skb_queue_len(&tx->skbs) ! 947 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 844 return TX_DROP; 948 return TX_DROP; 845 949 846 skb = skb_peek(&tx->skbs); 950 skb = skb_peek(&tx->skbs); 847 951 848 info = IEEE80211_SKB_CB(skb); 952 info = IEEE80211_SKB_CB(skb); 849 953 850 if (info->control.hw_key && 954 if (info->control.hw_key && 851 !(key->conf.flags & IEEE80211_KEY_ 955 !(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIE)) 852 return TX_CONTINUE; 956 return TX_CONTINUE; 853 957 854 if (WARN_ON(skb_tailroom(skb) < sizeof 958 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 855 return TX_DROP; 959 return TX_DROP; 856 960 857 mmie = skb_put(skb, sizeof(*mmie)); 961 mmie = skb_put(skb, sizeof(*mmie)); 858 mmie->element_id = WLAN_EID_MMIE; 962 mmie->element_id = WLAN_EID_MMIE; 859 mmie->length = sizeof(*mmie) - 2; 963 mmie->length = sizeof(*mmie) - 2; 860 mmie->key_id = cpu_to_le16(key->conf.k 964 mmie->key_id = cpu_to_le16(key->conf.keyidx); 861 965 862 /* PN = PN + 1 */ 966 /* PN = PN + 1 */ 863 pn64 = atomic64_inc_return(&key->conf. 967 pn64 = atomic64_inc_return(&key->conf.tx_pn); 864 968 865 bip_ipn_set64(mmie->sequence_number, p 969 bip_ipn_set64(mmie->sequence_number, pn64); 866 970 867 if (info->control.hw_key) 971 if (info->control.hw_key) 868 return TX_CONTINUE; 972 return TX_CONTINUE; 869 973 870 bip_aad(skb, aad); 974 bip_aad(skb, aad); 871 975 872 /* 976 /* 873 * MIC = AES-128-CMAC(IGTK, AAD || Man 977 * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64) 874 */ 978 */ 875 ieee80211_aes_cmac(key->u.aes_cmac.tfm 979 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 876 skb->data + 24, skb 980 skb->data + 24, skb->len - 24, mmie->mic); 877 981 878 return TX_CONTINUE; 982 return TX_CONTINUE; 879 } 983 } 880 984 881 ieee80211_tx_result 985 ieee80211_tx_result 882 ieee80211_crypto_aes_cmac_256_encrypt(struct i 986 ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx) 883 { 987 { 884 struct sk_buff *skb; 988 struct sk_buff *skb; 885 struct ieee80211_tx_info *info; 989 struct ieee80211_tx_info *info; 886 struct ieee80211_key *key = tx->key; 990 struct ieee80211_key *key = tx->key; 887 struct ieee80211_mmie_16 *mmie; 991 struct ieee80211_mmie_16 *mmie; 888 u8 aad[20]; 992 u8 aad[20]; 889 u64 pn64; 993 u64 pn64; 890 994 891 if (WARN_ON(skb_queue_len(&tx->skbs) ! 995 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 892 return TX_DROP; 996 return TX_DROP; 893 997 894 skb = skb_peek(&tx->skbs); 998 skb = skb_peek(&tx->skbs); 895 999 896 info = IEEE80211_SKB_CB(skb); 1000 info = IEEE80211_SKB_CB(skb); 897 1001 898 if (info->control.hw_key && !! 1002 if (info->control.hw_key) 899 !(key->conf.flags & IEEE80211_KEY_ << 900 return TX_CONTINUE; 1003 return TX_CONTINUE; 901 1004 902 if (WARN_ON(skb_tailroom(skb) < sizeof 1005 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 903 return TX_DROP; 1006 return TX_DROP; 904 1007 905 mmie = skb_put(skb, sizeof(*mmie)); 1008 mmie = skb_put(skb, sizeof(*mmie)); 906 mmie->element_id = WLAN_EID_MMIE; 1009 mmie->element_id = WLAN_EID_MMIE; 907 mmie->length = sizeof(*mmie) - 2; 1010 mmie->length = sizeof(*mmie) - 2; 908 mmie->key_id = cpu_to_le16(key->conf.k 1011 mmie->key_id = cpu_to_le16(key->conf.keyidx); 909 1012 910 /* PN = PN + 1 */ 1013 /* PN = PN + 1 */ 911 pn64 = atomic64_inc_return(&key->conf. 1014 pn64 = atomic64_inc_return(&key->conf.tx_pn); 912 1015 913 bip_ipn_set64(mmie->sequence_number, p 1016 bip_ipn_set64(mmie->sequence_number, pn64); 914 1017 915 if (info->control.hw_key) << 916 return TX_CONTINUE; << 917 << 918 bip_aad(skb, aad); 1018 bip_aad(skb, aad); 919 1019 920 /* MIC = AES-256-CMAC(IGTK, AAD || Man 1020 /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128) 921 */ 1021 */ 922 ieee80211_aes_cmac_256(key->u.aes_cmac 1022 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 923 skb->data + 24, 1023 skb->data + 24, skb->len - 24, mmie->mic); 924 1024 925 return TX_CONTINUE; 1025 return TX_CONTINUE; 926 } 1026 } 927 1027 928 ieee80211_rx_result 1028 ieee80211_rx_result 929 ieee80211_crypto_aes_cmac_decrypt(struct ieee8 1029 ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx) 930 { 1030 { 931 struct sk_buff *skb = rx->skb; 1031 struct sk_buff *skb = rx->skb; 932 struct ieee80211_rx_status *status = I 1032 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 933 struct ieee80211_key *key = rx->key; 1033 struct ieee80211_key *key = rx->key; 934 struct ieee80211_mmie *mmie; 1034 struct ieee80211_mmie *mmie; 935 u8 aad[20], mic[8], ipn[6]; 1035 u8 aad[20], mic[8], ipn[6]; 936 struct ieee80211_hdr *hdr = (struct ie 1036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 937 1037 938 if (!ieee80211_is_mgmt(hdr->frame_cont 1038 if (!ieee80211_is_mgmt(hdr->frame_control)) 939 return RX_CONTINUE; 1039 return RX_CONTINUE; 940 1040 941 /* management frames are already linea 1041 /* management frames are already linear */ 942 1042 943 if (skb->len < 24 + sizeof(*mmie)) 1043 if (skb->len < 24 + sizeof(*mmie)) 944 return RX_DROP_U_SHORT_CMAC; !! 1044 return RX_DROP_UNUSABLE; 945 1045 946 mmie = (struct ieee80211_mmie *) 1046 mmie = (struct ieee80211_mmie *) 947 (skb->data + skb->len - sizeof 1047 (skb->data + skb->len - sizeof(*mmie)); 948 if (mmie->element_id != WLAN_EID_MMIE 1048 if (mmie->element_id != WLAN_EID_MMIE || 949 mmie->length != sizeof(*mmie) - 2) 1049 mmie->length != sizeof(*mmie) - 2) 950 return RX_DROP_U_BAD_MMIE; /* !! 1050 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 951 1051 952 bip_ipn_swap(ipn, mmie->sequence_numbe 1052 bip_ipn_swap(ipn, mmie->sequence_number); 953 1053 954 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 1054 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 955 key->u.aes_cmac.replays++; 1055 key->u.aes_cmac.replays++; 956 return RX_DROP_U_REPLAY; !! 1056 return RX_DROP_UNUSABLE; 957 } 1057 } 958 1058 959 if (!(status->flag & RX_FLAG_DECRYPTED 1059 if (!(status->flag & RX_FLAG_DECRYPTED)) { 960 /* hardware didn't decrypt/ver 1060 /* hardware didn't decrypt/verify MIC */ 961 bip_aad(skb, aad); 1061 bip_aad(skb, aad); 962 ieee80211_aes_cmac(key->u.aes_ 1062 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 963 skb->data + 1063 skb->data + 24, skb->len - 24, mic); 964 if (crypto_memneq(mic, mmie->m 1064 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 965 key->u.aes_cmac.icverr 1065 key->u.aes_cmac.icverrors++; 966 return RX_DROP_U_MIC_F !! 1066 return RX_DROP_UNUSABLE; 967 } 1067 } 968 } 1068 } 969 1069 970 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1070 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 971 1071 972 /* Remove MMIE */ 1072 /* Remove MMIE */ 973 skb_trim(skb, skb->len - sizeof(*mmie) 1073 skb_trim(skb, skb->len - sizeof(*mmie)); 974 1074 975 return RX_CONTINUE; 1075 return RX_CONTINUE; 976 } 1076 } 977 1077 978 ieee80211_rx_result 1078 ieee80211_rx_result 979 ieee80211_crypto_aes_cmac_256_decrypt(struct i 1079 ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx) 980 { 1080 { 981 struct sk_buff *skb = rx->skb; 1081 struct sk_buff *skb = rx->skb; 982 struct ieee80211_rx_status *status = I 1082 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 983 struct ieee80211_key *key = rx->key; 1083 struct ieee80211_key *key = rx->key; 984 struct ieee80211_mmie_16 *mmie; 1084 struct ieee80211_mmie_16 *mmie; 985 u8 aad[20], mic[16], ipn[6]; 1085 u8 aad[20], mic[16], ipn[6]; 986 struct ieee80211_hdr *hdr = (struct ie 1086 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 987 1087 988 if (!ieee80211_is_mgmt(hdr->frame_cont 1088 if (!ieee80211_is_mgmt(hdr->frame_control)) 989 return RX_CONTINUE; 1089 return RX_CONTINUE; 990 1090 991 /* management frames are already linea 1091 /* management frames are already linear */ 992 1092 993 if (skb->len < 24 + sizeof(*mmie)) 1093 if (skb->len < 24 + sizeof(*mmie)) 994 return RX_DROP_U_SHORT_CMAC256 !! 1094 return RX_DROP_UNUSABLE; 995 1095 996 mmie = (struct ieee80211_mmie_16 *) 1096 mmie = (struct ieee80211_mmie_16 *) 997 (skb->data + skb->len - sizeof 1097 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id != WLAN_EID_MMIE 1098 if (mmie->element_id != WLAN_EID_MMIE || 999 mmie->length != sizeof(*mmie) - 2) 1099 mmie->length != sizeof(*mmie) - 2) 1000 return RX_DROP_U_BAD_MMIE; /* !! 1100 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1001 1101 1002 bip_ipn_swap(ipn, mmie->sequence_numb 1102 bip_ipn_swap(ipn, mmie->sequence_number); 1003 1103 1004 if (memcmp(ipn, key->u.aes_cmac.rx_pn 1104 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 1005 key->u.aes_cmac.replays++; 1105 key->u.aes_cmac.replays++; 1006 return RX_DROP_U_REPLAY; !! 1106 return RX_DROP_UNUSABLE; 1007 } 1107 } 1008 1108 1009 if (!(status->flag & RX_FLAG_DECRYPTE 1109 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1010 /* hardware didn't decrypt/ve 1110 /* hardware didn't decrypt/verify MIC */ 1011 bip_aad(skb, aad); 1111 bip_aad(skb, aad); 1012 ieee80211_aes_cmac_256(key->u 1112 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 1013 skb->d 1113 skb->data + 24, skb->len - 24, mic); 1014 if (crypto_memneq(mic, mmie-> 1114 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1015 key->u.aes_cmac.icver 1115 key->u.aes_cmac.icverrors++; 1016 return RX_DROP_U_MIC_ !! 1116 return RX_DROP_UNUSABLE; 1017 } 1117 } 1018 } 1118 } 1019 1119 1020 memcpy(key->u.aes_cmac.rx_pn, ipn, 6) 1120 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1021 1121 1022 /* Remove MMIE */ 1122 /* Remove MMIE */ 1023 skb_trim(skb, skb->len - sizeof(*mmie 1123 skb_trim(skb, skb->len - sizeof(*mmie)); 1024 1124 1025 return RX_CONTINUE; 1125 return RX_CONTINUE; 1026 } 1126 } 1027 1127 1028 ieee80211_tx_result 1128 ieee80211_tx_result 1029 ieee80211_crypto_aes_gmac_encrypt(struct ieee 1129 ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx) 1030 { 1130 { 1031 struct sk_buff *skb; 1131 struct sk_buff *skb; 1032 struct ieee80211_tx_info *info; 1132 struct ieee80211_tx_info *info; 1033 struct ieee80211_key *key = tx->key; 1133 struct ieee80211_key *key = tx->key; 1034 struct ieee80211_mmie_16 *mmie; 1134 struct ieee80211_mmie_16 *mmie; 1035 struct ieee80211_hdr *hdr; 1135 struct ieee80211_hdr *hdr; 1036 u8 aad[GMAC_AAD_LEN]; 1136 u8 aad[GMAC_AAD_LEN]; 1037 u64 pn64; 1137 u64 pn64; 1038 u8 nonce[GMAC_NONCE_LEN]; 1138 u8 nonce[GMAC_NONCE_LEN]; 1039 1139 1040 if (WARN_ON(skb_queue_len(&tx->skbs) 1140 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 1041 return TX_DROP; 1141 return TX_DROP; 1042 1142 1043 skb = skb_peek(&tx->skbs); 1143 skb = skb_peek(&tx->skbs); 1044 1144 1045 info = IEEE80211_SKB_CB(skb); 1145 info = IEEE80211_SKB_CB(skb); 1046 1146 1047 if (info->control.hw_key && !! 1147 if (info->control.hw_key) 1048 !(key->conf.flags & IEEE80211_KEY << 1049 return TX_CONTINUE; 1148 return TX_CONTINUE; 1050 1149 1051 if (WARN_ON(skb_tailroom(skb) < sizeo 1150 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 1052 return TX_DROP; 1151 return TX_DROP; 1053 1152 1054 mmie = skb_put(skb, sizeof(*mmie)); 1153 mmie = skb_put(skb, sizeof(*mmie)); 1055 mmie->element_id = WLAN_EID_MMIE; 1154 mmie->element_id = WLAN_EID_MMIE; 1056 mmie->length = sizeof(*mmie) - 2; 1155 mmie->length = sizeof(*mmie) - 2; 1057 mmie->key_id = cpu_to_le16(key->conf. 1156 mmie->key_id = cpu_to_le16(key->conf.keyidx); 1058 1157 1059 /* PN = PN + 1 */ 1158 /* PN = PN + 1 */ 1060 pn64 = atomic64_inc_return(&key->conf 1159 pn64 = atomic64_inc_return(&key->conf.tx_pn); 1061 1160 1062 bip_ipn_set64(mmie->sequence_number, 1161 bip_ipn_set64(mmie->sequence_number, pn64); 1063 1162 1064 if (info->control.hw_key) << 1065 return TX_CONTINUE; << 1066 << 1067 bip_aad(skb, aad); 1163 bip_aad(skb, aad); 1068 1164 1069 hdr = (struct ieee80211_hdr *)skb->da 1165 hdr = (struct ieee80211_hdr *)skb->data; 1070 memcpy(nonce, hdr->addr2, ETH_ALEN); 1166 memcpy(nonce, hdr->addr2, ETH_ALEN); 1071 bip_ipn_swap(nonce + ETH_ALEN, mmie-> 1167 bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number); 1072 1168 1073 /* MIC = AES-GMAC(IGTK, AAD || Manage 1169 /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */ 1074 if (ieee80211_aes_gmac(key->u.aes_gma 1170 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1075 skb->data + 24 1171 skb->data + 24, skb->len - 24, mmie->mic) < 0) 1076 return TX_DROP; 1172 return TX_DROP; 1077 1173 1078 return TX_CONTINUE; 1174 return TX_CONTINUE; 1079 } 1175 } 1080 1176 1081 ieee80211_rx_result 1177 ieee80211_rx_result 1082 ieee80211_crypto_aes_gmac_decrypt(struct ieee 1178 ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx) 1083 { 1179 { 1084 struct sk_buff *skb = rx->skb; 1180 struct sk_buff *skb = rx->skb; 1085 struct ieee80211_rx_status *status = 1181 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1086 struct ieee80211_key *key = rx->key; 1182 struct ieee80211_key *key = rx->key; 1087 struct ieee80211_mmie_16 *mmie; 1183 struct ieee80211_mmie_16 *mmie; 1088 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], n 1184 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], nonce[GMAC_NONCE_LEN]; 1089 struct ieee80211_hdr *hdr = (struct i 1185 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1090 1186 1091 if (!ieee80211_is_mgmt(hdr->frame_con 1187 if (!ieee80211_is_mgmt(hdr->frame_control)) 1092 return RX_CONTINUE; 1188 return RX_CONTINUE; 1093 1189 1094 /* management frames are already line 1190 /* management frames are already linear */ 1095 1191 1096 if (skb->len < 24 + sizeof(*mmie)) 1192 if (skb->len < 24 + sizeof(*mmie)) 1097 return RX_DROP_U_SHORT_GMAC; !! 1193 return RX_DROP_UNUSABLE; 1098 1194 1099 mmie = (struct ieee80211_mmie_16 *) 1195 mmie = (struct ieee80211_mmie_16 *) 1100 (skb->data + skb->len - sizeo 1196 (skb->data + skb->len - sizeof(*mmie)); 1101 if (mmie->element_id != WLAN_EID_MMIE 1197 if (mmie->element_id != WLAN_EID_MMIE || 1102 mmie->length != sizeof(*mmie) - 2 1198 mmie->length != sizeof(*mmie) - 2) 1103 return RX_DROP_U_BAD_MMIE; /* !! 1199 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1104 1200 1105 bip_ipn_swap(ipn, mmie->sequence_numb 1201 bip_ipn_swap(ipn, mmie->sequence_number); 1106 1202 1107 if (memcmp(ipn, key->u.aes_gmac.rx_pn 1203 if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) { 1108 key->u.aes_gmac.replays++; 1204 key->u.aes_gmac.replays++; 1109 return RX_DROP_U_REPLAY; !! 1205 return RX_DROP_UNUSABLE; 1110 } 1206 } 1111 1207 1112 if (!(status->flag & RX_FLAG_DECRYPTE 1208 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1113 /* hardware didn't decrypt/ve 1209 /* hardware didn't decrypt/verify MIC */ 1114 bip_aad(skb, aad); 1210 bip_aad(skb, aad); 1115 1211 1116 memcpy(nonce, hdr->addr2, ETH 1212 memcpy(nonce, hdr->addr2, ETH_ALEN); 1117 memcpy(nonce + ETH_ALEN, ipn, 1213 memcpy(nonce + ETH_ALEN, ipn, 6); 1118 1214 1119 mic = kmalloc(GMAC_MIC_LEN, G 1215 mic = kmalloc(GMAC_MIC_LEN, GFP_ATOMIC); 1120 if (!mic) 1216 if (!mic) 1121 return RX_DROP_U_OOM; !! 1217 return RX_DROP_UNUSABLE; 1122 if (ieee80211_aes_gmac(key->u 1218 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1123 skb->d 1219 skb->data + 24, skb->len - 24, 1124 mic) < 1220 mic) < 0 || 1125 crypto_memneq(mic, mmie-> 1221 crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1126 key->u.aes_gmac.icver 1222 key->u.aes_gmac.icverrors++; 1127 kfree(mic); 1223 kfree(mic); 1128 return RX_DROP_U_MIC_ !! 1224 return RX_DROP_UNUSABLE; 1129 } 1225 } 1130 kfree(mic); 1226 kfree(mic); 1131 } 1227 } 1132 1228 1133 memcpy(key->u.aes_gmac.rx_pn, ipn, 6) 1229 memcpy(key->u.aes_gmac.rx_pn, ipn, 6); 1134 1230 1135 /* Remove MMIE */ 1231 /* Remove MMIE */ 1136 skb_trim(skb, skb->len - sizeof(*mmie 1232 skb_trim(skb, skb->len - sizeof(*mmie)); 1137 1233 1138 return RX_CONTINUE; 1234 return RX_CONTINUE; >> 1235 } >> 1236 >> 1237 ieee80211_tx_result >> 1238 ieee80211_crypto_hw_encrypt(struct ieee80211_tx_data *tx) >> 1239 { >> 1240 struct sk_buff *skb; >> 1241 struct ieee80211_tx_info *info = NULL; >> 1242 ieee80211_tx_result res; >> 1243 >> 1244 skb_queue_walk(&tx->skbs, skb) { >> 1245 info = IEEE80211_SKB_CB(skb); >> 1246 >> 1247 /* handle hw-only algorithm */ >> 1248 if (!info->control.hw_key) >> 1249 return TX_DROP; >> 1250 >> 1251 if (tx->key->flags & KEY_FLAG_CIPHER_SCHEME) { >> 1252 res = ieee80211_crypto_cs_encrypt(tx, skb); >> 1253 if (res != TX_CONTINUE) >> 1254 return res; >> 1255 } >> 1256 } >> 1257 >> 1258 ieee80211_tx_set_protected(tx); >> 1259 >> 1260 return TX_CONTINUE; >> 1261 } >> 1262 >> 1263 ieee80211_rx_result >> 1264 ieee80211_crypto_hw_decrypt(struct ieee80211_rx_data *rx) >> 1265 { >> 1266 if (rx->sta && rx->sta->cipher_scheme) >> 1267 return ieee80211_crypto_cs_decrypt(rx); >> 1268 >> 1269 return RX_DROP_UNUSABLE; 1139 } 1270 } 1140 1271
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.