1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * Copyright 2002-2004, Instant802 Networks, I 3 * Copyright 2002-2004, Instant802 Networks, Inc. 4 * Copyright 2008, Jouni Malinen <j@w1.fi> 4 * Copyright 2008, Jouni Malinen <j@w1.fi> 5 * Copyright (C) 2016-2017 Intel Deutschland G 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 * Copyright (C) 2020-2023 Intel Corporation << 7 */ 6 */ 8 7 9 #include <linux/netdevice.h> 8 #include <linux/netdevice.h> 10 #include <linux/types.h> 9 #include <linux/types.h> 11 #include <linux/skbuff.h> 10 #include <linux/skbuff.h> 12 #include <linux/compiler.h> 11 #include <linux/compiler.h> 13 #include <linux/ieee80211.h> 12 #include <linux/ieee80211.h> 14 #include <linux/gfp.h> 13 #include <linux/gfp.h> 15 #include <linux/unaligned.h> !! 14 #include <asm/unaligned.h> 16 #include <net/mac80211.h> 15 #include <net/mac80211.h> 17 #include <crypto/aes.h> 16 #include <crypto/aes.h> 18 #include <crypto/utils.h> !! 17 #include <crypto/algapi.h> 19 18 20 #include "ieee80211_i.h" 19 #include "ieee80211_i.h" 21 #include "michael.h" 20 #include "michael.h" 22 #include "tkip.h" 21 #include "tkip.h" 23 #include "aes_ccm.h" 22 #include "aes_ccm.h" 24 #include "aes_cmac.h" 23 #include "aes_cmac.h" 25 #include "aes_gmac.h" 24 #include "aes_gmac.h" 26 #include "aes_gcm.h" 25 #include "aes_gcm.h" 27 #include "wpa.h" 26 #include "wpa.h" 28 27 29 ieee80211_tx_result 28 ieee80211_tx_result 30 ieee80211_tx_h_michael_mic_add(struct ieee8021 29 ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx) 31 { 30 { 32 u8 *data, *key, *mic; 31 u8 *data, *key, *mic; 33 size_t data_len; 32 size_t data_len; 34 unsigned int hdrlen; 33 unsigned int hdrlen; 35 struct ieee80211_hdr *hdr; 34 struct ieee80211_hdr *hdr; 36 struct sk_buff *skb = tx->skb; 35 struct sk_buff *skb = tx->skb; 37 struct ieee80211_tx_info *info = IEEE8 36 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 38 int tail; 37 int tail; 39 38 40 hdr = (struct ieee80211_hdr *)skb->dat 39 hdr = (struct ieee80211_hdr *)skb->data; 41 if (!tx->key || tx->key->conf.cipher ! 40 if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 42 skb->len < 24 || !ieee80211_is_dat 41 skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control)) 43 return TX_CONTINUE; 42 return TX_CONTINUE; 44 43 45 hdrlen = ieee80211_hdrlen(hdr->frame_c 44 hdrlen = ieee80211_hdrlen(hdr->frame_control); 46 if (skb->len < hdrlen) 45 if (skb->len < hdrlen) 47 return TX_DROP; 46 return TX_DROP; 48 47 49 data = skb->data + hdrlen; 48 data = skb->data + hdrlen; 50 data_len = skb->len - hdrlen; 49 data_len = skb->len - hdrlen; 51 50 52 if (unlikely(info->flags & IEEE80211_T 51 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) { 53 /* Need to use software crypto 52 /* Need to use software crypto for the test */ 54 info->control.hw_key = NULL; 53 info->control.hw_key = NULL; 55 } 54 } 56 55 57 if (info->control.hw_key && 56 if (info->control.hw_key && 58 (info->flags & IEEE80211_TX_CTL_DO 57 (info->flags & IEEE80211_TX_CTL_DONTFRAG || 59 ieee80211_hw_check(&tx->local->hw 58 ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) && 60 !(tx->key->conf.flags & (IEEE80211 59 !(tx->key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 61 IEEE80211 60 IEEE80211_KEY_FLAG_PUT_MIC_SPACE))) { 62 /* hwaccel - with no need for 61 /* hwaccel - with no need for SW-generated MMIC or MIC space */ 63 return TX_CONTINUE; 62 return TX_CONTINUE; 64 } 63 } 65 64 66 tail = MICHAEL_MIC_LEN; 65 tail = MICHAEL_MIC_LEN; 67 if (!info->control.hw_key) 66 if (!info->control.hw_key) 68 tail += IEEE80211_TKIP_ICV_LEN 67 tail += IEEE80211_TKIP_ICV_LEN; 69 68 70 if (WARN(skb_tailroom(skb) < tail || 69 if (WARN(skb_tailroom(skb) < tail || 71 skb_headroom(skb) < IEEE80211 70 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN, 72 "mmic: not enough head/tail ( 71 "mmic: not enough head/tail (%d/%d,%d/%d)\n", 73 skb_headroom(skb), IEEE80211_ 72 skb_headroom(skb), IEEE80211_TKIP_IV_LEN, 74 skb_tailroom(skb), tail)) 73 skb_tailroom(skb), tail)) 75 return TX_DROP; 74 return TX_DROP; 76 75 77 mic = skb_put(skb, MICHAEL_MIC_LEN); 76 mic = skb_put(skb, MICHAEL_MIC_LEN); 78 77 79 if (tx->key->conf.flags & IEEE80211_KE 78 if (tx->key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) { 80 /* Zeroed MIC can help with de 79 /* Zeroed MIC can help with debug */ 81 memset(mic, 0, MICHAEL_MIC_LEN 80 memset(mic, 0, MICHAEL_MIC_LEN); 82 return TX_CONTINUE; 81 return TX_CONTINUE; 83 } 82 } 84 83 85 key = &tx->key->conf.key[NL80211_TKIP_ 84 key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]; 86 michael_mic(key, hdr, data, data_len, 85 michael_mic(key, hdr, data, data_len, mic); 87 if (unlikely(info->flags & IEEE80211_T 86 if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) 88 mic[0]++; 87 mic[0]++; 89 88 90 return TX_CONTINUE; 89 return TX_CONTINUE; 91 } 90 } 92 91 93 92 94 ieee80211_rx_result 93 ieee80211_rx_result 95 ieee80211_rx_h_michael_mic_verify(struct ieee8 94 ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx) 96 { 95 { 97 u8 *data, *key = NULL; 96 u8 *data, *key = NULL; 98 size_t data_len; 97 size_t data_len; 99 unsigned int hdrlen; 98 unsigned int hdrlen; 100 u8 mic[MICHAEL_MIC_LEN]; 99 u8 mic[MICHAEL_MIC_LEN]; 101 struct sk_buff *skb = rx->skb; 100 struct sk_buff *skb = rx->skb; 102 struct ieee80211_rx_status *status = I 101 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 103 struct ieee80211_hdr *hdr = (struct ie 102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 104 103 105 /* 104 /* 106 * it makes no sense to check for MIC 105 * it makes no sense to check for MIC errors on anything other 107 * than data frames. 106 * than data frames. 108 */ 107 */ 109 if (!ieee80211_is_data_present(hdr->fr 108 if (!ieee80211_is_data_present(hdr->frame_control)) 110 return RX_CONTINUE; 109 return RX_CONTINUE; 111 110 112 /* 111 /* 113 * No way to verify the MIC if the har 112 * No way to verify the MIC if the hardware stripped it or 114 * the IV with the key index. In this 113 * the IV with the key index. In this case we have solely rely 115 * on the driver to set RX_FLAG_MMIC_E 114 * on the driver to set RX_FLAG_MMIC_ERROR in the event of a 116 * MIC failure report. 115 * MIC failure report. 117 */ 116 */ 118 if (status->flag & (RX_FLAG_MMIC_STRIP 117 if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) { 119 if (status->flag & RX_FLAG_MMI 118 if (status->flag & RX_FLAG_MMIC_ERROR) 120 goto mic_fail_no_key; 119 goto mic_fail_no_key; 121 120 122 if (!(status->flag & RX_FLAG_I 121 if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key && 123 rx->key->conf.cipher == WL 122 rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP) 124 goto update_iv; 123 goto update_iv; 125 124 126 return RX_CONTINUE; 125 return RX_CONTINUE; 127 } 126 } 128 127 129 /* 128 /* 130 * Some hardware seems to generate Mic 129 * Some hardware seems to generate Michael MIC failure reports; even 131 * though, the frame was not encrypted 130 * though, the frame was not encrypted with TKIP and therefore has no 132 * MIC. Ignore the flag them to avoid 131 * MIC. Ignore the flag them to avoid triggering countermeasures. 133 */ 132 */ 134 if (!rx->key || rx->key->conf.cipher ! 133 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP || 135 !(status->flag & RX_FLAG_DECRYPTED 134 !(status->flag & RX_FLAG_DECRYPTED)) 136 return RX_CONTINUE; 135 return RX_CONTINUE; 137 136 138 if (rx->sdata->vif.type == NL80211_IFT 137 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) { 139 /* 138 /* 140 * APs with pairwise keys shou 139 * APs with pairwise keys should never receive Michael MIC 141 * errors for non-zero keyidx 140 * errors for non-zero keyidx because these are reserved for 142 * group keys and only the AP 141 * group keys and only the AP is sending real multicast 143 * frames in the BSS. 142 * frames in the BSS. 144 */ 143 */ 145 return RX_DROP_U_AP_RX_GROUPCA !! 144 return RX_DROP_UNUSABLE; 146 } 145 } 147 146 148 if (status->flag & RX_FLAG_MMIC_ERROR) 147 if (status->flag & RX_FLAG_MMIC_ERROR) 149 goto mic_fail; 148 goto mic_fail; 150 149 151 hdrlen = ieee80211_hdrlen(hdr->frame_c 150 hdrlen = ieee80211_hdrlen(hdr->frame_control); 152 if (skb->len < hdrlen + MICHAEL_MIC_LE 151 if (skb->len < hdrlen + MICHAEL_MIC_LEN) 153 return RX_DROP_U_SHORT_MMIC; !! 152 return RX_DROP_UNUSABLE; 154 153 155 if (skb_linearize(rx->skb)) 154 if (skb_linearize(rx->skb)) 156 return RX_DROP_U_OOM; !! 155 return RX_DROP_UNUSABLE; 157 hdr = (void *)skb->data; 156 hdr = (void *)skb->data; 158 157 159 data = skb->data + hdrlen; 158 data = skb->data + hdrlen; 160 data_len = skb->len - hdrlen - MICHAEL 159 data_len = skb->len - hdrlen - MICHAEL_MIC_LEN; 161 key = &rx->key->conf.key[NL80211_TKIP_ 160 key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; 162 michael_mic(key, hdr, data, data_len, 161 michael_mic(key, hdr, data, data_len, mic); 163 if (crypto_memneq(mic, data + data_len 162 if (crypto_memneq(mic, data + data_len, MICHAEL_MIC_LEN)) 164 goto mic_fail; 163 goto mic_fail; 165 164 166 /* remove Michael MIC from payload */ 165 /* remove Michael MIC from payload */ 167 skb_trim(skb, skb->len - MICHAEL_MIC_L 166 skb_trim(skb, skb->len - MICHAEL_MIC_LEN); 168 167 169 update_iv: 168 update_iv: 170 /* update IV in key information to be 169 /* update IV in key information to be able to detect replays */ 171 rx->key->u.tkip.rx[rx->security_idx].i !! 170 rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip_iv32; 172 rx->key->u.tkip.rx[rx->security_idx].i !! 171 rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip_iv16; 173 172 174 return RX_CONTINUE; 173 return RX_CONTINUE; 175 174 176 mic_fail: 175 mic_fail: 177 rx->key->u.tkip.mic_failures++; 176 rx->key->u.tkip.mic_failures++; 178 177 179 mic_fail_no_key: 178 mic_fail_no_key: 180 /* 179 /* 181 * In some cases the key can be unset 180 * In some cases the key can be unset - e.g. a multicast packet, in 182 * a driver that supports HW encryptio 181 * a driver that supports HW encryption. Send up the key idx only if 183 * the key is set. 182 * the key is set. 184 */ 183 */ 185 cfg80211_michael_mic_failure(rx->sdata 184 cfg80211_michael_mic_failure(rx->sdata->dev, hdr->addr2, 186 is_multic 185 is_multicast_ether_addr(hdr->addr1) ? 187 NL80211_K 186 NL80211_KEYTYPE_GROUP : 188 NL80211_K 187 NL80211_KEYTYPE_PAIRWISE, 189 rx->key ? 188 rx->key ? rx->key->conf.keyidx : -1, 190 NULL, GFP 189 NULL, GFP_ATOMIC); 191 return RX_DROP_U_MMIC_FAIL; !! 190 return RX_DROP_UNUSABLE; 192 } 191 } 193 192 194 static int tkip_encrypt_skb(struct ieee80211_t 193 static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 195 { 194 { 196 struct ieee80211_hdr *hdr = (struct ie 195 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 197 struct ieee80211_key *key = tx->key; 196 struct ieee80211_key *key = tx->key; 198 struct ieee80211_tx_info *info = IEEE8 197 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 199 unsigned int hdrlen; 198 unsigned int hdrlen; 200 int len, tail; 199 int len, tail; 201 u64 pn; 200 u64 pn; 202 u8 *pos; 201 u8 *pos; 203 202 204 if (info->control.hw_key && 203 if (info->control.hw_key && 205 !(info->control.hw_key->flags & IE 204 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 206 !(info->control.hw_key->flags & IE 205 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { 207 /* hwaccel - with no need for 206 /* hwaccel - with no need for software-generated IV */ 208 return 0; 207 return 0; 209 } 208 } 210 209 211 hdrlen = ieee80211_hdrlen(hdr->frame_c 210 hdrlen = ieee80211_hdrlen(hdr->frame_control); 212 len = skb->len - hdrlen; 211 len = skb->len - hdrlen; 213 212 214 if (info->control.hw_key) 213 if (info->control.hw_key) 215 tail = 0; 214 tail = 0; 216 else 215 else 217 tail = IEEE80211_TKIP_ICV_LEN; 216 tail = IEEE80211_TKIP_ICV_LEN; 218 217 219 if (WARN_ON(skb_tailroom(skb) < tail | 218 if (WARN_ON(skb_tailroom(skb) < tail || 220 skb_headroom(skb) < IEEE80 219 skb_headroom(skb) < IEEE80211_TKIP_IV_LEN)) 221 return -1; 220 return -1; 222 221 223 pos = skb_push(skb, IEEE80211_TKIP_IV_ 222 pos = skb_push(skb, IEEE80211_TKIP_IV_LEN); 224 memmove(pos, pos + IEEE80211_TKIP_IV_L 223 memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen); 225 pos += hdrlen; 224 pos += hdrlen; 226 225 227 /* the HW only needs room for the IV, 226 /* the HW only needs room for the IV, but not the actual IV */ 228 if (info->control.hw_key && 227 if (info->control.hw_key && 229 (info->control.hw_key->flags & IEE 228 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 230 return 0; 229 return 0; 231 230 232 /* Increase IV for the frame */ 231 /* Increase IV for the frame */ 233 pn = atomic64_inc_return(&key->conf.tx 232 pn = atomic64_inc_return(&key->conf.tx_pn); 234 pos = ieee80211_tkip_add_iv(pos, &key- 233 pos = ieee80211_tkip_add_iv(pos, &key->conf, pn); 235 234 236 /* hwaccel - with software IV */ 235 /* hwaccel - with software IV */ 237 if (info->control.hw_key) 236 if (info->control.hw_key) 238 return 0; 237 return 0; 239 238 240 /* Add room for ICV */ 239 /* Add room for ICV */ 241 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 240 skb_put(skb, IEEE80211_TKIP_ICV_LEN); 242 241 243 return ieee80211_tkip_encrypt_data(&tx 242 return ieee80211_tkip_encrypt_data(&tx->local->wep_tx_ctx, 244 key 243 key, skb, pos, len); 245 } 244 } 246 245 247 246 248 ieee80211_tx_result 247 ieee80211_tx_result 249 ieee80211_crypto_tkip_encrypt(struct ieee80211 248 ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx) 250 { 249 { 251 struct sk_buff *skb; 250 struct sk_buff *skb; 252 251 253 ieee80211_tx_set_protected(tx); 252 ieee80211_tx_set_protected(tx); 254 253 255 skb_queue_walk(&tx->skbs, skb) { 254 skb_queue_walk(&tx->skbs, skb) { 256 if (tkip_encrypt_skb(tx, skb) 255 if (tkip_encrypt_skb(tx, skb) < 0) 257 return TX_DROP; 256 return TX_DROP; 258 } 257 } 259 258 260 return TX_CONTINUE; 259 return TX_CONTINUE; 261 } 260 } 262 261 263 262 264 ieee80211_rx_result 263 ieee80211_rx_result 265 ieee80211_crypto_tkip_decrypt(struct ieee80211 264 ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx) 266 { 265 { 267 struct ieee80211_hdr *hdr = (struct ie 266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; 268 int hdrlen, res, hwaccel = 0; 267 int hdrlen, res, hwaccel = 0; 269 struct ieee80211_key *key = rx->key; 268 struct ieee80211_key *key = rx->key; 270 struct sk_buff *skb = rx->skb; 269 struct sk_buff *skb = rx->skb; 271 struct ieee80211_rx_status *status = I 270 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 272 271 273 hdrlen = ieee80211_hdrlen(hdr->frame_c 272 hdrlen = ieee80211_hdrlen(hdr->frame_control); 274 273 275 if (!ieee80211_is_data(hdr->frame_cont 274 if (!ieee80211_is_data(hdr->frame_control)) 276 return RX_CONTINUE; 275 return RX_CONTINUE; 277 276 278 if (!rx->sta || skb->len - hdrlen < 12 277 if (!rx->sta || skb->len - hdrlen < 12) 279 return RX_DROP_U_SHORT_TKIP; !! 278 return RX_DROP_UNUSABLE; 280 279 281 /* it may be possible to optimize this 280 /* it may be possible to optimize this a bit more */ 282 if (skb_linearize(rx->skb)) 281 if (skb_linearize(rx->skb)) 283 return RX_DROP_U_OOM; !! 282 return RX_DROP_UNUSABLE; 284 hdr = (void *)skb->data; 283 hdr = (void *)skb->data; 285 284 286 /* 285 /* 287 * Let TKIP code verify IV, but skip d 286 * Let TKIP code verify IV, but skip decryption. 288 * In the case where hardware checks t 287 * In the case where hardware checks the IV as well, 289 * we don't even get here, see ieee802 288 * we don't even get here, see ieee80211_rx_h_decrypt() 290 */ 289 */ 291 if (status->flag & RX_FLAG_DECRYPTED) 290 if (status->flag & RX_FLAG_DECRYPTED) 292 hwaccel = 1; 291 hwaccel = 1; 293 292 294 res = ieee80211_tkip_decrypt_data(&rx- 293 res = ieee80211_tkip_decrypt_data(&rx->local->wep_rx_ctx, 295 key, 294 key, skb->data + hdrlen, 296 skb- 295 skb->len - hdrlen, rx->sta->sta.addr, 297 hdr- 296 hdr->addr1, hwaccel, rx->security_idx, 298 &rx- !! 297 &rx->tkip_iv32, 299 &rx- !! 298 &rx->tkip_iv16); 300 if (res != TKIP_DECRYPT_OK) 299 if (res != TKIP_DECRYPT_OK) 301 return RX_DROP_U_TKIP_FAIL; !! 300 return RX_DROP_UNUSABLE; 302 301 303 /* Trim ICV */ 302 /* Trim ICV */ 304 if (!(status->flag & RX_FLAG_ICV_STRIP 303 if (!(status->flag & RX_FLAG_ICV_STRIPPED)) 305 skb_trim(skb, skb->len - IEEE8 304 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 306 305 307 /* Remove IV */ 306 /* Remove IV */ 308 memmove(skb->data + IEEE80211_TKIP_IV_ 307 memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen); 309 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 308 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 310 309 311 return RX_CONTINUE; 310 return RX_CONTINUE; 312 } 311 } 313 312 314 /* !! 313 315 * Calculate AAD for CCMP/GCMP, returning qos_ !! 314 static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad) 316 * need that in CCMP also for b_0. << 317 */ << 318 static u8 ccmp_gcmp_aad(struct sk_buff *skb, u << 319 { 315 { 320 struct ieee80211_hdr *hdr = (void *)sk << 321 __le16 mask_fc; 316 __le16 mask_fc; 322 int a4_included, mgmt; 317 int a4_included, mgmt; 323 u8 qos_tid; 318 u8 qos_tid; 324 u16 len_a = 22; !! 319 u16 len_a; >> 320 unsigned int hdrlen; >> 321 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 325 322 326 /* 323 /* 327 * Mask FC: zero subtype b4 b5 b6 (if 324 * Mask FC: zero subtype b4 b5 b6 (if not mgmt) 328 * Retry, PwrMgt, MoreData, Order (if !! 325 * Retry, PwrMgt, MoreData; set Protected 329 */ 326 */ 330 mgmt = ieee80211_is_mgmt(hdr->frame_co 327 mgmt = ieee80211_is_mgmt(hdr->frame_control); 331 mask_fc = hdr->frame_control; 328 mask_fc = hdr->frame_control; 332 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 329 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | 333 IEEE80211_FCTL 330 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); 334 if (!mgmt) 331 if (!mgmt) 335 mask_fc &= ~cpu_to_le16(0x0070 332 mask_fc &= ~cpu_to_le16(0x0070); 336 mask_fc |= cpu_to_le16(IEEE80211_FCTL_ 333 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 337 334 >> 335 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 336 len_a = hdrlen - 2; 338 a4_included = ieee80211_has_a4(hdr->fr 337 a4_included = ieee80211_has_a4(hdr->frame_control); 339 if (a4_included) << 340 len_a += 6; << 341 338 342 if (ieee80211_is_data_qos(hdr->frame_c !! 339 if (ieee80211_is_data_qos(hdr->frame_control)) 343 qos_tid = *ieee80211_get_qos_c !! 340 qos_tid = ieee80211_get_tid(hdr); >> 341 else >> 342 qos_tid = 0; 344 343 345 if (spp_amsdu) !! 344 /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC 346 qos_tid &= IEEE80211_Q !! 345 * mode authentication are not allowed to collide, yet both are derived 347 IEEE80211_Q !! 346 * from this vector b_0. We only set L := 1 here to indicate that the 348 else !! 347 * data size can be represented in (L+1) bytes. The CCM layer will take 349 qos_tid &= IEEE80211_Q !! 348 * care of storing the data length in the top (L+1) bytes and setting >> 349 * and clearing the other bits as is required to derive the two IVs. >> 350 */ >> 351 b_0[0] = 0x1; 350 352 351 mask_fc &= ~cpu_to_le16(IEEE80 !! 353 /* Nonce: Nonce Flags | A2 | PN 352 len_a += 2; !! 354 * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7) 353 } else { !! 355 */ 354 qos_tid = 0; !! 356 b_0[1] = qos_tid | (mgmt << 4); 355 } !! 357 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); >> 358 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN); 356 359 357 /* AAD (extra authenticate-only data) 360 /* AAD (extra authenticate-only data) / masked 802.11 header 358 * FC | A1 | A2 | A3 | SC | [A4] | [QC 361 * FC | A1 | A2 | A3 | SC | [A4] | [QC] */ 359 put_unaligned_be16(len_a, &aad[0]); 362 put_unaligned_be16(len_a, &aad[0]); 360 put_unaligned(mask_fc, (__le16 *)&aad[ 363 put_unaligned(mask_fc, (__le16 *)&aad[2]); 361 memcpy(&aad[4], &hdr->addrs, 3 * ETH_A !! 364 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); 362 365 363 /* Mask Seq#, leave Frag# */ 366 /* Mask Seq#, leave Frag# */ 364 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0 367 aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f; 365 aad[23] = 0; 368 aad[23] = 0; 366 369 367 if (a4_included) { 370 if (a4_included) { 368 memcpy(&aad[24], hdr->addr4, E 371 memcpy(&aad[24], hdr->addr4, ETH_ALEN); 369 aad[30] = qos_tid; 372 aad[30] = qos_tid; 370 aad[31] = 0; 373 aad[31] = 0; 371 } else { 374 } else { 372 memset(&aad[24], 0, ETH_ALEN + 375 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); 373 aad[24] = qos_tid; 376 aad[24] = qos_tid; 374 } 377 } 375 << 376 return qos_tid; << 377 } 378 } 378 379 379 static void ccmp_special_blocks(struct sk_buff << 380 bool spp_amsdu << 381 { << 382 struct ieee80211_hdr *hdr = (struct ie << 383 u8 qos_tid = ccmp_gcmp_aad(skb, aad, s << 384 << 385 /* In CCM, the initial vectors (IV) us << 386 * mode authentication are not allowed << 387 * from this vector b_0. We only set L << 388 * data size can be represented in (L+ << 389 * care of storing the data length in << 390 * and clearing the other bits as is r << 391 */ << 392 b_0[0] = 0x1; << 393 << 394 /* Nonce: Nonce Flags | A2 | PN << 395 * Nonce Flags: Priority (b0..b3) | Ma << 396 */ << 397 b_0[1] = qos_tid | (ieee80211_is_mgmt( << 398 memcpy(&b_0[2], hdr->addr2, ETH_ALEN); << 399 memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_ << 400 } << 401 380 402 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn 381 static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id) 403 { 382 { 404 hdr[0] = pn[5]; 383 hdr[0] = pn[5]; 405 hdr[1] = pn[4]; 384 hdr[1] = pn[4]; 406 hdr[2] = 0; 385 hdr[2] = 0; 407 hdr[3] = 0x20 | (key_id << 6); 386 hdr[3] = 0x20 | (key_id << 6); 408 hdr[4] = pn[3]; 387 hdr[4] = pn[3]; 409 hdr[5] = pn[2]; 388 hdr[5] = pn[2]; 410 hdr[6] = pn[1]; 389 hdr[6] = pn[1]; 411 hdr[7] = pn[0]; 390 hdr[7] = pn[0]; 412 } 391 } 413 392 414 393 415 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr 394 static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr) 416 { 395 { 417 pn[0] = hdr[7]; 396 pn[0] = hdr[7]; 418 pn[1] = hdr[6]; 397 pn[1] = hdr[6]; 419 pn[2] = hdr[5]; 398 pn[2] = hdr[5]; 420 pn[3] = hdr[4]; 399 pn[3] = hdr[4]; 421 pn[4] = hdr[1]; 400 pn[4] = hdr[1]; 422 pn[5] = hdr[0]; 401 pn[5] = hdr[0]; 423 } 402 } 424 403 425 404 426 static int ccmp_encrypt_skb(struct ieee80211_t 405 static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb, 427 unsigned int mic_l 406 unsigned int mic_len) 428 { 407 { 429 struct ieee80211_hdr *hdr = (struct ie 408 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 430 struct ieee80211_key *key = tx->key; 409 struct ieee80211_key *key = tx->key; 431 struct ieee80211_tx_info *info = IEEE8 410 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 432 int hdrlen, len, tail; 411 int hdrlen, len, tail; 433 u8 *pos; 412 u8 *pos; 434 u8 pn[6]; 413 u8 pn[6]; 435 u64 pn64; 414 u64 pn64; 436 u8 aad[CCM_AAD_LEN]; 415 u8 aad[CCM_AAD_LEN]; 437 u8 b_0[AES_BLOCK_SIZE]; 416 u8 b_0[AES_BLOCK_SIZE]; 438 417 439 if (info->control.hw_key && 418 if (info->control.hw_key && 440 !(info->control.hw_key->flags & IE 419 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 441 !(info->control.hw_key->flags & IE 420 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 442 !((info->control.hw_key->flags & 421 !((info->control.hw_key->flags & 443 IEEE80211_KEY_FLAG_GENERATE_IV_ 422 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 444 ieee80211_is_mgmt(hdr->frame_con 423 ieee80211_is_mgmt(hdr->frame_control))) { 445 /* 424 /* 446 * hwaccel has no need for pre 425 * hwaccel has no need for preallocated room for CCMP 447 * header or MIC fields 426 * header or MIC fields 448 */ 427 */ 449 return 0; 428 return 0; 450 } 429 } 451 430 452 hdrlen = ieee80211_hdrlen(hdr->frame_c 431 hdrlen = ieee80211_hdrlen(hdr->frame_control); 453 len = skb->len - hdrlen; 432 len = skb->len - hdrlen; 454 433 455 if (info->control.hw_key) 434 if (info->control.hw_key) 456 tail = 0; 435 tail = 0; 457 else 436 else 458 tail = mic_len; 437 tail = mic_len; 459 438 460 if (WARN_ON(skb_tailroom(skb) < tail | 439 if (WARN_ON(skb_tailroom(skb) < tail || 461 skb_headroom(skb) < IEEE80 440 skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN)) 462 return -1; 441 return -1; 463 442 464 pos = skb_push(skb, IEEE80211_CCMP_HDR 443 pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN); 465 memmove(pos, pos + IEEE80211_CCMP_HDR_ 444 memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen); 466 445 467 /* the HW only needs room for the IV, 446 /* the HW only needs room for the IV, but not the actual IV */ 468 if (info->control.hw_key && 447 if (info->control.hw_key && 469 (info->control.hw_key->flags & IEE 448 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 470 return 0; 449 return 0; 471 450 >> 451 hdr = (struct ieee80211_hdr *) pos; 472 pos += hdrlen; 452 pos += hdrlen; 473 453 474 pn64 = atomic64_inc_return(&key->conf. 454 pn64 = atomic64_inc_return(&key->conf.tx_pn); 475 455 476 pn[5] = pn64; 456 pn[5] = pn64; 477 pn[4] = pn64 >> 8; 457 pn[4] = pn64 >> 8; 478 pn[3] = pn64 >> 16; 458 pn[3] = pn64 >> 16; 479 pn[2] = pn64 >> 24; 459 pn[2] = pn64 >> 24; 480 pn[1] = pn64 >> 32; 460 pn[1] = pn64 >> 32; 481 pn[0] = pn64 >> 40; 461 pn[0] = pn64 >> 40; 482 462 483 ccmp_pn2hdr(pos, pn, key->conf.keyidx) 463 ccmp_pn2hdr(pos, pn, key->conf.keyidx); 484 464 485 /* hwaccel - with software CCMP header 465 /* hwaccel - with software CCMP header */ 486 if (info->control.hw_key) 466 if (info->control.hw_key) 487 return 0; 467 return 0; 488 468 489 pos += IEEE80211_CCMP_HDR_LEN; 469 pos += IEEE80211_CCMP_HDR_LEN; 490 ccmp_special_blocks(skb, pn, b_0, aad, !! 470 ccmp_special_blocks(skb, pn, b_0, aad); 491 key->conf.flags & << 492 return ieee80211_aes_ccm_encrypt(key-> 471 return ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len, 493 skb_p 472 skb_put(skb, mic_len)); 494 } 473 } 495 474 496 475 497 ieee80211_tx_result 476 ieee80211_tx_result 498 ieee80211_crypto_ccmp_encrypt(struct ieee80211 477 ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx, 499 unsigned int mic 478 unsigned int mic_len) 500 { 479 { 501 struct sk_buff *skb; 480 struct sk_buff *skb; 502 481 503 ieee80211_tx_set_protected(tx); 482 ieee80211_tx_set_protected(tx); 504 483 505 skb_queue_walk(&tx->skbs, skb) { 484 skb_queue_walk(&tx->skbs, skb) { 506 if (ccmp_encrypt_skb(tx, skb, 485 if (ccmp_encrypt_skb(tx, skb, mic_len) < 0) 507 return TX_DROP; 486 return TX_DROP; 508 } 487 } 509 488 510 return TX_CONTINUE; 489 return TX_CONTINUE; 511 } 490 } 512 491 513 492 514 ieee80211_rx_result 493 ieee80211_rx_result 515 ieee80211_crypto_ccmp_decrypt(struct ieee80211 494 ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx, 516 unsigned int mic 495 unsigned int mic_len) 517 { 496 { 518 struct ieee80211_hdr *hdr = (struct ie 497 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 519 int hdrlen; 498 int hdrlen; 520 struct ieee80211_key *key = rx->key; 499 struct ieee80211_key *key = rx->key; 521 struct sk_buff *skb = rx->skb; 500 struct sk_buff *skb = rx->skb; 522 struct ieee80211_rx_status *status = I 501 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 523 u8 pn[IEEE80211_CCMP_PN_LEN]; 502 u8 pn[IEEE80211_CCMP_PN_LEN]; 524 int data_len; 503 int data_len; 525 int queue; 504 int queue; 526 505 527 hdrlen = ieee80211_hdrlen(hdr->frame_c 506 hdrlen = ieee80211_hdrlen(hdr->frame_control); 528 507 529 if (!ieee80211_is_data(hdr->frame_cont 508 if (!ieee80211_is_data(hdr->frame_control) && 530 !ieee80211_is_robust_mgmt_frame(sk 509 !ieee80211_is_robust_mgmt_frame(skb)) 531 return RX_CONTINUE; 510 return RX_CONTINUE; 532 511 533 if (status->flag & RX_FLAG_DECRYPTED) 512 if (status->flag & RX_FLAG_DECRYPTED) { 534 if (!pskb_may_pull(rx->skb, hd 513 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN)) 535 return RX_DROP_U_SHORT !! 514 return RX_DROP_UNUSABLE; 536 if (status->flag & RX_FLAG_MIC 515 if (status->flag & RX_FLAG_MIC_STRIPPED) 537 mic_len = 0; 516 mic_len = 0; 538 } else { 517 } else { 539 if (skb_linearize(rx->skb)) 518 if (skb_linearize(rx->skb)) 540 return RX_DROP_U_OOM; !! 519 return RX_DROP_UNUSABLE; 541 } 520 } 542 521 543 /* reload hdr - skb might have been re << 544 hdr = (void *)rx->skb->data; << 545 << 546 data_len = skb->len - hdrlen - IEEE802 522 data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len; 547 if (!rx->sta || data_len < 0) 523 if (!rx->sta || data_len < 0) 548 return RX_DROP_U_SHORT_CCMP; !! 524 return RX_DROP_UNUSABLE; 549 525 550 if (!(status->flag & RX_FLAG_PN_VALIDA 526 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 551 int res; 527 int res; 552 528 553 ccmp_hdr2pn(pn, skb->data + hd 529 ccmp_hdr2pn(pn, skb->data + hdrlen); 554 530 555 queue = rx->security_idx; 531 queue = rx->security_idx; 556 532 557 res = memcmp(pn, key->u.ccmp.r 533 res = memcmp(pn, key->u.ccmp.rx_pn[queue], 558 IEEE80211_CCMP_PN 534 IEEE80211_CCMP_PN_LEN); 559 if (res < 0 || 535 if (res < 0 || 560 (!res && !(status->flag & 536 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 561 key->u.ccmp.replays++; 537 key->u.ccmp.replays++; 562 return RX_DROP_U_REPLA !! 538 return RX_DROP_UNUSABLE; 563 } 539 } 564 540 565 if (!(status->flag & RX_FLAG_D 541 if (!(status->flag & RX_FLAG_DECRYPTED)) { 566 u8 aad[2 * AES_BLOCK_S 542 u8 aad[2 * AES_BLOCK_SIZE]; 567 u8 b_0[AES_BLOCK_SIZE] 543 u8 b_0[AES_BLOCK_SIZE]; 568 /* hardware didn't dec 544 /* hardware didn't decrypt/verify MIC */ 569 ccmp_special_blocks(sk !! 545 ccmp_special_blocks(skb, pn, b_0, aad); 570 ke << 571 546 572 if (ieee80211_aes_ccm_ 547 if (ieee80211_aes_ccm_decrypt( 573 key->u.ccm 548 key->u.ccmp.tfm, b_0, aad, 574 skb->data 549 skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN, 575 data_len, 550 data_len, 576 skb->data 551 skb->data + skb->len - mic_len)) 577 return RX_DROP !! 552 return RX_DROP_UNUSABLE; 578 } 553 } 579 554 580 memcpy(key->u.ccmp.rx_pn[queue 555 memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN); 581 if (unlikely(ieee80211_is_frag << 582 memcpy(rx->ccm_gcm.pn, << 583 } 556 } 584 557 585 /* Remove CCMP header and MIC */ 558 /* Remove CCMP header and MIC */ 586 if (pskb_trim(skb, skb->len - mic_len) 559 if (pskb_trim(skb, skb->len - mic_len)) 587 return RX_DROP_U_SHORT_CCMP_MI !! 560 return RX_DROP_UNUSABLE; 588 memmove(skb->data + IEEE80211_CCMP_HDR 561 memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen); 589 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 562 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 590 563 591 return RX_CONTINUE; 564 return RX_CONTINUE; 592 } 565 } 593 566 594 static void gcmp_special_blocks(struct sk_buff !! 567 static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad) 595 bool spp_amsdu << 596 { 568 { 597 struct ieee80211_hdr *hdr = (void *)sk !! 569 __le16 mask_fc; >> 570 u8 qos_tid; >> 571 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 598 572 599 memcpy(j_0, hdr->addr2, ETH_ALEN); 573 memcpy(j_0, hdr->addr2, ETH_ALEN); 600 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_G 574 memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN); 601 j_0[13] = 0; 575 j_0[13] = 0; 602 j_0[14] = 0; 576 j_0[14] = 0; 603 j_0[AES_BLOCK_SIZE - 1] = 0x01; 577 j_0[AES_BLOCK_SIZE - 1] = 0x01; 604 578 605 ccmp_gcmp_aad(skb, aad, spp_amsdu); !! 579 /* AAD (extra authenticate-only data) / masked 802.11 header >> 580 * FC | A1 | A2 | A3 | SC | [A4] | [QC] >> 581 */ >> 582 put_unaligned_be16(ieee80211_hdrlen(hdr->frame_control) - 2, &aad[0]); >> 583 /* Mask FC: zero subtype b4 b5 b6 (if not mgmt) >> 584 * Retry, PwrMgt, MoreData; set Protected >> 585 */ >> 586 mask_fc = hdr->frame_control; >> 587 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | >> 588 IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA); >> 589 if (!ieee80211_is_mgmt(hdr->frame_control)) >> 590 mask_fc &= ~cpu_to_le16(0x0070); >> 591 mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); >> 592 >> 593 put_unaligned(mask_fc, (__le16 *)&aad[2]); >> 594 memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN); >> 595 >> 596 /* Mask Seq#, leave Frag# */ >> 597 aad[22] = *((u8 *)&hdr->seq_ctrl) & 0x0f; >> 598 aad[23] = 0; >> 599 >> 600 if (ieee80211_is_data_qos(hdr->frame_control)) >> 601 qos_tid = ieee80211_get_tid(hdr); >> 602 else >> 603 qos_tid = 0; >> 604 >> 605 if (ieee80211_has_a4(hdr->frame_control)) { >> 606 memcpy(&aad[24], hdr->addr4, ETH_ALEN); >> 607 aad[30] = qos_tid; >> 608 aad[31] = 0; >> 609 } else { >> 610 memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN); >> 611 aad[24] = qos_tid; >> 612 } 606 } 613 } 607 614 608 static inline void gcmp_pn2hdr(u8 *hdr, const 615 static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id) 609 { 616 { 610 hdr[0] = pn[5]; 617 hdr[0] = pn[5]; 611 hdr[1] = pn[4]; 618 hdr[1] = pn[4]; 612 hdr[2] = 0; 619 hdr[2] = 0; 613 hdr[3] = 0x20 | (key_id << 6); 620 hdr[3] = 0x20 | (key_id << 6); 614 hdr[4] = pn[3]; 621 hdr[4] = pn[3]; 615 hdr[5] = pn[2]; 622 hdr[5] = pn[2]; 616 hdr[6] = pn[1]; 623 hdr[6] = pn[1]; 617 hdr[7] = pn[0]; 624 hdr[7] = pn[0]; 618 } 625 } 619 626 620 static inline void gcmp_hdr2pn(u8 *pn, const u 627 static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr) 621 { 628 { 622 pn[0] = hdr[7]; 629 pn[0] = hdr[7]; 623 pn[1] = hdr[6]; 630 pn[1] = hdr[6]; 624 pn[2] = hdr[5]; 631 pn[2] = hdr[5]; 625 pn[3] = hdr[4]; 632 pn[3] = hdr[4]; 626 pn[4] = hdr[1]; 633 pn[4] = hdr[1]; 627 pn[5] = hdr[0]; 634 pn[5] = hdr[0]; 628 } 635 } 629 636 630 static int gcmp_encrypt_skb(struct ieee80211_t 637 static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) 631 { 638 { 632 struct ieee80211_hdr *hdr = (struct ie 639 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 633 struct ieee80211_key *key = tx->key; 640 struct ieee80211_key *key = tx->key; 634 struct ieee80211_tx_info *info = IEEE8 641 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 635 int hdrlen, len, tail; 642 int hdrlen, len, tail; 636 u8 *pos; 643 u8 *pos; 637 u8 pn[6]; 644 u8 pn[6]; 638 u64 pn64; 645 u64 pn64; 639 u8 aad[GCM_AAD_LEN]; 646 u8 aad[GCM_AAD_LEN]; 640 u8 j_0[AES_BLOCK_SIZE]; 647 u8 j_0[AES_BLOCK_SIZE]; 641 648 642 if (info->control.hw_key && 649 if (info->control.hw_key && 643 !(info->control.hw_key->flags & IE 650 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) && 644 !(info->control.hw_key->flags & IE 651 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 645 !((info->control.hw_key->flags & 652 !((info->control.hw_key->flags & 646 IEEE80211_KEY_FLAG_GENERATE_IV_ 653 IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) && 647 ieee80211_is_mgmt(hdr->frame_con 654 ieee80211_is_mgmt(hdr->frame_control))) { 648 /* hwaccel has no need for pre 655 /* hwaccel has no need for preallocated room for GCMP 649 * header or MIC fields 656 * header or MIC fields 650 */ 657 */ 651 return 0; 658 return 0; 652 } 659 } 653 660 654 hdrlen = ieee80211_hdrlen(hdr->frame_c 661 hdrlen = ieee80211_hdrlen(hdr->frame_control); 655 len = skb->len - hdrlen; 662 len = skb->len - hdrlen; 656 663 657 if (info->control.hw_key) 664 if (info->control.hw_key) 658 tail = 0; 665 tail = 0; 659 else 666 else 660 tail = IEEE80211_GCMP_MIC_LEN; 667 tail = IEEE80211_GCMP_MIC_LEN; 661 668 662 if (WARN_ON(skb_tailroom(skb) < tail | 669 if (WARN_ON(skb_tailroom(skb) < tail || 663 skb_headroom(skb) < IEEE80 670 skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN)) 664 return -1; 671 return -1; 665 672 666 pos = skb_push(skb, IEEE80211_GCMP_HDR 673 pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN); 667 memmove(pos, pos + IEEE80211_GCMP_HDR_ 674 memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen); 668 skb_set_network_header(skb, skb_networ 675 skb_set_network_header(skb, skb_network_offset(skb) + 669 IEEE80211_ 676 IEEE80211_GCMP_HDR_LEN); 670 677 671 /* the HW only needs room for the IV, 678 /* the HW only needs room for the IV, but not the actual IV */ 672 if (info->control.hw_key && 679 if (info->control.hw_key && 673 (info->control.hw_key->flags & IEE 680 (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) 674 return 0; 681 return 0; 675 682 >> 683 hdr = (struct ieee80211_hdr *)pos; 676 pos += hdrlen; 684 pos += hdrlen; 677 685 678 pn64 = atomic64_inc_return(&key->conf. 686 pn64 = atomic64_inc_return(&key->conf.tx_pn); 679 687 680 pn[5] = pn64; 688 pn[5] = pn64; 681 pn[4] = pn64 >> 8; 689 pn[4] = pn64 >> 8; 682 pn[3] = pn64 >> 16; 690 pn[3] = pn64 >> 16; 683 pn[2] = pn64 >> 24; 691 pn[2] = pn64 >> 24; 684 pn[1] = pn64 >> 32; 692 pn[1] = pn64 >> 32; 685 pn[0] = pn64 >> 40; 693 pn[0] = pn64 >> 40; 686 694 687 gcmp_pn2hdr(pos, pn, key->conf.keyidx) 695 gcmp_pn2hdr(pos, pn, key->conf.keyidx); 688 696 689 /* hwaccel - with software GCMP header 697 /* hwaccel - with software GCMP header */ 690 if (info->control.hw_key) 698 if (info->control.hw_key) 691 return 0; 699 return 0; 692 700 693 pos += IEEE80211_GCMP_HDR_LEN; 701 pos += IEEE80211_GCMP_HDR_LEN; 694 gcmp_special_blocks(skb, pn, j_0, aad, !! 702 gcmp_special_blocks(skb, pn, j_0, aad); 695 key->conf.flags & << 696 return ieee80211_aes_gcm_encrypt(key-> 703 return ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len, 697 skb_p 704 skb_put(skb, IEEE80211_GCMP_MIC_LEN)); 698 } 705 } 699 706 700 ieee80211_tx_result 707 ieee80211_tx_result 701 ieee80211_crypto_gcmp_encrypt(struct ieee80211 708 ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx) 702 { 709 { 703 struct sk_buff *skb; 710 struct sk_buff *skb; 704 711 705 ieee80211_tx_set_protected(tx); 712 ieee80211_tx_set_protected(tx); 706 713 707 skb_queue_walk(&tx->skbs, skb) { 714 skb_queue_walk(&tx->skbs, skb) { 708 if (gcmp_encrypt_skb(tx, skb) 715 if (gcmp_encrypt_skb(tx, skb) < 0) 709 return TX_DROP; 716 return TX_DROP; 710 } 717 } 711 718 712 return TX_CONTINUE; 719 return TX_CONTINUE; 713 } 720 } 714 721 715 ieee80211_rx_result 722 ieee80211_rx_result 716 ieee80211_crypto_gcmp_decrypt(struct ieee80211 723 ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx) 717 { 724 { 718 struct ieee80211_hdr *hdr = (struct ie 725 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 719 int hdrlen; 726 int hdrlen; 720 struct ieee80211_key *key = rx->key; 727 struct ieee80211_key *key = rx->key; 721 struct sk_buff *skb = rx->skb; 728 struct sk_buff *skb = rx->skb; 722 struct ieee80211_rx_status *status = I 729 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 723 u8 pn[IEEE80211_GCMP_PN_LEN]; 730 u8 pn[IEEE80211_GCMP_PN_LEN]; 724 int data_len, queue, mic_len = IEEE802 731 int data_len, queue, mic_len = IEEE80211_GCMP_MIC_LEN; 725 732 726 hdrlen = ieee80211_hdrlen(hdr->frame_c 733 hdrlen = ieee80211_hdrlen(hdr->frame_control); 727 734 728 if (!ieee80211_is_data(hdr->frame_cont 735 if (!ieee80211_is_data(hdr->frame_control) && 729 !ieee80211_is_robust_mgmt_frame(sk 736 !ieee80211_is_robust_mgmt_frame(skb)) 730 return RX_CONTINUE; 737 return RX_CONTINUE; 731 738 732 if (status->flag & RX_FLAG_DECRYPTED) 739 if (status->flag & RX_FLAG_DECRYPTED) { 733 if (!pskb_may_pull(rx->skb, hd 740 if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN)) 734 return RX_DROP_U_SHORT !! 741 return RX_DROP_UNUSABLE; 735 if (status->flag & RX_FLAG_MIC 742 if (status->flag & RX_FLAG_MIC_STRIPPED) 736 mic_len = 0; 743 mic_len = 0; 737 } else { 744 } else { 738 if (skb_linearize(rx->skb)) 745 if (skb_linearize(rx->skb)) 739 return RX_DROP_U_OOM; !! 746 return RX_DROP_UNUSABLE; 740 } 747 } 741 748 742 /* reload hdr - skb might have been re << 743 hdr = (void *)rx->skb->data; << 744 << 745 data_len = skb->len - hdrlen - IEEE802 749 data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN - mic_len; 746 if (!rx->sta || data_len < 0) 750 if (!rx->sta || data_len < 0) 747 return RX_DROP_U_SHORT_GCMP; !! 751 return RX_DROP_UNUSABLE; 748 752 749 if (!(status->flag & RX_FLAG_PN_VALIDA 753 if (!(status->flag & RX_FLAG_PN_VALIDATED)) { 750 int res; 754 int res; 751 755 752 gcmp_hdr2pn(pn, skb->data + hd 756 gcmp_hdr2pn(pn, skb->data + hdrlen); 753 757 754 queue = rx->security_idx; 758 queue = rx->security_idx; 755 759 756 res = memcmp(pn, key->u.gcmp.r 760 res = memcmp(pn, key->u.gcmp.rx_pn[queue], 757 IEEE80211_GCMP_PN 761 IEEE80211_GCMP_PN_LEN); 758 if (res < 0 || 762 if (res < 0 || 759 (!res && !(status->flag & 763 (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) { 760 key->u.gcmp.replays++; 764 key->u.gcmp.replays++; 761 return RX_DROP_U_REPLA !! 765 return RX_DROP_UNUSABLE; 762 } 766 } 763 767 764 if (!(status->flag & RX_FLAG_D 768 if (!(status->flag & RX_FLAG_DECRYPTED)) { 765 u8 aad[2 * AES_BLOCK_S 769 u8 aad[2 * AES_BLOCK_SIZE]; 766 u8 j_0[AES_BLOCK_SIZE] 770 u8 j_0[AES_BLOCK_SIZE]; 767 /* hardware didn't dec 771 /* hardware didn't decrypt/verify MIC */ 768 gcmp_special_blocks(sk !! 772 gcmp_special_blocks(skb, pn, j_0, aad); 769 ke << 770 773 771 if (ieee80211_aes_gcm_ 774 if (ieee80211_aes_gcm_decrypt( 772 key->u.gcm 775 key->u.gcmp.tfm, j_0, aad, 773 skb->data 776 skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN, 774 data_len, 777 data_len, 775 skb->data 778 skb->data + skb->len - 776 IEEE80211_ 779 IEEE80211_GCMP_MIC_LEN)) 777 return RX_DROP !! 780 return RX_DROP_UNUSABLE; 778 } 781 } 779 782 780 memcpy(key->u.gcmp.rx_pn[queue 783 memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN); 781 if (unlikely(ieee80211_is_frag << 782 memcpy(rx->ccm_gcm.pn, << 783 } 784 } 784 785 785 /* Remove GCMP header and MIC */ 786 /* Remove GCMP header and MIC */ 786 if (pskb_trim(skb, skb->len - mic_len) 787 if (pskb_trim(skb, skb->len - mic_len)) 787 return RX_DROP_U_SHORT_GCMP_MI !! 788 return RX_DROP_UNUSABLE; 788 memmove(skb->data + IEEE80211_GCMP_HDR 789 memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen); 789 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 790 skb_pull(skb, IEEE80211_GCMP_HDR_LEN); 790 791 791 return RX_CONTINUE; 792 return RX_CONTINUE; 792 } 793 } 793 794 >> 795 static ieee80211_tx_result >> 796 ieee80211_crypto_cs_encrypt(struct ieee80211_tx_data *tx, >> 797 struct sk_buff *skb) >> 798 { >> 799 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; >> 800 struct ieee80211_key *key = tx->key; >> 801 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); >> 802 int hdrlen; >> 803 u8 *pos, iv_len = key->conf.iv_len; >> 804 >> 805 if (info->control.hw_key && >> 806 !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { >> 807 /* hwaccel has no need for preallocated head room */ >> 808 return TX_CONTINUE; >> 809 } >> 810 >> 811 if (unlikely(skb_headroom(skb) < iv_len && >> 812 pskb_expand_head(skb, iv_len, 0, GFP_ATOMIC))) >> 813 return TX_DROP; >> 814 >> 815 hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 816 >> 817 pos = skb_push(skb, iv_len); >> 818 memmove(pos, pos + iv_len, hdrlen); >> 819 >> 820 return TX_CONTINUE; >> 821 } >> 822 >> 823 static inline int ieee80211_crypto_cs_pn_compare(u8 *pn1, u8 *pn2, int len) >> 824 { >> 825 int i; >> 826 >> 827 /* pn is little endian */ >> 828 for (i = len - 1; i >= 0; i--) { >> 829 if (pn1[i] < pn2[i]) >> 830 return -1; >> 831 else if (pn1[i] > pn2[i]) >> 832 return 1; >> 833 } >> 834 >> 835 return 0; >> 836 } >> 837 >> 838 static ieee80211_rx_result >> 839 ieee80211_crypto_cs_decrypt(struct ieee80211_rx_data *rx) >> 840 { >> 841 struct ieee80211_key *key = rx->key; >> 842 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; >> 843 const struct ieee80211_cipher_scheme *cs = NULL; >> 844 int hdrlen = ieee80211_hdrlen(hdr->frame_control); >> 845 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); >> 846 int data_len; >> 847 u8 *rx_pn; >> 848 u8 *skb_pn; >> 849 u8 qos_tid; >> 850 >> 851 if (!rx->sta || !rx->sta->cipher_scheme || >> 852 !(status->flag & RX_FLAG_DECRYPTED)) >> 853 return RX_DROP_UNUSABLE; >> 854 >> 855 if (!ieee80211_is_data(hdr->frame_control)) >> 856 return RX_CONTINUE; >> 857 >> 858 cs = rx->sta->cipher_scheme; >> 859 >> 860 data_len = rx->skb->len - hdrlen - cs->hdr_len; >> 861 >> 862 if (data_len < 0) >> 863 return RX_DROP_UNUSABLE; >> 864 >> 865 if (ieee80211_is_data_qos(hdr->frame_control)) >> 866 qos_tid = ieee80211_get_tid(hdr); >> 867 else >> 868 qos_tid = 0; >> 869 >> 870 if (skb_linearize(rx->skb)) >> 871 return RX_DROP_UNUSABLE; >> 872 >> 873 hdr = (struct ieee80211_hdr *)rx->skb->data; >> 874 >> 875 rx_pn = key->u.gen.rx_pn[qos_tid]; >> 876 skb_pn = rx->skb->data + hdrlen + cs->pn_off; >> 877 >> 878 if (ieee80211_crypto_cs_pn_compare(skb_pn, rx_pn, cs->pn_len) <= 0) >> 879 return RX_DROP_UNUSABLE; >> 880 >> 881 memcpy(rx_pn, skb_pn, cs->pn_len); >> 882 >> 883 /* remove security header and MIC */ >> 884 if (pskb_trim(rx->skb, rx->skb->len - cs->mic_len)) >> 885 return RX_DROP_UNUSABLE; >> 886 >> 887 memmove(rx->skb->data + cs->hdr_len, rx->skb->data, hdrlen); >> 888 skb_pull(rx->skb, cs->hdr_len); >> 889 >> 890 return RX_CONTINUE; >> 891 } >> 892 794 static void bip_aad(struct sk_buff *skb, u8 *a 893 static void bip_aad(struct sk_buff *skb, u8 *aad) 795 { 894 { 796 __le16 mask_fc; 895 __le16 mask_fc; 797 struct ieee80211_hdr *hdr = (struct ie 896 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 798 897 799 /* BIP AAD: FC(masked) || A1 || A2 || 898 /* BIP AAD: FC(masked) || A1 || A2 || A3 */ 800 899 801 /* FC type/subtype */ 900 /* FC type/subtype */ 802 /* Mask FC Retry, PwrMgt, MoreData fla 901 /* Mask FC Retry, PwrMgt, MoreData flags to zero */ 803 mask_fc = hdr->frame_control; 902 mask_fc = hdr->frame_control; 804 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL 903 mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM | 805 IEEE80211_FCTL 904 IEEE80211_FCTL_MOREDATA); 806 put_unaligned(mask_fc, (__le16 *) &aad 905 put_unaligned(mask_fc, (__le16 *) &aad[0]); 807 /* A1 || A2 || A3 */ 906 /* A1 || A2 || A3 */ 808 memcpy(aad + 2, &hdr->addrs, 3 * ETH_A !! 907 memcpy(aad + 2, &hdr->addr1, 3 * ETH_ALEN); 809 } 908 } 810 909 811 910 812 static inline void bip_ipn_set64(u8 *d, u64 pn 911 static inline void bip_ipn_set64(u8 *d, u64 pn) 813 { 912 { 814 *d++ = pn; 913 *d++ = pn; 815 *d++ = pn >> 8; 914 *d++ = pn >> 8; 816 *d++ = pn >> 16; 915 *d++ = pn >> 16; 817 *d++ = pn >> 24; 916 *d++ = pn >> 24; 818 *d++ = pn >> 32; 917 *d++ = pn >> 32; 819 *d = pn >> 40; 918 *d = pn >> 40; 820 } 919 } 821 920 822 static inline void bip_ipn_swap(u8 *d, const u 921 static inline void bip_ipn_swap(u8 *d, const u8 *s) 823 { 922 { 824 *d++ = s[5]; 923 *d++ = s[5]; 825 *d++ = s[4]; 924 *d++ = s[4]; 826 *d++ = s[3]; 925 *d++ = s[3]; 827 *d++ = s[2]; 926 *d++ = s[2]; 828 *d++ = s[1]; 927 *d++ = s[1]; 829 *d = s[0]; 928 *d = s[0]; 830 } 929 } 831 930 832 931 833 ieee80211_tx_result 932 ieee80211_tx_result 834 ieee80211_crypto_aes_cmac_encrypt(struct ieee8 933 ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx) 835 { 934 { 836 struct sk_buff *skb; 935 struct sk_buff *skb; 837 struct ieee80211_tx_info *info; 936 struct ieee80211_tx_info *info; 838 struct ieee80211_key *key = tx->key; 937 struct ieee80211_key *key = tx->key; 839 struct ieee80211_mmie *mmie; 938 struct ieee80211_mmie *mmie; 840 u8 aad[20]; 939 u8 aad[20]; 841 u64 pn64; 940 u64 pn64; 842 941 843 if (WARN_ON(skb_queue_len(&tx->skbs) ! 942 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 844 return TX_DROP; 943 return TX_DROP; 845 944 846 skb = skb_peek(&tx->skbs); 945 skb = skb_peek(&tx->skbs); 847 946 848 info = IEEE80211_SKB_CB(skb); 947 info = IEEE80211_SKB_CB(skb); 849 948 850 if (info->control.hw_key && !! 949 if (info->control.hw_key) 851 !(key->conf.flags & IEEE80211_KEY_ << 852 return TX_CONTINUE; 950 return TX_CONTINUE; 853 951 854 if (WARN_ON(skb_tailroom(skb) < sizeof 952 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 855 return TX_DROP; 953 return TX_DROP; 856 954 857 mmie = skb_put(skb, sizeof(*mmie)); 955 mmie = skb_put(skb, sizeof(*mmie)); 858 mmie->element_id = WLAN_EID_MMIE; 956 mmie->element_id = WLAN_EID_MMIE; 859 mmie->length = sizeof(*mmie) - 2; 957 mmie->length = sizeof(*mmie) - 2; 860 mmie->key_id = cpu_to_le16(key->conf.k 958 mmie->key_id = cpu_to_le16(key->conf.keyidx); 861 959 862 /* PN = PN + 1 */ 960 /* PN = PN + 1 */ 863 pn64 = atomic64_inc_return(&key->conf. 961 pn64 = atomic64_inc_return(&key->conf.tx_pn); 864 962 865 bip_ipn_set64(mmie->sequence_number, p 963 bip_ipn_set64(mmie->sequence_number, pn64); 866 964 867 if (info->control.hw_key) << 868 return TX_CONTINUE; << 869 << 870 bip_aad(skb, aad); 965 bip_aad(skb, aad); 871 966 872 /* 967 /* 873 * MIC = AES-128-CMAC(IGTK, AAD || Man 968 * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64) 874 */ 969 */ 875 ieee80211_aes_cmac(key->u.aes_cmac.tfm 970 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 876 skb->data + 24, skb 971 skb->data + 24, skb->len - 24, mmie->mic); 877 972 878 return TX_CONTINUE; 973 return TX_CONTINUE; 879 } 974 } 880 975 881 ieee80211_tx_result 976 ieee80211_tx_result 882 ieee80211_crypto_aes_cmac_256_encrypt(struct i 977 ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx) 883 { 978 { 884 struct sk_buff *skb; 979 struct sk_buff *skb; 885 struct ieee80211_tx_info *info; 980 struct ieee80211_tx_info *info; 886 struct ieee80211_key *key = tx->key; 981 struct ieee80211_key *key = tx->key; 887 struct ieee80211_mmie_16 *mmie; 982 struct ieee80211_mmie_16 *mmie; 888 u8 aad[20]; 983 u8 aad[20]; 889 u64 pn64; 984 u64 pn64; 890 985 891 if (WARN_ON(skb_queue_len(&tx->skbs) ! 986 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 892 return TX_DROP; 987 return TX_DROP; 893 988 894 skb = skb_peek(&tx->skbs); 989 skb = skb_peek(&tx->skbs); 895 990 896 info = IEEE80211_SKB_CB(skb); 991 info = IEEE80211_SKB_CB(skb); 897 992 898 if (info->control.hw_key && !! 993 if (info->control.hw_key) 899 !(key->conf.flags & IEEE80211_KEY_ << 900 return TX_CONTINUE; 994 return TX_CONTINUE; 901 995 902 if (WARN_ON(skb_tailroom(skb) < sizeof 996 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 903 return TX_DROP; 997 return TX_DROP; 904 998 905 mmie = skb_put(skb, sizeof(*mmie)); 999 mmie = skb_put(skb, sizeof(*mmie)); 906 mmie->element_id = WLAN_EID_MMIE; 1000 mmie->element_id = WLAN_EID_MMIE; 907 mmie->length = sizeof(*mmie) - 2; 1001 mmie->length = sizeof(*mmie) - 2; 908 mmie->key_id = cpu_to_le16(key->conf.k 1002 mmie->key_id = cpu_to_le16(key->conf.keyidx); 909 1003 910 /* PN = PN + 1 */ 1004 /* PN = PN + 1 */ 911 pn64 = atomic64_inc_return(&key->conf. 1005 pn64 = atomic64_inc_return(&key->conf.tx_pn); 912 1006 913 bip_ipn_set64(mmie->sequence_number, p 1007 bip_ipn_set64(mmie->sequence_number, pn64); 914 1008 915 if (info->control.hw_key) << 916 return TX_CONTINUE; << 917 << 918 bip_aad(skb, aad); 1009 bip_aad(skb, aad); 919 1010 920 /* MIC = AES-256-CMAC(IGTK, AAD || Man 1011 /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128) 921 */ 1012 */ 922 ieee80211_aes_cmac_256(key->u.aes_cmac 1013 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 923 skb->data + 24, 1014 skb->data + 24, skb->len - 24, mmie->mic); 924 1015 925 return TX_CONTINUE; 1016 return TX_CONTINUE; 926 } 1017 } 927 1018 928 ieee80211_rx_result 1019 ieee80211_rx_result 929 ieee80211_crypto_aes_cmac_decrypt(struct ieee8 1020 ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx) 930 { 1021 { 931 struct sk_buff *skb = rx->skb; 1022 struct sk_buff *skb = rx->skb; 932 struct ieee80211_rx_status *status = I 1023 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 933 struct ieee80211_key *key = rx->key; 1024 struct ieee80211_key *key = rx->key; 934 struct ieee80211_mmie *mmie; 1025 struct ieee80211_mmie *mmie; 935 u8 aad[20], mic[8], ipn[6]; 1026 u8 aad[20], mic[8], ipn[6]; 936 struct ieee80211_hdr *hdr = (struct ie 1027 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 937 1028 938 if (!ieee80211_is_mgmt(hdr->frame_cont 1029 if (!ieee80211_is_mgmt(hdr->frame_control)) 939 return RX_CONTINUE; 1030 return RX_CONTINUE; 940 1031 941 /* management frames are already linea 1032 /* management frames are already linear */ 942 1033 943 if (skb->len < 24 + sizeof(*mmie)) 1034 if (skb->len < 24 + sizeof(*mmie)) 944 return RX_DROP_U_SHORT_CMAC; !! 1035 return RX_DROP_UNUSABLE; 945 1036 946 mmie = (struct ieee80211_mmie *) 1037 mmie = (struct ieee80211_mmie *) 947 (skb->data + skb->len - sizeof 1038 (skb->data + skb->len - sizeof(*mmie)); 948 if (mmie->element_id != WLAN_EID_MMIE 1039 if (mmie->element_id != WLAN_EID_MMIE || 949 mmie->length != sizeof(*mmie) - 2) 1040 mmie->length != sizeof(*mmie) - 2) 950 return RX_DROP_U_BAD_MMIE; /* !! 1041 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 951 1042 952 bip_ipn_swap(ipn, mmie->sequence_numbe 1043 bip_ipn_swap(ipn, mmie->sequence_number); 953 1044 954 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 1045 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 955 key->u.aes_cmac.replays++; 1046 key->u.aes_cmac.replays++; 956 return RX_DROP_U_REPLAY; !! 1047 return RX_DROP_UNUSABLE; 957 } 1048 } 958 1049 959 if (!(status->flag & RX_FLAG_DECRYPTED 1050 if (!(status->flag & RX_FLAG_DECRYPTED)) { 960 /* hardware didn't decrypt/ver 1051 /* hardware didn't decrypt/verify MIC */ 961 bip_aad(skb, aad); 1052 bip_aad(skb, aad); 962 ieee80211_aes_cmac(key->u.aes_ 1053 ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad, 963 skb->data + 1054 skb->data + 24, skb->len - 24, mic); 964 if (crypto_memneq(mic, mmie->m 1055 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 965 key->u.aes_cmac.icverr 1056 key->u.aes_cmac.icverrors++; 966 return RX_DROP_U_MIC_F !! 1057 return RX_DROP_UNUSABLE; 967 } 1058 } 968 } 1059 } 969 1060 970 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1061 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 971 1062 972 /* Remove MMIE */ 1063 /* Remove MMIE */ 973 skb_trim(skb, skb->len - sizeof(*mmie) 1064 skb_trim(skb, skb->len - sizeof(*mmie)); 974 1065 975 return RX_CONTINUE; 1066 return RX_CONTINUE; 976 } 1067 } 977 1068 978 ieee80211_rx_result 1069 ieee80211_rx_result 979 ieee80211_crypto_aes_cmac_256_decrypt(struct i 1070 ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx) 980 { 1071 { 981 struct sk_buff *skb = rx->skb; 1072 struct sk_buff *skb = rx->skb; 982 struct ieee80211_rx_status *status = I 1073 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 983 struct ieee80211_key *key = rx->key; 1074 struct ieee80211_key *key = rx->key; 984 struct ieee80211_mmie_16 *mmie; 1075 struct ieee80211_mmie_16 *mmie; 985 u8 aad[20], mic[16], ipn[6]; 1076 u8 aad[20], mic[16], ipn[6]; 986 struct ieee80211_hdr *hdr = (struct ie 1077 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 987 1078 988 if (!ieee80211_is_mgmt(hdr->frame_cont 1079 if (!ieee80211_is_mgmt(hdr->frame_control)) 989 return RX_CONTINUE; 1080 return RX_CONTINUE; 990 1081 991 /* management frames are already linea 1082 /* management frames are already linear */ 992 1083 993 if (skb->len < 24 + sizeof(*mmie)) 1084 if (skb->len < 24 + sizeof(*mmie)) 994 return RX_DROP_U_SHORT_CMAC256 !! 1085 return RX_DROP_UNUSABLE; 995 1086 996 mmie = (struct ieee80211_mmie_16 *) 1087 mmie = (struct ieee80211_mmie_16 *) 997 (skb->data + skb->len - sizeof 1088 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id != WLAN_EID_MMIE 1089 if (mmie->element_id != WLAN_EID_MMIE || 999 mmie->length != sizeof(*mmie) - 2) 1090 mmie->length != sizeof(*mmie) - 2) 1000 return RX_DROP_U_BAD_MMIE; /* !! 1091 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1001 1092 1002 bip_ipn_swap(ipn, mmie->sequence_numb 1093 bip_ipn_swap(ipn, mmie->sequence_number); 1003 1094 1004 if (memcmp(ipn, key->u.aes_cmac.rx_pn 1095 if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) { 1005 key->u.aes_cmac.replays++; 1096 key->u.aes_cmac.replays++; 1006 return RX_DROP_U_REPLAY; !! 1097 return RX_DROP_UNUSABLE; 1007 } 1098 } 1008 1099 1009 if (!(status->flag & RX_FLAG_DECRYPTE 1100 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1010 /* hardware didn't decrypt/ve 1101 /* hardware didn't decrypt/verify MIC */ 1011 bip_aad(skb, aad); 1102 bip_aad(skb, aad); 1012 ieee80211_aes_cmac_256(key->u 1103 ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad, 1013 skb->d 1104 skb->data + 24, skb->len - 24, mic); 1014 if (crypto_memneq(mic, mmie-> 1105 if (crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1015 key->u.aes_cmac.icver 1106 key->u.aes_cmac.icverrors++; 1016 return RX_DROP_U_MIC_ !! 1107 return RX_DROP_UNUSABLE; 1017 } 1108 } 1018 } 1109 } 1019 1110 1020 memcpy(key->u.aes_cmac.rx_pn, ipn, 6) 1111 memcpy(key->u.aes_cmac.rx_pn, ipn, 6); 1021 1112 1022 /* Remove MMIE */ 1113 /* Remove MMIE */ 1023 skb_trim(skb, skb->len - sizeof(*mmie 1114 skb_trim(skb, skb->len - sizeof(*mmie)); 1024 1115 1025 return RX_CONTINUE; 1116 return RX_CONTINUE; 1026 } 1117 } 1027 1118 1028 ieee80211_tx_result 1119 ieee80211_tx_result 1029 ieee80211_crypto_aes_gmac_encrypt(struct ieee 1120 ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx) 1030 { 1121 { 1031 struct sk_buff *skb; 1122 struct sk_buff *skb; 1032 struct ieee80211_tx_info *info; 1123 struct ieee80211_tx_info *info; 1033 struct ieee80211_key *key = tx->key; 1124 struct ieee80211_key *key = tx->key; 1034 struct ieee80211_mmie_16 *mmie; 1125 struct ieee80211_mmie_16 *mmie; 1035 struct ieee80211_hdr *hdr; 1126 struct ieee80211_hdr *hdr; 1036 u8 aad[GMAC_AAD_LEN]; 1127 u8 aad[GMAC_AAD_LEN]; 1037 u64 pn64; 1128 u64 pn64; 1038 u8 nonce[GMAC_NONCE_LEN]; 1129 u8 nonce[GMAC_NONCE_LEN]; 1039 1130 1040 if (WARN_ON(skb_queue_len(&tx->skbs) 1131 if (WARN_ON(skb_queue_len(&tx->skbs) != 1)) 1041 return TX_DROP; 1132 return TX_DROP; 1042 1133 1043 skb = skb_peek(&tx->skbs); 1134 skb = skb_peek(&tx->skbs); 1044 1135 1045 info = IEEE80211_SKB_CB(skb); 1136 info = IEEE80211_SKB_CB(skb); 1046 1137 1047 if (info->control.hw_key && !! 1138 if (info->control.hw_key) 1048 !(key->conf.flags & IEEE80211_KEY << 1049 return TX_CONTINUE; 1139 return TX_CONTINUE; 1050 1140 1051 if (WARN_ON(skb_tailroom(skb) < sizeo 1141 if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie))) 1052 return TX_DROP; 1142 return TX_DROP; 1053 1143 1054 mmie = skb_put(skb, sizeof(*mmie)); 1144 mmie = skb_put(skb, sizeof(*mmie)); 1055 mmie->element_id = WLAN_EID_MMIE; 1145 mmie->element_id = WLAN_EID_MMIE; 1056 mmie->length = sizeof(*mmie) - 2; 1146 mmie->length = sizeof(*mmie) - 2; 1057 mmie->key_id = cpu_to_le16(key->conf. 1147 mmie->key_id = cpu_to_le16(key->conf.keyidx); 1058 1148 1059 /* PN = PN + 1 */ 1149 /* PN = PN + 1 */ 1060 pn64 = atomic64_inc_return(&key->conf 1150 pn64 = atomic64_inc_return(&key->conf.tx_pn); 1061 1151 1062 bip_ipn_set64(mmie->sequence_number, 1152 bip_ipn_set64(mmie->sequence_number, pn64); 1063 1153 1064 if (info->control.hw_key) << 1065 return TX_CONTINUE; << 1066 << 1067 bip_aad(skb, aad); 1154 bip_aad(skb, aad); 1068 1155 1069 hdr = (struct ieee80211_hdr *)skb->da 1156 hdr = (struct ieee80211_hdr *)skb->data; 1070 memcpy(nonce, hdr->addr2, ETH_ALEN); 1157 memcpy(nonce, hdr->addr2, ETH_ALEN); 1071 bip_ipn_swap(nonce + ETH_ALEN, mmie-> 1158 bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number); 1072 1159 1073 /* MIC = AES-GMAC(IGTK, AAD || Manage 1160 /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */ 1074 if (ieee80211_aes_gmac(key->u.aes_gma 1161 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1075 skb->data + 24 1162 skb->data + 24, skb->len - 24, mmie->mic) < 0) 1076 return TX_DROP; 1163 return TX_DROP; 1077 1164 1078 return TX_CONTINUE; 1165 return TX_CONTINUE; 1079 } 1166 } 1080 1167 1081 ieee80211_rx_result 1168 ieee80211_rx_result 1082 ieee80211_crypto_aes_gmac_decrypt(struct ieee 1169 ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx) 1083 { 1170 { 1084 struct sk_buff *skb = rx->skb; 1171 struct sk_buff *skb = rx->skb; 1085 struct ieee80211_rx_status *status = 1172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1086 struct ieee80211_key *key = rx->key; 1173 struct ieee80211_key *key = rx->key; 1087 struct ieee80211_mmie_16 *mmie; 1174 struct ieee80211_mmie_16 *mmie; 1088 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], n 1175 u8 aad[GMAC_AAD_LEN], *mic, ipn[6], nonce[GMAC_NONCE_LEN]; 1089 struct ieee80211_hdr *hdr = (struct i 1176 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1090 1177 1091 if (!ieee80211_is_mgmt(hdr->frame_con 1178 if (!ieee80211_is_mgmt(hdr->frame_control)) 1092 return RX_CONTINUE; 1179 return RX_CONTINUE; 1093 1180 1094 /* management frames are already line 1181 /* management frames are already linear */ 1095 1182 1096 if (skb->len < 24 + sizeof(*mmie)) 1183 if (skb->len < 24 + sizeof(*mmie)) 1097 return RX_DROP_U_SHORT_GMAC; !! 1184 return RX_DROP_UNUSABLE; 1098 1185 1099 mmie = (struct ieee80211_mmie_16 *) 1186 mmie = (struct ieee80211_mmie_16 *) 1100 (skb->data + skb->len - sizeo 1187 (skb->data + skb->len - sizeof(*mmie)); 1101 if (mmie->element_id != WLAN_EID_MMIE 1188 if (mmie->element_id != WLAN_EID_MMIE || 1102 mmie->length != sizeof(*mmie) - 2 1189 mmie->length != sizeof(*mmie) - 2) 1103 return RX_DROP_U_BAD_MMIE; /* !! 1190 return RX_DROP_UNUSABLE; /* Invalid MMIE */ 1104 1191 1105 bip_ipn_swap(ipn, mmie->sequence_numb 1192 bip_ipn_swap(ipn, mmie->sequence_number); 1106 1193 1107 if (memcmp(ipn, key->u.aes_gmac.rx_pn 1194 if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) { 1108 key->u.aes_gmac.replays++; 1195 key->u.aes_gmac.replays++; 1109 return RX_DROP_U_REPLAY; !! 1196 return RX_DROP_UNUSABLE; 1110 } 1197 } 1111 1198 1112 if (!(status->flag & RX_FLAG_DECRYPTE 1199 if (!(status->flag & RX_FLAG_DECRYPTED)) { 1113 /* hardware didn't decrypt/ve 1200 /* hardware didn't decrypt/verify MIC */ 1114 bip_aad(skb, aad); 1201 bip_aad(skb, aad); 1115 1202 1116 memcpy(nonce, hdr->addr2, ETH 1203 memcpy(nonce, hdr->addr2, ETH_ALEN); 1117 memcpy(nonce + ETH_ALEN, ipn, 1204 memcpy(nonce + ETH_ALEN, ipn, 6); 1118 1205 1119 mic = kmalloc(GMAC_MIC_LEN, G 1206 mic = kmalloc(GMAC_MIC_LEN, GFP_ATOMIC); 1120 if (!mic) 1207 if (!mic) 1121 return RX_DROP_U_OOM; !! 1208 return RX_DROP_UNUSABLE; 1122 if (ieee80211_aes_gmac(key->u 1209 if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce, 1123 skb->d 1210 skb->data + 24, skb->len - 24, 1124 mic) < 1211 mic) < 0 || 1125 crypto_memneq(mic, mmie-> 1212 crypto_memneq(mic, mmie->mic, sizeof(mmie->mic))) { 1126 key->u.aes_gmac.icver 1213 key->u.aes_gmac.icverrors++; 1127 kfree(mic); 1214 kfree(mic); 1128 return RX_DROP_U_MIC_ !! 1215 return RX_DROP_UNUSABLE; 1129 } 1216 } 1130 kfree(mic); 1217 kfree(mic); 1131 } 1218 } 1132 1219 1133 memcpy(key->u.aes_gmac.rx_pn, ipn, 6) 1220 memcpy(key->u.aes_gmac.rx_pn, ipn, 6); 1134 1221 1135 /* Remove MMIE */ 1222 /* Remove MMIE */ 1136 skb_trim(skb, skb->len - sizeof(*mmie 1223 skb_trim(skb, skb->len - sizeof(*mmie)); 1137 1224 1138 return RX_CONTINUE; 1225 return RX_CONTINUE; >> 1226 } >> 1227 >> 1228 ieee80211_tx_result >> 1229 ieee80211_crypto_hw_encrypt(struct ieee80211_tx_data *tx) >> 1230 { >> 1231 struct sk_buff *skb; >> 1232 struct ieee80211_tx_info *info = NULL; >> 1233 ieee80211_tx_result res; >> 1234 >> 1235 skb_queue_walk(&tx->skbs, skb) { >> 1236 info = IEEE80211_SKB_CB(skb); >> 1237 >> 1238 /* handle hw-only algorithm */ >> 1239 if (!info->control.hw_key) >> 1240 return TX_DROP; >> 1241 >> 1242 if (tx->key->flags & KEY_FLAG_CIPHER_SCHEME) { >> 1243 res = ieee80211_crypto_cs_encrypt(tx, skb); >> 1244 if (res != TX_CONTINUE) >> 1245 return res; >> 1246 } >> 1247 } >> 1248 >> 1249 ieee80211_tx_set_protected(tx); >> 1250 >> 1251 return TX_CONTINUE; >> 1252 } >> 1253 >> 1254 ieee80211_rx_result >> 1255 ieee80211_crypto_hw_decrypt(struct ieee80211_rx_data *rx) >> 1256 { >> 1257 if (rx->sta && rx->sta->cipher_scheme) >> 1258 return ieee80211_crypto_cs_decrypt(rx); >> 1259 >> 1260 return RX_DROP_UNUSABLE; 1139 } 1261 } 1140 1262
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.