1 /* 1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its !! 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 3 * 4 * This software is available to you under a c 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed un 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, ava 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this sourc 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 8 * OpenIB.org BSD license below: 9 * 9 * 10 * Redistribution and use in source and bi 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted pro 11 * without modification, are permitted provided that the following 12 * conditions are met: 12 * conditions are met: 13 * 13 * 14 * - Redistributions of source code must 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of condi 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 16 * disclaimer. 17 * 17 * 18 * - Redistributions in binary form must 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of condi 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/ 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 21 * provided with the distribution. 22 * 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT W 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR P 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTH 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER L 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 30 * SOFTWARE. 31 * 31 * 32 */ 32 */ 33 #include <linux/kernel.h> 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 34 #include <linux/slab.h> 35 #include <linux/in.h> 35 #include <linux/in.h> 36 #include <linux/module.h> 36 #include <linux/module.h> 37 #include <net/tcp.h> 37 #include <net/tcp.h> 38 #include <net/net_namespace.h> 38 #include <net/net_namespace.h> 39 #include <net/netns/generic.h> 39 #include <net/netns/generic.h> 40 #include <net/addrconf.h> << 41 40 42 #include "rds.h" 41 #include "rds.h" 43 #include "tcp.h" 42 #include "tcp.h" 44 43 45 /* only for info exporting */ 44 /* only for info exporting */ 46 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); 45 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); 47 static LIST_HEAD(rds_tcp_tc_list); 46 static LIST_HEAD(rds_tcp_tc_list); 48 << 49 /* rds_tcp_tc_count counts only IPv4 connectio << 50 * rds6_tcp_tc_count counts both IPv4 and IPv6 << 51 */ << 52 static unsigned int rds_tcp_tc_count; 47 static unsigned int rds_tcp_tc_count; 53 #if IS_ENABLED(CONFIG_IPV6) << 54 static unsigned int rds6_tcp_tc_count; << 55 #endif << 56 48 57 /* Track rds_tcp_connection structs so they ca 49 /* Track rds_tcp_connection structs so they can be cleaned up */ 58 static DEFINE_SPINLOCK(rds_tcp_conn_lock); 50 static DEFINE_SPINLOCK(rds_tcp_conn_lock); 59 static LIST_HEAD(rds_tcp_conn_list); 51 static LIST_HEAD(rds_tcp_conn_list); 60 static atomic_t rds_tcp_unloading = ATOMIC_INI << 61 52 62 static struct kmem_cache *rds_tcp_conn_slab; 53 static struct kmem_cache *rds_tcp_conn_slab; 63 54 64 static int rds_tcp_skbuf_handler(const struct !! 55 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, 65 void *buffer, !! 56 void __user *buffer, size_t *lenp, >> 57 loff_t *fpos); 66 58 67 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBU 59 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; 68 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBU 60 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; 69 61 70 static struct ctl_table rds_tcp_sysctl_table[] 62 static struct ctl_table rds_tcp_sysctl_table[] = { 71 #define RDS_TCP_SNDBUF 0 63 #define RDS_TCP_SNDBUF 0 72 { 64 { 73 .procname = "rds_tcp_snd 65 .procname = "rds_tcp_sndbuf", 74 /* data is per-net pointer */ 66 /* data is per-net pointer */ 75 .maxlen = sizeof(int), 67 .maxlen = sizeof(int), 76 .mode = 0644, 68 .mode = 0644, 77 .proc_handler = rds_tcp_skbu 69 .proc_handler = rds_tcp_skbuf_handler, 78 .extra1 = &rds_tcp_min 70 .extra1 = &rds_tcp_min_sndbuf, 79 }, 71 }, 80 #define RDS_TCP_RCVBUF 1 72 #define RDS_TCP_RCVBUF 1 81 { 73 { 82 .procname = "rds_tcp_rcv 74 .procname = "rds_tcp_rcvbuf", 83 /* data is per-net pointer */ 75 /* data is per-net pointer */ 84 .maxlen = sizeof(int), 76 .maxlen = sizeof(int), 85 .mode = 0644, 77 .mode = 0644, 86 .proc_handler = rds_tcp_skbu 78 .proc_handler = rds_tcp_skbuf_handler, 87 .extra1 = &rds_tcp_min 79 .extra1 = &rds_tcp_min_rcvbuf, 88 }, 80 }, >> 81 { } 89 }; 82 }; 90 83 91 u32 rds_tcp_write_seq(struct rds_tcp_connectio !! 84 /* doing it this way avoids calling tcp_sk() */ >> 85 void rds_tcp_nonagle(struct socket *sock) >> 86 { >> 87 mm_segment_t oldfs = get_fs(); >> 88 int val = 1; >> 89 >> 90 set_fs(KERNEL_DS); >> 91 sock->ops->setsockopt(sock, SOL_TCP, TCP_NODELAY, (char __user *)&val, >> 92 sizeof(val)); >> 93 set_fs(oldfs); >> 94 } >> 95 >> 96 u32 rds_tcp_snd_nxt(struct rds_tcp_connection *tc) 92 { 97 { 93 /* seq# of the last byte of data in tc !! 98 return tcp_sk(tc->t_sock->sk)->snd_nxt; 94 return tcp_sk(tc->t_sock->sk)->write_s << 95 } 99 } 96 100 97 u32 rds_tcp_snd_una(struct rds_tcp_connection 101 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) 98 { 102 { 99 return tcp_sk(tc->t_sock->sk)->snd_una 103 return tcp_sk(tc->t_sock->sk)->snd_una; 100 } 104 } 101 105 102 void rds_tcp_restore_callbacks(struct socket * 106 void rds_tcp_restore_callbacks(struct socket *sock, 103 struct rds_tcp_ 107 struct rds_tcp_connection *tc) 104 { 108 { 105 rdsdebug("restoring sock %p callbacks 109 rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); 106 write_lock_bh(&sock->sk->sk_callback_l 110 write_lock_bh(&sock->sk->sk_callback_lock); 107 111 108 /* done under the callback_lock to ser 112 /* done under the callback_lock to serialize with write_space */ 109 spin_lock(&rds_tcp_tc_list_lock); 113 spin_lock(&rds_tcp_tc_list_lock); 110 list_del_init(&tc->t_list_item); 114 list_del_init(&tc->t_list_item); 111 #if IS_ENABLED(CONFIG_IPV6) !! 115 rds_tcp_tc_count--; 112 rds6_tcp_tc_count--; << 113 #endif << 114 if (!tc->t_cpath->cp_conn->c_isv6) << 115 rds_tcp_tc_count--; << 116 spin_unlock(&rds_tcp_tc_list_lock); 116 spin_unlock(&rds_tcp_tc_list_lock); 117 117 118 tc->t_sock = NULL; 118 tc->t_sock = NULL; 119 119 120 sock->sk->sk_write_space = tc->t_orig_ 120 sock->sk->sk_write_space = tc->t_orig_write_space; 121 sock->sk->sk_data_ready = tc->t_orig_d 121 sock->sk->sk_data_ready = tc->t_orig_data_ready; 122 sock->sk->sk_state_change = tc->t_orig 122 sock->sk->sk_state_change = tc->t_orig_state_change; 123 sock->sk->sk_user_data = NULL; 123 sock->sk->sk_user_data = NULL; 124 124 125 write_unlock_bh(&sock->sk->sk_callback 125 write_unlock_bh(&sock->sk->sk_callback_lock); 126 } 126 } 127 127 128 /* 128 /* 129 * rds_tcp_reset_callbacks() switches the to t 129 * rds_tcp_reset_callbacks() switches the to the new sock and 130 * returns the existing tc->t_sock. 130 * returns the existing tc->t_sock. 131 * 131 * 132 * The only functions that set tc->t_sock are 132 * The only functions that set tc->t_sock are rds_tcp_set_callbacks 133 * and rds_tcp_reset_callbacks. Send and rece 133 * and rds_tcp_reset_callbacks. Send and receive trust that 134 * it is set. The absence of RDS_CONN_UP bit 134 * it is set. The absence of RDS_CONN_UP bit protects those paths 135 * from being called while it isn't set. 135 * from being called while it isn't set. 136 */ 136 */ 137 void rds_tcp_reset_callbacks(struct socket *so 137 void rds_tcp_reset_callbacks(struct socket *sock, 138 struct rds_conn_p 138 struct rds_conn_path *cp) 139 { 139 { 140 struct rds_tcp_connection *tc = cp->cp 140 struct rds_tcp_connection *tc = cp->cp_transport_data; 141 struct socket *osock = tc->t_sock; 141 struct socket *osock = tc->t_sock; 142 142 143 if (!osock) 143 if (!osock) 144 goto newsock; 144 goto newsock; 145 145 146 /* Need to resolve a duelling SYN betw 146 /* Need to resolve a duelling SYN between peers. 147 * We have an outstanding SYN to this 147 * We have an outstanding SYN to this peer, which may 148 * potentially have transitioned to th 148 * potentially have transitioned to the RDS_CONN_UP state, 149 * so we must quiesce any send threads 149 * so we must quiesce any send threads before resetting 150 * cp_transport_data. We quiesce these 150 * cp_transport_data. We quiesce these threads by setting 151 * cp_state to something other than RD 151 * cp_state to something other than RDS_CONN_UP, and then 152 * waiting for any existing threads in 152 * waiting for any existing threads in rds_send_xmit to 153 * complete release_in_xmit(). (Subseq 153 * complete release_in_xmit(). (Subsequent threads entering 154 * rds_send_xmit() will bail on !rds_c 154 * rds_send_xmit() will bail on !rds_conn_up(). 155 * 155 * 156 * However an incoming syn-ack at this 156 * However an incoming syn-ack at this point would end up 157 * marking the conn as RDS_CONN_UP, an 157 * marking the conn as RDS_CONN_UP, and would again permit 158 * rds_send_xmi() threads through, so 158 * rds_send_xmi() threads through, so ideally we would 159 * synchronize on RDS_CONN_UP after lo 159 * synchronize on RDS_CONN_UP after lock_sock(), but cannot 160 * do that: waiting on !RDS_IN_XMIT af 160 * do that: waiting on !RDS_IN_XMIT after lock_sock() may 161 * end up deadlocking with tcp_sendmsg 161 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT 162 * would not get set. As a result, we 162 * would not get set. As a result, we set c_state to 163 * RDS_CONN_RESETTTING, to ensure that 163 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change 164 * cannot mark rds_conn_path_up() in t 164 * cannot mark rds_conn_path_up() in the window before lock_sock() 165 */ 165 */ 166 atomic_set(&cp->cp_state, RDS_CONN_RES 166 atomic_set(&cp->cp_state, RDS_CONN_RESETTING); 167 wait_event(cp->cp_waitq, !test_bit(RDS 167 wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); >> 168 lock_sock(osock->sk); 168 /* reset receive side state for rds_tc 169 /* reset receive side state for rds_tcp_data_recv() for osock */ 169 cancel_delayed_work_sync(&cp->cp_send_ 170 cancel_delayed_work_sync(&cp->cp_send_w); 170 cancel_delayed_work_sync(&cp->cp_recv_ 171 cancel_delayed_work_sync(&cp->cp_recv_w); 171 lock_sock(osock->sk); << 172 if (tc->t_tinc) { 172 if (tc->t_tinc) { 173 rds_inc_put(&tc->t_tinc->ti_in 173 rds_inc_put(&tc->t_tinc->ti_inc); 174 tc->t_tinc = NULL; 174 tc->t_tinc = NULL; 175 } 175 } 176 tc->t_tinc_hdr_rem = sizeof(struct rds 176 tc->t_tinc_hdr_rem = sizeof(struct rds_header); 177 tc->t_tinc_data_rem = 0; 177 tc->t_tinc_data_rem = 0; 178 rds_tcp_restore_callbacks(osock, tc); 178 rds_tcp_restore_callbacks(osock, tc); 179 release_sock(osock->sk); 179 release_sock(osock->sk); 180 sock_release(osock); 180 sock_release(osock); 181 newsock: 181 newsock: 182 rds_send_path_reset(cp); 182 rds_send_path_reset(cp); 183 lock_sock(sock->sk); 183 lock_sock(sock->sk); 184 rds_tcp_set_callbacks(sock, cp); 184 rds_tcp_set_callbacks(sock, cp); 185 release_sock(sock->sk); 185 release_sock(sock->sk); 186 } 186 } 187 187 188 /* Add tc to rds_tcp_tc_list and set tc->t_soc 188 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments 189 * above rds_tcp_reset_callbacks for notes abo 189 * above rds_tcp_reset_callbacks for notes about synchronization 190 * with data path 190 * with data path 191 */ 191 */ 192 void rds_tcp_set_callbacks(struct socket *sock 192 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) 193 { 193 { 194 struct rds_tcp_connection *tc = cp->cp 194 struct rds_tcp_connection *tc = cp->cp_transport_data; 195 195 196 rdsdebug("setting sock %p callbacks to 196 rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); 197 write_lock_bh(&sock->sk->sk_callback_l 197 write_lock_bh(&sock->sk->sk_callback_lock); 198 198 199 /* done under the callback_lock to ser 199 /* done under the callback_lock to serialize with write_space */ 200 spin_lock(&rds_tcp_tc_list_lock); 200 spin_lock(&rds_tcp_tc_list_lock); 201 list_add_tail(&tc->t_list_item, &rds_t 201 list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); 202 #if IS_ENABLED(CONFIG_IPV6) !! 202 rds_tcp_tc_count++; 203 rds6_tcp_tc_count++; << 204 #endif << 205 if (!tc->t_cpath->cp_conn->c_isv6) << 206 rds_tcp_tc_count++; << 207 spin_unlock(&rds_tcp_tc_list_lock); 203 spin_unlock(&rds_tcp_tc_list_lock); 208 204 209 /* accepted sockets need our listen da 205 /* accepted sockets need our listen data ready undone */ 210 if (sock->sk->sk_data_ready == rds_tcp 206 if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) 211 sock->sk->sk_data_ready = sock 207 sock->sk->sk_data_ready = sock->sk->sk_user_data; 212 208 213 tc->t_sock = sock; 209 tc->t_sock = sock; 214 tc->t_cpath = cp; 210 tc->t_cpath = cp; 215 tc->t_orig_data_ready = sock->sk->sk_d 211 tc->t_orig_data_ready = sock->sk->sk_data_ready; 216 tc->t_orig_write_space = sock->sk->sk_ 212 tc->t_orig_write_space = sock->sk->sk_write_space; 217 tc->t_orig_state_change = sock->sk->sk 213 tc->t_orig_state_change = sock->sk->sk_state_change; 218 214 219 sock->sk->sk_user_data = cp; 215 sock->sk->sk_user_data = cp; 220 sock->sk->sk_data_ready = rds_tcp_data 216 sock->sk->sk_data_ready = rds_tcp_data_ready; 221 sock->sk->sk_write_space = rds_tcp_wri 217 sock->sk->sk_write_space = rds_tcp_write_space; 222 sock->sk->sk_state_change = rds_tcp_st 218 sock->sk->sk_state_change = rds_tcp_state_change; 223 219 224 write_unlock_bh(&sock->sk->sk_callback 220 write_unlock_bh(&sock->sk->sk_callback_lock); 225 } 221 } 226 222 227 /* Handle RDS_INFO_TCP_SOCKETS socket option. << 228 * connections for backward compatibility. << 229 */ << 230 static void rds_tcp_tc_info(struct socket *rds 223 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, 231 struct rds_info_it 224 struct rds_info_iterator *iter, 232 struct rds_info_le 225 struct rds_info_lengths *lens) 233 { 226 { 234 struct rds_info_tcp_socket tsinfo; 227 struct rds_info_tcp_socket tsinfo; 235 struct rds_tcp_connection *tc; 228 struct rds_tcp_connection *tc; 236 unsigned long flags; 229 unsigned long flags; >> 230 struct sockaddr_in sin; >> 231 int sinlen; >> 232 struct socket *sock; 237 233 238 spin_lock_irqsave(&rds_tcp_tc_list_loc 234 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); 239 235 240 if (len / sizeof(tsinfo) < rds_tcp_tc_ 236 if (len / sizeof(tsinfo) < rds_tcp_tc_count) 241 goto out; 237 goto out; 242 238 243 list_for_each_entry(tc, &rds_tcp_tc_li 239 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { 244 struct inet_sock *inet = inet_ << 245 << 246 if (tc->t_cpath->cp_conn->c_is << 247 continue; << 248 240 249 tsinfo.local_addr = inet->inet !! 241 sock = tc->t_sock; 250 tsinfo.local_port = inet->inet !! 242 if (sock) { 251 tsinfo.peer_addr = inet->inet_ !! 243 sock->ops->getname(sock, (struct sockaddr *)&sin, 252 tsinfo.peer_port = inet->inet_ !! 244 &sinlen, 0); >> 245 tsinfo.local_addr = sin.sin_addr.s_addr; >> 246 tsinfo.local_port = sin.sin_port; >> 247 sock->ops->getname(sock, (struct sockaddr *)&sin, >> 248 &sinlen, 1); >> 249 tsinfo.peer_addr = sin.sin_addr.s_addr; >> 250 tsinfo.peer_port = sin.sin_port; >> 251 } 253 252 254 tsinfo.hdr_rem = tc->t_tinc_hd 253 tsinfo.hdr_rem = tc->t_tinc_hdr_rem; 255 tsinfo.data_rem = tc->t_tinc_d 254 tsinfo.data_rem = tc->t_tinc_data_rem; 256 tsinfo.last_sent_nxt = tc->t_l 255 tsinfo.last_sent_nxt = tc->t_last_sent_nxt; 257 tsinfo.last_expected_una = tc- 256 tsinfo.last_expected_una = tc->t_last_expected_una; 258 tsinfo.last_seen_una = tc->t_l 257 tsinfo.last_seen_una = tc->t_last_seen_una; 259 tsinfo.tos = tc->t_cpath->cp_c << 260 258 261 rds_info_copy(iter, &tsinfo, s 259 rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); 262 } 260 } 263 261 264 out: 262 out: 265 lens->nr = rds_tcp_tc_count; 263 lens->nr = rds_tcp_tc_count; 266 lens->each = sizeof(tsinfo); 264 lens->each = sizeof(tsinfo); 267 265 268 spin_unlock_irqrestore(&rds_tcp_tc_lis 266 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); 269 } 267 } 270 268 271 #if IS_ENABLED(CONFIG_IPV6) !! 269 static int rds_tcp_laddr_check(struct net *net, __be32 addr) 272 /* Handle RDS6_INFO_TCP_SOCKETS socket option. << 273 * IPv6 connections. IPv4 connection address i << 274 * address. << 275 */ << 276 static void rds6_tcp_tc_info(struct socket *so << 277 struct rds_info_i << 278 struct rds_info_l << 279 { << 280 struct rds6_info_tcp_socket tsinfo6; << 281 struct rds_tcp_connection *tc; << 282 unsigned long flags; << 283 << 284 spin_lock_irqsave(&rds_tcp_tc_list_loc << 285 << 286 if (len / sizeof(tsinfo6) < rds6_tcp_t << 287 goto out; << 288 << 289 list_for_each_entry(tc, &rds_tcp_tc_li << 290 struct sock *sk = tc->t_sock-> << 291 struct inet_sock *inet = inet_ << 292 << 293 tsinfo6.local_addr = sk->sk_v6 << 294 tsinfo6.local_port = inet->ine << 295 tsinfo6.peer_addr = sk->sk_v6_ << 296 tsinfo6.peer_port = inet->inet << 297 << 298 tsinfo6.hdr_rem = tc->t_tinc_h << 299 tsinfo6.data_rem = tc->t_tinc_ << 300 tsinfo6.last_sent_nxt = tc->t_ << 301 tsinfo6.last_expected_una = tc << 302 tsinfo6.last_seen_una = tc->t_ << 303 << 304 rds_info_copy(iter, &tsinfo6, << 305 } << 306 << 307 out: << 308 lens->nr = rds6_tcp_tc_count; << 309 lens->each = sizeof(tsinfo6); << 310 << 311 spin_unlock_irqrestore(&rds_tcp_tc_lis << 312 } << 313 #endif << 314 << 315 int rds_tcp_laddr_check(struct net *net, const << 316 __u32 scope_id) << 317 { 270 { 318 struct net_device *dev = NULL; !! 271 if (inet_addr_type(net, addr) == RTN_LOCAL) 319 #if IS_ENABLED(CONFIG_IPV6) << 320 int ret; << 321 #endif << 322 << 323 if (ipv6_addr_v4mapped(addr)) { << 324 if (inet_addr_type(net, addr-> << 325 return 0; << 326 return -EADDRNOTAVAIL; << 327 } << 328 << 329 /* If the scope_id is specified, check << 330 * hosted on the specified interface. << 331 */ << 332 if (scope_id != 0) { << 333 rcu_read_lock(); << 334 dev = dev_get_by_index_rcu(net << 335 /* scope_id is not valid... */ << 336 if (!dev) { << 337 rcu_read_unlock(); << 338 return -EADDRNOTAVAIL; << 339 } << 340 rcu_read_unlock(); << 341 } << 342 #if IS_ENABLED(CONFIG_IPV6) << 343 ret = ipv6_chk_addr(net, addr, dev, 0) << 344 if (ret) << 345 return 0; 272 return 0; 346 #endif << 347 return -EADDRNOTAVAIL; 273 return -EADDRNOTAVAIL; 348 } 274 } 349 275 350 static void rds_tcp_conn_free(void *arg) << 351 { << 352 struct rds_tcp_connection *tc = arg; << 353 unsigned long flags; << 354 << 355 rdsdebug("freeing tc %p\n", tc); << 356 << 357 spin_lock_irqsave(&rds_tcp_conn_lock, << 358 if (!tc->t_tcp_node_detached) << 359 list_del(&tc->t_tcp_node); << 360 spin_unlock_irqrestore(&rds_tcp_conn_l << 361 << 362 kmem_cache_free(rds_tcp_conn_slab, tc) << 363 } << 364 << 365 static int rds_tcp_conn_alloc(struct rds_conne 276 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) 366 { 277 { 367 struct rds_tcp_connection *tc; 278 struct rds_tcp_connection *tc; 368 int i, j; !! 279 int i; 369 int ret = 0; << 370 280 371 for (i = 0; i < RDS_MPATH_WORKERS; i++ 281 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 372 tc = kmem_cache_alloc(rds_tcp_ 282 tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); 373 if (!tc) { !! 283 if (!tc) 374 ret = -ENOMEM; !! 284 return -ENOMEM; 375 goto fail; !! 285 376 } << 377 mutex_init(&tc->t_conn_path_lo 286 mutex_init(&tc->t_conn_path_lock); 378 tc->t_sock = NULL; 287 tc->t_sock = NULL; 379 tc->t_tinc = NULL; 288 tc->t_tinc = NULL; 380 tc->t_tinc_hdr_rem = sizeof(st 289 tc->t_tinc_hdr_rem = sizeof(struct rds_header); 381 tc->t_tinc_data_rem = 0; 290 tc->t_tinc_data_rem = 0; 382 291 383 conn->c_path[i].cp_transport_d 292 conn->c_path[i].cp_transport_data = tc; 384 tc->t_cpath = &conn->c_path[i] 293 tc->t_cpath = &conn->c_path[i]; 385 tc->t_tcp_node_detached = true << 386 294 >> 295 spin_lock_irq(&rds_tcp_conn_lock); >> 296 list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); >> 297 spin_unlock_irq(&rds_tcp_conn_lock); 387 rdsdebug("rds_conn_path [%d] t 298 rdsdebug("rds_conn_path [%d] tc %p\n", i, 388 conn->c_path[i].cp_tr 299 conn->c_path[i].cp_transport_data); 389 } 300 } 390 spin_lock_irq(&rds_tcp_conn_lock); !! 301 391 for (i = 0; i < RDS_MPATH_WORKERS; i++ !! 302 return 0; 392 tc = conn->c_path[i].cp_transp !! 303 } 393 tc->t_tcp_node_detached = fals !! 304 394 list_add_tail(&tc->t_tcp_node, !! 305 static void rds_tcp_conn_free(void *arg) 395 } !! 306 { 396 spin_unlock_irq(&rds_tcp_conn_lock); !! 307 struct rds_tcp_connection *tc = arg; 397 fail: !! 308 unsigned long flags; 398 if (ret) { !! 309 rdsdebug("freeing tc %p\n", tc); 399 for (j = 0; j < i; j++) !! 310 400 rds_tcp_conn_free(conn !! 311 spin_lock_irqsave(&rds_tcp_conn_lock, flags); 401 } !! 312 list_del(&tc->t_tcp_node); 402 return ret; !! 313 spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); >> 314 >> 315 kmem_cache_free(rds_tcp_conn_slab, tc); 403 } 316 } 404 317 405 static bool list_has_conn(struct list_head *li 318 static bool list_has_conn(struct list_head *list, struct rds_connection *conn) 406 { 319 { 407 struct rds_tcp_connection *tc, *_tc; 320 struct rds_tcp_connection *tc, *_tc; 408 321 409 list_for_each_entry_safe(tc, _tc, list 322 list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { 410 if (tc->t_cpath->cp_conn == co 323 if (tc->t_cpath->cp_conn == conn) 411 return true; 324 return true; 412 } 325 } 413 return false; 326 return false; 414 } 327 } 415 328 416 static void rds_tcp_set_unloading(void) << 417 { << 418 atomic_set(&rds_tcp_unloading, 1); << 419 } << 420 << 421 static bool rds_tcp_is_unloading(struct rds_co << 422 { << 423 return atomic_read(&rds_tcp_unloading) << 424 } << 425 << 426 static void rds_tcp_destroy_conns(void) 329 static void rds_tcp_destroy_conns(void) 427 { 330 { 428 struct rds_tcp_connection *tc, *_tc; 331 struct rds_tcp_connection *tc, *_tc; 429 LIST_HEAD(tmp_list); 332 LIST_HEAD(tmp_list); 430 333 431 /* avoid calling conn_destroy with irq 334 /* avoid calling conn_destroy with irqs off */ 432 spin_lock_irq(&rds_tcp_conn_lock); 335 spin_lock_irq(&rds_tcp_conn_lock); 433 list_for_each_entry_safe(tc, _tc, &rds 336 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 434 if (!list_has_conn(&tmp_list, 337 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) 435 list_move_tail(&tc->t_ 338 list_move_tail(&tc->t_tcp_node, &tmp_list); 436 } 339 } 437 spin_unlock_irq(&rds_tcp_conn_lock); 340 spin_unlock_irq(&rds_tcp_conn_lock); 438 341 439 list_for_each_entry_safe(tc, _tc, &tmp 342 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) 440 rds_conn_destroy(tc->t_cpath-> 343 rds_conn_destroy(tc->t_cpath->cp_conn); 441 } 344 } 442 345 443 static void rds_tcp_exit(void); 346 static void rds_tcp_exit(void); 444 347 445 static u8 rds_tcp_get_tos_map(u8 tos) << 446 { << 447 /* all user tos mapped to default 0 fo << 448 return 0; << 449 } << 450 << 451 struct rds_transport rds_tcp_transport = { 348 struct rds_transport rds_tcp_transport = { 452 .laddr_check = rds_tcp_ladd 349 .laddr_check = rds_tcp_laddr_check, 453 .xmit_path_prepare = rds_tcp_xmit 350 .xmit_path_prepare = rds_tcp_xmit_path_prepare, 454 .xmit_path_complete = rds_tcp_xmit 351 .xmit_path_complete = rds_tcp_xmit_path_complete, 455 .xmit = rds_tcp_xmit 352 .xmit = rds_tcp_xmit, 456 .recv_path = rds_tcp_recv 353 .recv_path = rds_tcp_recv_path, 457 .conn_alloc = rds_tcp_conn 354 .conn_alloc = rds_tcp_conn_alloc, 458 .conn_free = rds_tcp_conn 355 .conn_free = rds_tcp_conn_free, 459 .conn_path_connect = rds_tcp_conn 356 .conn_path_connect = rds_tcp_conn_path_connect, 460 .conn_path_shutdown = rds_tcp_conn 357 .conn_path_shutdown = rds_tcp_conn_path_shutdown, 461 .inc_copy_to_user = rds_tcp_inc_ 358 .inc_copy_to_user = rds_tcp_inc_copy_to_user, 462 .inc_free = rds_tcp_inc_ 359 .inc_free = rds_tcp_inc_free, 463 .stats_info_copy = rds_tcp_stat 360 .stats_info_copy = rds_tcp_stats_info_copy, 464 .exit = rds_tcp_exit 361 .exit = rds_tcp_exit, 465 .get_tos_map = rds_tcp_get_ << 466 .t_owner = THIS_MODULE, 362 .t_owner = THIS_MODULE, 467 .t_name = "tcp", 363 .t_name = "tcp", 468 .t_type = RDS_TRANS_TC 364 .t_type = RDS_TRANS_TCP, 469 .t_prefer_loopback = 1, 365 .t_prefer_loopback = 1, 470 .t_mp_capable = 1, 366 .t_mp_capable = 1, 471 .t_unloading = rds_tcp_is_u << 472 }; 367 }; 473 368 474 static unsigned int rds_tcp_netid; 369 static unsigned int rds_tcp_netid; 475 370 476 /* per-network namespace private data for this 371 /* per-network namespace private data for this module */ 477 struct rds_tcp_net { 372 struct rds_tcp_net { 478 struct socket *rds_tcp_listen_sock; 373 struct socket *rds_tcp_listen_sock; 479 struct work_struct rds_tcp_accept_w; 374 struct work_struct rds_tcp_accept_w; 480 struct ctl_table_header *rds_tcp_sysct 375 struct ctl_table_header *rds_tcp_sysctl; 481 struct ctl_table *ctl_table; 376 struct ctl_table *ctl_table; 482 int sndbuf_size; 377 int sndbuf_size; 483 int rcvbuf_size; 378 int rcvbuf_size; 484 }; 379 }; 485 380 486 /* All module specific customizations to the R 381 /* All module specific customizations to the RDS-TCP socket should be done in 487 * rds_tcp_tune() and applied after socket cre 382 * rds_tcp_tune() and applied after socket creation. 488 */ 383 */ 489 bool rds_tcp_tune(struct socket *sock) !! 384 void rds_tcp_tune(struct socket *sock) 490 { 385 { 491 struct sock *sk = sock->sk; 386 struct sock *sk = sock->sk; 492 struct net *net = sock_net(sk); 387 struct net *net = sock_net(sk); 493 struct rds_tcp_net *rtn; !! 388 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 494 389 495 tcp_sock_set_nodelay(sock->sk); !! 390 rds_tcp_nonagle(sock); 496 lock_sock(sk); 391 lock_sock(sk); 497 /* TCP timer functions might access ne << 498 * a process which created this net na << 499 */ << 500 if (!sk->sk_net_refcnt) { << 501 if (!maybe_get_net(net)) { << 502 release_sock(sk); << 503 return false; << 504 } << 505 /* Update ns_tracker to curren << 506 __netns_tracker_free(net, &sk- << 507 << 508 sk->sk_net_refcnt = 1; << 509 netns_tracker_alloc(net, &sk-> << 510 sock_inuse_add(net, 1); << 511 } << 512 rtn = net_generic(net, rds_tcp_netid); << 513 if (rtn->sndbuf_size > 0) { 392 if (rtn->sndbuf_size > 0) { 514 sk->sk_sndbuf = rtn->sndbuf_si 393 sk->sk_sndbuf = rtn->sndbuf_size; 515 sk->sk_userlocks |= SOCK_SNDBU 394 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 516 } 395 } 517 if (rtn->rcvbuf_size > 0) { 396 if (rtn->rcvbuf_size > 0) { 518 sk->sk_rcvbuf = rtn->rcvbuf_si !! 397 sk->sk_sndbuf = rtn->rcvbuf_size; 519 sk->sk_userlocks |= SOCK_RCVBU 398 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 520 } 399 } 521 release_sock(sk); 400 release_sock(sk); 522 return true; << 523 } 401 } 524 402 525 static void rds_tcp_accept_worker(struct work_ 403 static void rds_tcp_accept_worker(struct work_struct *work) 526 { 404 { 527 struct rds_tcp_net *rtn = container_of 405 struct rds_tcp_net *rtn = container_of(work, 528 406 struct rds_tcp_net, 529 407 rds_tcp_accept_w); 530 408 531 while (rds_tcp_accept_one(rtn->rds_tcp 409 while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) 532 cond_resched(); 410 cond_resched(); 533 } 411 } 534 412 535 void rds_tcp_accept_work(struct sock *sk) 413 void rds_tcp_accept_work(struct sock *sk) 536 { 414 { 537 struct net *net = sock_net(sk); 415 struct net *net = sock_net(sk); 538 struct rds_tcp_net *rtn = net_generic( 416 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 539 417 540 queue_work(rds_wq, &rtn->rds_tcp_accep 418 queue_work(rds_wq, &rtn->rds_tcp_accept_w); 541 } 419 } 542 420 543 static __net_init int rds_tcp_init_net(struct 421 static __net_init int rds_tcp_init_net(struct net *net) 544 { 422 { 545 struct rds_tcp_net *rtn = net_generic( 423 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 546 struct ctl_table *tbl; 424 struct ctl_table *tbl; 547 int err = 0; 425 int err = 0; 548 426 549 memset(rtn, 0, sizeof(*rtn)); 427 memset(rtn, 0, sizeof(*rtn)); 550 428 551 /* {snd, rcv}buf_size default to 0, wh 429 /* {snd, rcv}buf_size default to 0, which implies we let the 552 * stack pick the value, and permit au 430 * stack pick the value, and permit auto-tuning of buffer size. 553 */ 431 */ 554 if (net == &init_net) { 432 if (net == &init_net) { 555 tbl = rds_tcp_sysctl_table; 433 tbl = rds_tcp_sysctl_table; 556 } else { 434 } else { 557 tbl = kmemdup(rds_tcp_sysctl_t 435 tbl = kmemdup(rds_tcp_sysctl_table, 558 sizeof(rds_tcp_s 436 sizeof(rds_tcp_sysctl_table), GFP_KERNEL); 559 if (!tbl) { 437 if (!tbl) { 560 pr_warn("could not set !! 438 pr_warn("could not set allocate syctl table\n"); 561 return -ENOMEM; 439 return -ENOMEM; 562 } 440 } 563 rtn->ctl_table = tbl; 441 rtn->ctl_table = tbl; 564 } 442 } 565 tbl[RDS_TCP_SNDBUF].data = &rtn->sndbu 443 tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; 566 tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbu 444 tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; 567 rtn->rds_tcp_sysctl = register_net_sys !! 445 rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl); 568 << 569 if (!rtn->rds_tcp_sysctl) { 446 if (!rtn->rds_tcp_sysctl) { 570 pr_warn("could not register sy 447 pr_warn("could not register sysctl\n"); 571 err = -ENOMEM; 448 err = -ENOMEM; 572 goto fail; 449 goto fail; 573 } 450 } 574 !! 451 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net); 575 #if IS_ENABLED(CONFIG_IPV6) << 576 rtn->rds_tcp_listen_sock = rds_tcp_lis << 577 #else << 578 rtn->rds_tcp_listen_sock = rds_tcp_lis << 579 #endif << 580 if (!rtn->rds_tcp_listen_sock) { 452 if (!rtn->rds_tcp_listen_sock) { 581 pr_warn("could not set up IPv6 !! 453 pr_warn("could not set up listen sock\n"); 582 !! 454 unregister_net_sysctl_table(rtn->rds_tcp_sysctl); 583 #if IS_ENABLED(CONFIG_IPV6) !! 455 rtn->rds_tcp_sysctl = NULL; 584 /* Try IPv4 as some systems di !! 456 err = -EAFNOSUPPORT; 585 rtn->rds_tcp_listen_sock = rds !! 457 goto fail; 586 if (!rtn->rds_tcp_listen_sock) << 587 #endif << 588 unregister_net_sysctl_ << 589 rtn->rds_tcp_sysctl = << 590 err = -EAFNOSUPPORT; << 591 goto fail; << 592 #if IS_ENABLED(CONFIG_IPV6) << 593 } << 594 #endif << 595 } 458 } 596 INIT_WORK(&rtn->rds_tcp_accept_w, rds_ 459 INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); 597 return 0; 460 return 0; 598 461 599 fail: 462 fail: 600 if (net != &init_net) 463 if (net != &init_net) 601 kfree(tbl); 464 kfree(tbl); 602 return err; 465 return err; 603 } 466 } 604 467 >> 468 static void __net_exit rds_tcp_exit_net(struct net *net) >> 469 { >> 470 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); >> 471 >> 472 if (rtn->rds_tcp_sysctl) >> 473 unregister_net_sysctl_table(rtn->rds_tcp_sysctl); >> 474 >> 475 if (net != &init_net && rtn->ctl_table) >> 476 kfree(rtn->ctl_table); >> 477 >> 478 /* If rds_tcp_exit_net() is called as a result of netns deletion, >> 479 * the rds_tcp_kill_sock() device notifier would already have cleaned >> 480 * up the listen socket, thus there is no work to do in this function. >> 481 * >> 482 * If rds_tcp_exit_net() is called as a result of module unload, >> 483 * i.e., due to rds_tcp_exit() -> unregister_pernet_subsys(), then >> 484 * we do need to clean up the listen socket here. >> 485 */ >> 486 if (rtn->rds_tcp_listen_sock) { >> 487 struct socket *lsock = rtn->rds_tcp_listen_sock; >> 488 >> 489 rtn->rds_tcp_listen_sock = NULL; >> 490 rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); >> 491 } >> 492 } >> 493 >> 494 static struct pernet_operations rds_tcp_net_ops = { >> 495 .init = rds_tcp_init_net, >> 496 .exit = rds_tcp_exit_net, >> 497 .id = &rds_tcp_netid, >> 498 .size = sizeof(struct rds_tcp_net), >> 499 }; >> 500 >> 501 /* explicitly send a RST on each socket, thereby releasing any socket refcnts >> 502 * that may otherwise hold up netns deletion. >> 503 */ >> 504 static void rds_tcp_conn_paths_destroy(struct rds_connection *conn) >> 505 { >> 506 struct rds_conn_path *cp; >> 507 struct rds_tcp_connection *tc; >> 508 int i; >> 509 struct sock *sk; >> 510 >> 511 for (i = 0; i < RDS_MPATH_WORKERS; i++) { >> 512 cp = &conn->c_path[i]; >> 513 tc = cp->cp_transport_data; >> 514 if (!tc->t_sock) >> 515 continue; >> 516 sk = tc->t_sock->sk; >> 517 sk->sk_prot->disconnect(sk, 0); >> 518 tcp_done(sk); >> 519 } >> 520 } >> 521 605 static void rds_tcp_kill_sock(struct net *net) 522 static void rds_tcp_kill_sock(struct net *net) 606 { 523 { 607 struct rds_tcp_connection *tc, *_tc; 524 struct rds_tcp_connection *tc, *_tc; 608 LIST_HEAD(tmp_list); 525 LIST_HEAD(tmp_list); 609 struct rds_tcp_net *rtn = net_generic( 526 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 610 struct socket *lsock = rtn->rds_tcp_li 527 struct socket *lsock = rtn->rds_tcp_listen_sock; 611 528 612 rtn->rds_tcp_listen_sock = NULL; 529 rtn->rds_tcp_listen_sock = NULL; 613 rds_tcp_listen_stop(lsock, &rtn->rds_t 530 rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); 614 spin_lock_irq(&rds_tcp_conn_lock); 531 spin_lock_irq(&rds_tcp_conn_lock); 615 list_for_each_entry_safe(tc, _tc, &rds 532 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 616 struct net *c_net = read_pnet( !! 533 struct net *c_net = tc->t_cpath->cp_conn->c_net; 617 534 618 if (net != c_net) !! 535 if (net != c_net || !tc->t_sock) 619 continue; 536 continue; 620 if (!list_has_conn(&tmp_list, !! 537 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) 621 list_move_tail(&tc->t_ 538 list_move_tail(&tc->t_tcp_node, &tmp_list); 622 } else { << 623 list_del(&tc->t_tcp_no << 624 tc->t_tcp_node_detache << 625 } << 626 } 539 } 627 spin_unlock_irq(&rds_tcp_conn_lock); 540 spin_unlock_irq(&rds_tcp_conn_lock); 628 list_for_each_entry_safe(tc, _tc, &tmp !! 541 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) { >> 542 rds_tcp_conn_paths_destroy(tc->t_cpath->cp_conn); 629 rds_conn_destroy(tc->t_cpath-> 543 rds_conn_destroy(tc->t_cpath->cp_conn); >> 544 } 630 } 545 } 631 546 632 static void __net_exit rds_tcp_exit_net(struct << 633 { << 634 struct rds_tcp_net *rtn = net_generic( << 635 << 636 rds_tcp_kill_sock(net); << 637 << 638 if (rtn->rds_tcp_sysctl) << 639 unregister_net_sysctl_table(rt << 640 << 641 if (net != &init_net) << 642 kfree(rtn->ctl_table); << 643 } << 644 << 645 static struct pernet_operations rds_tcp_net_op << 646 .init = rds_tcp_init_net, << 647 .exit = rds_tcp_exit_net, << 648 .id = &rds_tcp_netid, << 649 .size = sizeof(struct rds_tcp_net), << 650 }; << 651 << 652 void *rds_tcp_listen_sock_def_readable(struct 547 void *rds_tcp_listen_sock_def_readable(struct net *net) 653 { 548 { 654 struct rds_tcp_net *rtn = net_generic( 549 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 655 struct socket *lsock = rtn->rds_tcp_li 550 struct socket *lsock = rtn->rds_tcp_listen_sock; 656 551 657 if (!lsock) 552 if (!lsock) 658 return NULL; 553 return NULL; 659 554 660 return lsock->sk->sk_user_data; 555 return lsock->sk->sk_user_data; 661 } 556 } 662 557 >> 558 static int rds_tcp_dev_event(struct notifier_block *this, >> 559 unsigned long event, void *ptr) >> 560 { >> 561 struct net_device *dev = netdev_notifier_info_to_dev(ptr); >> 562 >> 563 /* rds-tcp registers as a pernet subys, so the ->exit will only >> 564 * get invoked after network acitivity has quiesced. We need to >> 565 * clean up all sockets to quiesce network activity, and use >> 566 * the unregistration of the per-net loopback device as a trigger >> 567 * to start that cleanup. >> 568 */ >> 569 if (event == NETDEV_UNREGISTER_FINAL && >> 570 dev->ifindex == LOOPBACK_IFINDEX) >> 571 rds_tcp_kill_sock(dev_net(dev)); >> 572 >> 573 return NOTIFY_DONE; >> 574 } >> 575 >> 576 static struct notifier_block rds_tcp_dev_notifier = { >> 577 .notifier_call = rds_tcp_dev_event, >> 578 .priority = -10, /* must be called after other network notifiers */ >> 579 }; >> 580 663 /* when sysctl is used to modify some kernel s 581 /* when sysctl is used to modify some kernel socket parameters,this 664 * function resets the RDS connections in tha 582 * function resets the RDS connections in that netns so that we can 665 * restart with new parameters. The assumptio 583 * restart with new parameters. The assumption is that such reset 666 * events are few and far-between. 584 * events are few and far-between. 667 */ 585 */ 668 static void rds_tcp_sysctl_reset(struct net *n 586 static void rds_tcp_sysctl_reset(struct net *net) 669 { 587 { 670 struct rds_tcp_connection *tc, *_tc; 588 struct rds_tcp_connection *tc, *_tc; 671 589 672 spin_lock_irq(&rds_tcp_conn_lock); 590 spin_lock_irq(&rds_tcp_conn_lock); 673 list_for_each_entry_safe(tc, _tc, &rds 591 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 674 struct net *c_net = read_pnet( !! 592 struct net *c_net = tc->t_cpath->cp_conn->c_net; 675 593 676 if (net != c_net || !tc->t_soc 594 if (net != c_net || !tc->t_sock) 677 continue; 595 continue; 678 596 679 /* reconnect with new paramete 597 /* reconnect with new parameters */ 680 rds_conn_path_drop(tc->t_cpath !! 598 rds_conn_path_drop(tc->t_cpath); 681 } 599 } 682 spin_unlock_irq(&rds_tcp_conn_lock); 600 spin_unlock_irq(&rds_tcp_conn_lock); 683 } 601 } 684 602 685 static int rds_tcp_skbuf_handler(const struct !! 603 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, 686 void *buffer, !! 604 void __user *buffer, size_t *lenp, >> 605 loff_t *fpos) 687 { 606 { 688 struct net *net = current->nsproxy->ne 607 struct net *net = current->nsproxy->net_ns; 689 int err; 608 int err; 690 609 691 err = proc_dointvec_minmax(ctl, write, 610 err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); 692 if (err < 0) { 611 if (err < 0) { 693 pr_warn("Invalid input. Must b 612 pr_warn("Invalid input. Must be >= %d\n", 694 *(int *)(ctl->extra1)) 613 *(int *)(ctl->extra1)); 695 return err; 614 return err; 696 } 615 } 697 if (write) 616 if (write) 698 rds_tcp_sysctl_reset(net); 617 rds_tcp_sysctl_reset(net); 699 return 0; 618 return 0; 700 } 619 } 701 620 702 static void rds_tcp_exit(void) 621 static void rds_tcp_exit(void) 703 { 622 { 704 rds_tcp_set_unloading(); << 705 synchronize_rcu(); << 706 rds_info_deregister_func(RDS_INFO_TCP_ 623 rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); 707 #if IS_ENABLED(CONFIG_IPV6) !! 624 unregister_pernet_subsys(&rds_tcp_net_ops); 708 rds_info_deregister_func(RDS6_INFO_TCP !! 625 if (unregister_netdevice_notifier(&rds_tcp_dev_notifier)) 709 #endif !! 626 pr_warn("could not unregister rds_tcp_dev_notifier\n"); 710 unregister_pernet_device(&rds_tcp_net_ << 711 rds_tcp_destroy_conns(); 627 rds_tcp_destroy_conns(); 712 rds_trans_unregister(&rds_tcp_transpor 628 rds_trans_unregister(&rds_tcp_transport); 713 rds_tcp_recv_exit(); 629 rds_tcp_recv_exit(); 714 kmem_cache_destroy(rds_tcp_conn_slab); 630 kmem_cache_destroy(rds_tcp_conn_slab); 715 } 631 } 716 module_exit(rds_tcp_exit); 632 module_exit(rds_tcp_exit); 717 633 718 static int __init rds_tcp_init(void) !! 634 static int rds_tcp_init(void) 719 { 635 { 720 int ret; 636 int ret; 721 637 722 rds_tcp_conn_slab = KMEM_CACHE(rds_tcp !! 638 rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection", >> 639 sizeof(struct rds_tcp_connection), >> 640 0, 0, NULL); 723 if (!rds_tcp_conn_slab) { 641 if (!rds_tcp_conn_slab) { 724 ret = -ENOMEM; 642 ret = -ENOMEM; 725 goto out; 643 goto out; 726 } 644 } 727 645 728 ret = rds_tcp_recv_init(); 646 ret = rds_tcp_recv_init(); 729 if (ret) 647 if (ret) 730 goto out_slab; 648 goto out_slab; 731 649 732 ret = register_pernet_device(&rds_tcp_ !! 650 ret = register_pernet_subsys(&rds_tcp_net_ops); 733 if (ret) 651 if (ret) 734 goto out_recv; 652 goto out_recv; 735 653 >> 654 ret = register_netdevice_notifier(&rds_tcp_dev_notifier); >> 655 if (ret) { >> 656 pr_warn("could not register rds_tcp_dev_notifier\n"); >> 657 goto out_pernet; >> 658 } >> 659 736 rds_trans_register(&rds_tcp_transport) 660 rds_trans_register(&rds_tcp_transport); 737 661 738 rds_info_register_func(RDS_INFO_TCP_SO 662 rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); 739 #if IS_ENABLED(CONFIG_IPV6) << 740 rds_info_register_func(RDS6_INFO_TCP_S << 741 #endif << 742 663 743 goto out; 664 goto out; >> 665 >> 666 out_pernet: >> 667 unregister_pernet_subsys(&rds_tcp_net_ops); 744 out_recv: 668 out_recv: 745 rds_tcp_recv_exit(); 669 rds_tcp_recv_exit(); 746 out_slab: 670 out_slab: 747 kmem_cache_destroy(rds_tcp_conn_slab); 671 kmem_cache_destroy(rds_tcp_conn_slab); 748 out: 672 out: 749 return ret; 673 return ret; 750 } 674 } 751 module_init(rds_tcp_init); 675 module_init(rds_tcp_init); 752 676 753 MODULE_AUTHOR("Oracle Corporation <rds-devel@o 677 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); 754 MODULE_DESCRIPTION("RDS: TCP transport"); 678 MODULE_DESCRIPTION("RDS: TCP transport"); 755 MODULE_LICENSE("Dual BSD/GPL"); 679 MODULE_LICENSE("Dual BSD/GPL"); >> 680 756 681
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.