1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* !! 2 /** 3 * net/tipc/crypto.c: TIPC crypto for key hand 3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption 4 * 4 * 5 * Copyright (c) 2019, Ericsson AB 5 * Copyright (c) 2019, Ericsson AB 6 * All rights reserved. 6 * All rights reserved. 7 * 7 * 8 * Redistribution and use in source and binary 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that t 9 * modification, are permitted provided that the following conditions are met: 10 * 10 * 11 * 1. Redistributions of source code must reta 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must repr 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials pro 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the names of the copyright holde 16 * 3. Neither the names of the copyright holders nor the names of its 17 * contributors may be used to endorse or p 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior wri 18 * this software without specific prior written permission. 19 * 19 * 20 * Alternatively, this software may be distrib 20 * Alternatively, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") version 21 * GNU General Public License ("GPL") version 2 as published by the Free 22 * Software Foundation. 22 * Software Foundation. 23 * 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCL 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND F 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYR 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT L 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THE 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUD 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS S 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 35 */ 36 36 37 #include <crypto/aead.h> 37 #include <crypto/aead.h> 38 #include <crypto/aes.h> 38 #include <crypto/aes.h> 39 #include <crypto/rng.h> << 40 #include "crypto.h" 39 #include "crypto.h" 41 #include "msg.h" << 42 #include "bcast.h" << 43 40 44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffi !! 41 #define TIPC_TX_PROBE_LIM msecs_to_jiffies(1000) /* > 1s */ 45 #define TIPC_TX_LASTING_TIME msecs_to_jiffi !! 42 #define TIPC_TX_LASTING_LIM msecs_to_jiffies(120000) /* 2 mins */ 46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffi 43 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ 47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffi !! 44 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(180000) /* 3 mins */ 48 << 49 #define TIPC_MAX_TFMS_DEF 10 45 #define TIPC_MAX_TFMS_DEF 10 50 #define TIPC_MAX_TFMS_LIM 1000 46 #define TIPC_MAX_TFMS_LIM 1000 51 47 52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* d !! 48 /** 53 << 54 /* << 55 * TIPC Key ids 49 * TIPC Key ids 56 */ 50 */ 57 enum { 51 enum { 58 KEY_MASTER = 0, !! 52 KEY_UNUSED = 0, 59 KEY_MIN = KEY_MASTER, !! 53 KEY_MIN, 60 KEY_1 = 1, !! 54 KEY_1 = KEY_MIN, 61 KEY_2, 55 KEY_2, 62 KEY_3, 56 KEY_3, 63 KEY_MAX = KEY_3, 57 KEY_MAX = KEY_3, 64 }; 58 }; 65 59 66 /* !! 60 /** 67 * TIPC Crypto statistics 61 * TIPC Crypto statistics 68 */ 62 */ 69 enum { 63 enum { 70 STAT_OK, 64 STAT_OK, 71 STAT_NOK, 65 STAT_NOK, 72 STAT_ASYNC, 66 STAT_ASYNC, 73 STAT_ASYNC_OK, 67 STAT_ASYNC_OK, 74 STAT_ASYNC_NOK, 68 STAT_ASYNC_NOK, 75 STAT_BADKEYS, /* tx only */ 69 STAT_BADKEYS, /* tx only */ 76 STAT_BADMSGS = STAT_BADKEYS, /* rx onl 70 STAT_BADMSGS = STAT_BADKEYS, /* rx only */ 77 STAT_NOKEYS, 71 STAT_NOKEYS, 78 STAT_SWITCHES, 72 STAT_SWITCHES, 79 73 80 MAX_STATS, 74 MAX_STATS, 81 }; 75 }; 82 76 83 /* TIPC crypto statistics' header */ 77 /* TIPC crypto statistics' header */ 84 static const char *hstats[MAX_STATS] = {"ok", 78 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", 85 "async 79 "async_nok", "badmsgs", "nokeys", 86 "switc 80 "switches"}; 87 81 88 /* Max TFMs number per key */ 82 /* Max TFMs number per key */ 89 int sysctl_tipc_max_tfms __read_mostly = TIPC_ 83 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; 90 /* Key exchange switch, default: on */ << 91 int sysctl_tipc_key_exchange_enabled __read_mo << 92 84 93 /* !! 85 /** 94 * struct tipc_key - TIPC keys' status indicat 86 * struct tipc_key - TIPC keys' status indicator 95 * 87 * 96 * 7 6 5 4 3 2 88 * 7 6 5 4 3 2 1 0 97 * +-----+-----+-----+-----+-----+-----+- 89 * +-----+-----+-----+-----+-----+-----+-----+-----+ 98 * key: | (reserved)|passive idx| active idx|p 90 * key: | (reserved)|passive idx| active idx|pending idx| 99 * +-----+-----+-----+-----+-----+-----+- 91 * +-----+-----+-----+-----+-----+-----+-----+-----+ 100 */ 92 */ 101 struct tipc_key { 93 struct tipc_key { 102 #define KEY_BITS (2) 94 #define KEY_BITS (2) 103 #define KEY_MASK ((1 << KEY_BITS) - 1) 95 #define KEY_MASK ((1 << KEY_BITS) - 1) 104 union { 96 union { 105 struct { 97 struct { 106 #if defined(__LITTLE_ENDIAN_BITFIELD) 98 #if defined(__LITTLE_ENDIAN_BITFIELD) 107 u8 pending:2, 99 u8 pending:2, 108 active:2, 100 active:2, 109 passive:2, /* rx on 101 passive:2, /* rx only */ 110 reserved:2; 102 reserved:2; 111 #elif defined(__BIG_ENDIAN_BITFIELD) 103 #elif defined(__BIG_ENDIAN_BITFIELD) 112 u8 reserved:2, 104 u8 reserved:2, 113 passive:2, /* rx on 105 passive:2, /* rx only */ 114 active:2, 106 active:2, 115 pending:2; 107 pending:2; 116 #else 108 #else 117 #error "Please fix <asm/byteorder.h>" 109 #error "Please fix <asm/byteorder.h>" 118 #endif 110 #endif 119 } __packed; 111 } __packed; 120 u8 keys; 112 u8 keys; 121 }; 113 }; 122 }; 114 }; 123 115 124 /** 116 /** 125 * struct tipc_tfm - TIPC TFM structure to for 117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs 126 * @tfm: cipher handle/key << 127 * @list: linked list of TFMs << 128 */ 118 */ 129 struct tipc_tfm { 119 struct tipc_tfm { 130 struct crypto_aead *tfm; 120 struct crypto_aead *tfm; 131 struct list_head list; 121 struct list_head list; 132 }; 122 }; 133 123 134 /** 124 /** 135 * struct tipc_aead - TIPC AEAD key structure 125 * struct tipc_aead - TIPC AEAD key structure 136 * @tfm_entry: per-cpu pointer to one entry in 126 * @tfm_entry: per-cpu pointer to one entry in TFM list 137 * @crypto: TIPC crypto owns this key 127 * @crypto: TIPC crypto owns this key 138 * @cloned: reference to the source key in cas 128 * @cloned: reference to the source key in case cloning 139 * @users: the number of the key users (TX/RX) 129 * @users: the number of the key users (TX/RX) 140 * @salt: the key's SALT value 130 * @salt: the key's SALT value 141 * @authsize: authentication tag size (max = 1 131 * @authsize: authentication tag size (max = 16) 142 * @mode: crypto mode is applied to the key 132 * @mode: crypto mode is applied to the key 143 * @hint: a hint for user key !! 133 * @hint[]: a hint for user key 144 * @rcu: struct rcu_head 134 * @rcu: struct rcu_head 145 * @key: the aead key << 146 * @gen: the key's generation << 147 * @seqno: the key seqno (cluster scope) 135 * @seqno: the key seqno (cluster scope) 148 * @refcnt: the key reference counter 136 * @refcnt: the key reference counter 149 */ 137 */ 150 struct tipc_aead { 138 struct tipc_aead { 151 #define TIPC_AEAD_HINT_LEN (5) 139 #define TIPC_AEAD_HINT_LEN (5) 152 struct tipc_tfm * __percpu *tfm_entry; 140 struct tipc_tfm * __percpu *tfm_entry; 153 struct tipc_crypto *crypto; 141 struct tipc_crypto *crypto; 154 struct tipc_aead *cloned; 142 struct tipc_aead *cloned; 155 atomic_t users; 143 atomic_t users; 156 u32 salt; 144 u32 salt; 157 u8 authsize; 145 u8 authsize; 158 u8 mode; 146 u8 mode; 159 char hint[2 * TIPC_AEAD_HINT_LEN + 1]; !! 147 char hint[TIPC_AEAD_HINT_LEN + 1]; 160 struct rcu_head rcu; 148 struct rcu_head rcu; 161 struct tipc_aead_key *key; << 162 u16 gen; << 163 149 164 atomic64_t seqno ____cacheline_aligned 150 atomic64_t seqno ____cacheline_aligned; 165 refcount_t refcnt ____cacheline_aligne 151 refcount_t refcnt ____cacheline_aligned; 166 152 167 } ____cacheline_aligned; 153 } ____cacheline_aligned; 168 154 169 /** 155 /** 170 * struct tipc_crypto_stats - TIPC Crypto stat 156 * struct tipc_crypto_stats - TIPC Crypto statistics 171 * @stat: array of crypto statistics << 172 */ 157 */ 173 struct tipc_crypto_stats { 158 struct tipc_crypto_stats { 174 unsigned int stat[MAX_STATS]; 159 unsigned int stat[MAX_STATS]; 175 }; 160 }; 176 161 177 /** 162 /** 178 * struct tipc_crypto - TIPC TX/RX crypto stru 163 * struct tipc_crypto - TIPC TX/RX crypto structure 179 * @net: struct net 164 * @net: struct net 180 * @node: TIPC node (RX) 165 * @node: TIPC node (RX) 181 * @aead: array of pointers to AEAD keys for e 166 * @aead: array of pointers to AEAD keys for encryption/decryption 182 * @peer_rx_active: replicated peer RX active 167 * @peer_rx_active: replicated peer RX active key index 183 * @key_gen: TX/RX key generation << 184 * @key: the key states 168 * @key: the key states 185 * @skey_mode: session key's mode !! 169 * @working: the crypto is working or not 186 * @skey: received session key << 187 * @wq: common workqueue on TX crypto << 188 * @work: delayed work sched for TX/RX << 189 * @key_distr: key distributing state << 190 * @rekeying_intv: rekeying interval (in minut << 191 * @stats: the crypto statistics 170 * @stats: the crypto statistics 192 * @name: the crypto name << 193 * @sndnxt: the per-peer sndnxt (TX) 171 * @sndnxt: the per-peer sndnxt (TX) 194 * @timer1: general timer 1 (jiffies) 172 * @timer1: general timer 1 (jiffies) 195 * @timer2: general timer 2 (jiffies) !! 173 * @timer2: general timer 1 (jiffies) 196 * @working: the crypto is working or not << 197 * @key_master: flag indicates if master key e << 198 * @legacy_user: flag indicates if a peer join << 199 * @nokey: no key indication << 200 * @flags: combined flags field << 201 * @lock: tipc_key lock 174 * @lock: tipc_key lock 202 */ 175 */ 203 struct tipc_crypto { 176 struct tipc_crypto { 204 struct net *net; 177 struct net *net; 205 struct tipc_node *node; 178 struct tipc_node *node; 206 struct tipc_aead __rcu *aead[KEY_MAX + !! 179 struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */ 207 atomic_t peer_rx_active; 180 atomic_t peer_rx_active; 208 u16 key_gen; << 209 struct tipc_key key; 181 struct tipc_key key; 210 u8 skey_mode; !! 182 u8 working:1; 211 struct tipc_aead_key *skey; << 212 struct workqueue_struct *wq; << 213 struct delayed_work work; << 214 #define KEY_DISTR_SCHED 1 << 215 #define KEY_DISTR_COMPL 2 << 216 atomic_t key_distr; << 217 u32 rekeying_intv; << 218 << 219 struct tipc_crypto_stats __percpu *sta 183 struct tipc_crypto_stats __percpu *stats; 220 char name[48]; << 221 184 222 atomic64_t sndnxt ____cacheline_aligne 185 atomic64_t sndnxt ____cacheline_aligned; 223 unsigned long timer1; 186 unsigned long timer1; 224 unsigned long timer2; 187 unsigned long timer2; 225 union { << 226 struct { << 227 u8 working:1; << 228 u8 key_master:1; << 229 u8 legacy_user:1; << 230 u8 nokey: 1; << 231 }; << 232 u8 flags; << 233 }; << 234 spinlock_t lock; /* crypto lock */ 188 spinlock_t lock; /* crypto lock */ 235 189 236 } ____cacheline_aligned; 190 } ____cacheline_aligned; 237 191 238 /* struct tipc_crypto_tx_ctx - TX context for 192 /* struct tipc_crypto_tx_ctx - TX context for callbacks */ 239 struct tipc_crypto_tx_ctx { 193 struct tipc_crypto_tx_ctx { 240 struct tipc_aead *aead; 194 struct tipc_aead *aead; 241 struct tipc_bearer *bearer; 195 struct tipc_bearer *bearer; 242 struct tipc_media_addr dst; 196 struct tipc_media_addr dst; 243 }; 197 }; 244 198 245 /* struct tipc_crypto_rx_ctx - RX context for 199 /* struct tipc_crypto_rx_ctx - RX context for callbacks */ 246 struct tipc_crypto_rx_ctx { 200 struct tipc_crypto_rx_ctx { 247 struct tipc_aead *aead; 201 struct tipc_aead *aead; 248 struct tipc_bearer *bearer; 202 struct tipc_bearer *bearer; 249 }; 203 }; 250 204 251 static struct tipc_aead *tipc_aead_get(struct 205 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); 252 static inline void tipc_aead_put(struct tipc_a 206 static inline void tipc_aead_put(struct tipc_aead *aead); 253 static void tipc_aead_free(struct rcu_head *rp 207 static void tipc_aead_free(struct rcu_head *rp); 254 static int tipc_aead_users(struct tipc_aead __ 208 static int tipc_aead_users(struct tipc_aead __rcu *aead); 255 static void tipc_aead_users_inc(struct tipc_ae 209 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); 256 static void tipc_aead_users_dec(struct tipc_ae 210 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); 257 static void tipc_aead_users_set(struct tipc_ae 211 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); 258 static struct crypto_aead *tipc_aead_tfm_next( 212 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); 259 static int tipc_aead_init(struct tipc_aead **a 213 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 260 u8 mode); 214 u8 mode); 261 static int tipc_aead_clone(struct tipc_aead ** 215 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); 262 static void *tipc_aead_mem_alloc(struct crypto 216 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 263 unsigned int 217 unsigned int crypto_ctx_size, 264 u8 **iv, stru 218 u8 **iv, struct aead_request **req, 265 struct scatte 219 struct scatterlist **sg, int nsg); 266 static int tipc_aead_encrypt(struct tipc_aead 220 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 267 struct tipc_beare 221 struct tipc_bearer *b, 268 struct tipc_media 222 struct tipc_media_addr *dst, 269 struct tipc_node 223 struct tipc_node *__dnode); 270 static void tipc_aead_encrypt_done(void *data, !! 224 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); 271 static int tipc_aead_decrypt(struct net *net, 225 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 272 struct sk_buff *s 226 struct sk_buff *skb, struct tipc_bearer *b); 273 static void tipc_aead_decrypt_done(void *data, !! 227 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); 274 static inline int tipc_ehdr_size(struct tipc_e 228 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); 275 static int tipc_ehdr_build(struct net *net, st 229 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 276 u8 tx_key, struct s 230 u8 tx_key, struct sk_buff *skb, 277 struct tipc_crypto 231 struct tipc_crypto *__rx); 278 static inline void tipc_crypto_key_set_state(s 232 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 279 u 233 u8 new_passive, 280 u 234 u8 new_active, 281 u 235 u8 new_pending); 282 static int tipc_crypto_key_attach(struct tipc_ 236 static int tipc_crypto_key_attach(struct tipc_crypto *c, 283 struct tipc_ !! 237 struct tipc_aead *aead, u8 pos); 284 bool master_ << 285 static bool tipc_crypto_key_try_align(struct t 238 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); 286 static struct tipc_aead *tipc_crypto_key_pick_ 239 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 287 240 struct tipc_crypto *rx, 288 !! 241 struct sk_buff *skb); 289 !! 242 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, 290 static void tipc_crypto_key_synch(struct tipc_ !! 243 struct tipc_msg *hdr); 291 static int tipc_crypto_key_revoke(struct net * 244 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); 292 static inline void tipc_crypto_clone_msg(struc << 293 struc << 294 struc << 295 struc << 296 static void tipc_crypto_rcv_complete(struct ne 245 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 297 struct ti 246 struct tipc_bearer *b, 298 struct sk 247 struct sk_buff **skb, int err); 299 static void tipc_crypto_do_cmd(struct net *net 248 static void tipc_crypto_do_cmd(struct net *net, int cmd); 300 static char *tipc_crypto_key_dump(struct tipc_ 249 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); >> 250 #ifdef TIPC_CRYPTO_DEBUG 301 static char *tipc_key_change_dump(struct tipc_ 251 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 302 char *buf); 252 char *buf); 303 static int tipc_crypto_key_xmit(struct net *ne !! 253 #endif 304 u16 gen, u8 mo << 305 static bool tipc_crypto_key_rcv(struct tipc_cr << 306 static void tipc_crypto_work_tx(struct work_st << 307 static void tipc_crypto_work_rx(struct work_st << 308 static int tipc_aead_key_generate(struct tipc_ << 309 << 310 #define is_tx(crypto) (!(crypto)->node) << 311 #define is_rx(crypto) (!is_tx(crypto)) << 312 254 313 #define key_next(cur) ((cur) % KEY_MAX + 1) 255 #define key_next(cur) ((cur) % KEY_MAX + 1) 314 256 315 #define tipc_aead_rcu_ptr(rcu_ptr, lock) 257 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ 316 rcu_dereference_protected((rcu_ptr), l 258 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) 317 259 318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lo 260 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ 319 do { 261 do { \ 320 struct tipc_aead *__tmp = rcu_derefere !! 262 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \ 321 263 lockdep_is_held(lock)); \ 322 rcu_assign_pointer((rcu_ptr), (ptr)); 264 rcu_assign_pointer((rcu_ptr), (ptr)); \ 323 tipc_aead_put(__tmp); 265 tipc_aead_put(__tmp); \ 324 } while (0) 266 } while (0) 325 267 326 #define tipc_crypto_key_detach(rcu_ptr, lock) 268 #define tipc_crypto_key_detach(rcu_ptr, lock) \ 327 tipc_aead_rcu_replace((rcu_ptr), NULL, 269 tipc_aead_rcu_replace((rcu_ptr), NULL, lock) 328 270 329 /** 271 /** 330 * tipc_aead_key_validate - Validate a AEAD us 272 * tipc_aead_key_validate - Validate a AEAD user key 331 * @ukey: pointer to user key data << 332 * @info: netlink info pointer << 333 */ 273 */ 334 int tipc_aead_key_validate(struct tipc_aead_ke !! 274 int tipc_aead_key_validate(struct tipc_aead_key *ukey) 335 { 275 { 336 int keylen; 276 int keylen; 337 277 338 /* Check if algorithm exists */ 278 /* Check if algorithm exists */ 339 if (unlikely(!crypto_has_alg(ukey->alg 279 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { 340 GENL_SET_ERR_MSG(info, "unable !! 280 pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name); 341 return -ENODEV; 281 return -ENODEV; 342 } 282 } 343 283 344 /* Currently, we only support the "gcm 284 /* Currently, we only support the "gcm(aes)" cipher algorithm */ 345 if (strcmp(ukey->alg_name, "gcm(aes)") !! 285 if (strcmp(ukey->alg_name, "gcm(aes)")) 346 GENL_SET_ERR_MSG(info, "not su << 347 return -ENOTSUPP; 286 return -ENOTSUPP; 348 } << 349 287 350 /* Check if key size is correct */ 288 /* Check if key size is correct */ 351 keylen = ukey->keylen - TIPC_AES_GCM_S 289 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 352 if (unlikely(keylen != TIPC_AES_GCM_KE 290 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && 353 keylen != TIPC_AES_GCM_KE 291 keylen != TIPC_AES_GCM_KEY_SIZE_192 && 354 keylen != TIPC_AES_GCM_KE !! 292 keylen != TIPC_AES_GCM_KEY_SIZE_256)) 355 GENL_SET_ERR_MSG(info, "incorr !! 293 return -EINVAL; 356 return -EKEYREJECTED; << 357 } << 358 294 359 return 0; 295 return 0; 360 } 296 } 361 297 362 /** << 363 * tipc_aead_key_generate - Generate new sessi << 364 * @skey: input/output key with new content << 365 * << 366 * Return: 0 in case of success, otherwise < 0 << 367 */ << 368 static int tipc_aead_key_generate(struct tipc_ << 369 { << 370 int rc = 0; << 371 << 372 /* Fill the key's content with a rando << 373 rc = crypto_get_default_rng(); << 374 if (likely(!rc)) { << 375 rc = crypto_rng_get_bytes(cryp << 376 skey << 377 crypto_put_default_rng(); << 378 } << 379 << 380 return rc; << 381 } << 382 << 383 static struct tipc_aead *tipc_aead_get(struct 298 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) 384 { 299 { 385 struct tipc_aead *tmp; 300 struct tipc_aead *tmp; 386 301 387 rcu_read_lock(); 302 rcu_read_lock(); 388 tmp = rcu_dereference(aead); 303 tmp = rcu_dereference(aead); 389 if (unlikely(!tmp || !refcount_inc_not 304 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) 390 tmp = NULL; 305 tmp = NULL; 391 rcu_read_unlock(); 306 rcu_read_unlock(); 392 307 393 return tmp; 308 return tmp; 394 } 309 } 395 310 396 static inline void tipc_aead_put(struct tipc_a 311 static inline void tipc_aead_put(struct tipc_aead *aead) 397 { 312 { 398 if (aead && refcount_dec_and_test(&aea 313 if (aead && refcount_dec_and_test(&aead->refcnt)) 399 call_rcu(&aead->rcu, tipc_aead 314 call_rcu(&aead->rcu, tipc_aead_free); 400 } 315 } 401 316 402 /** 317 /** 403 * tipc_aead_free - Release AEAD key incl. all 318 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list 404 * @rp: rcu head pointer 319 * @rp: rcu head pointer 405 */ 320 */ 406 static void tipc_aead_free(struct rcu_head *rp 321 static void tipc_aead_free(struct rcu_head *rp) 407 { 322 { 408 struct tipc_aead *aead = container_of( 323 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); 409 struct tipc_tfm *tfm_entry, *head, *tm 324 struct tipc_tfm *tfm_entry, *head, *tmp; 410 325 411 if (aead->cloned) { 326 if (aead->cloned) { 412 tipc_aead_put(aead->cloned); 327 tipc_aead_put(aead->cloned); 413 } else { 328 } else { 414 head = *get_cpu_ptr(aead->tfm_ 329 head = *get_cpu_ptr(aead->tfm_entry); 415 put_cpu_ptr(aead->tfm_entry); 330 put_cpu_ptr(aead->tfm_entry); 416 list_for_each_entry_safe(tfm_e 331 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { 417 crypto_free_aead(tfm_e 332 crypto_free_aead(tfm_entry->tfm); 418 list_del(&tfm_entry->l 333 list_del(&tfm_entry->list); 419 kfree(tfm_entry); 334 kfree(tfm_entry); 420 } 335 } 421 /* Free the head */ 336 /* Free the head */ 422 crypto_free_aead(head->tfm); 337 crypto_free_aead(head->tfm); 423 list_del(&head->list); 338 list_del(&head->list); 424 kfree(head); 339 kfree(head); 425 } 340 } 426 free_percpu(aead->tfm_entry); 341 free_percpu(aead->tfm_entry); 427 kfree_sensitive(aead->key); << 428 kfree(aead); 342 kfree(aead); 429 } 343 } 430 344 431 static int tipc_aead_users(struct tipc_aead __ 345 static int tipc_aead_users(struct tipc_aead __rcu *aead) 432 { 346 { 433 struct tipc_aead *tmp; 347 struct tipc_aead *tmp; 434 int users = 0; 348 int users = 0; 435 349 436 rcu_read_lock(); 350 rcu_read_lock(); 437 tmp = rcu_dereference(aead); 351 tmp = rcu_dereference(aead); 438 if (tmp) 352 if (tmp) 439 users = atomic_read(&tmp->user 353 users = atomic_read(&tmp->users); 440 rcu_read_unlock(); 354 rcu_read_unlock(); 441 355 442 return users; 356 return users; 443 } 357 } 444 358 445 static void tipc_aead_users_inc(struct tipc_ae 359 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) 446 { 360 { 447 struct tipc_aead *tmp; 361 struct tipc_aead *tmp; 448 362 449 rcu_read_lock(); 363 rcu_read_lock(); 450 tmp = rcu_dereference(aead); 364 tmp = rcu_dereference(aead); 451 if (tmp) 365 if (tmp) 452 atomic_add_unless(&tmp->users, 366 atomic_add_unless(&tmp->users, 1, lim); 453 rcu_read_unlock(); 367 rcu_read_unlock(); 454 } 368 } 455 369 456 static void tipc_aead_users_dec(struct tipc_ae 370 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) 457 { 371 { 458 struct tipc_aead *tmp; 372 struct tipc_aead *tmp; 459 373 460 rcu_read_lock(); 374 rcu_read_lock(); 461 tmp = rcu_dereference(aead); 375 tmp = rcu_dereference(aead); 462 if (tmp) 376 if (tmp) 463 atomic_add_unless(&rcu_derefer 377 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); 464 rcu_read_unlock(); 378 rcu_read_unlock(); 465 } 379 } 466 380 467 static void tipc_aead_users_set(struct tipc_ae 381 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) 468 { 382 { 469 struct tipc_aead *tmp; 383 struct tipc_aead *tmp; 470 int cur; 384 int cur; 471 385 472 rcu_read_lock(); 386 rcu_read_lock(); 473 tmp = rcu_dereference(aead); 387 tmp = rcu_dereference(aead); 474 if (tmp) { 388 if (tmp) { 475 do { 389 do { 476 cur = atomic_read(&tmp 390 cur = atomic_read(&tmp->users); 477 if (cur == val) 391 if (cur == val) 478 break; 392 break; 479 } while (atomic_cmpxchg(&tmp-> 393 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); 480 } 394 } 481 rcu_read_unlock(); 395 rcu_read_unlock(); 482 } 396 } 483 397 484 /** 398 /** 485 * tipc_aead_tfm_next - Move TFM entry to the 399 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it 486 * @aead: the AEAD key pointer << 487 */ 400 */ 488 static struct crypto_aead *tipc_aead_tfm_next( 401 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) 489 { 402 { 490 struct tipc_tfm **tfm_entry; 403 struct tipc_tfm **tfm_entry; 491 struct crypto_aead *tfm; 404 struct crypto_aead *tfm; 492 405 493 tfm_entry = get_cpu_ptr(aead->tfm_entr 406 tfm_entry = get_cpu_ptr(aead->tfm_entry); 494 *tfm_entry = list_next_entry(*tfm_entr 407 *tfm_entry = list_next_entry(*tfm_entry, list); 495 tfm = (*tfm_entry)->tfm; 408 tfm = (*tfm_entry)->tfm; 496 put_cpu_ptr(tfm_entry); 409 put_cpu_ptr(tfm_entry); 497 410 498 return tfm; 411 return tfm; 499 } 412 } 500 413 501 /** 414 /** 502 * tipc_aead_init - Initiate TIPC AEAD 415 * tipc_aead_init - Initiate TIPC AEAD 503 * @aead: returned new TIPC AEAD key handle po 416 * @aead: returned new TIPC AEAD key handle pointer 504 * @ukey: pointer to user key data 417 * @ukey: pointer to user key data 505 * @mode: the key mode 418 * @mode: the key mode 506 * 419 * 507 * Allocate a (list of) new cipher transformat 420 * Allocate a (list of) new cipher transformation (TFM) with the specific user 508 * key data if valid. The number of the alloca 421 * key data if valid. The number of the allocated TFMs can be set via the sysfs 509 * "net/tipc/max_tfms" first. 422 * "net/tipc/max_tfms" first. 510 * Also, all the other AEAD data are also init 423 * Also, all the other AEAD data are also initialized. 511 * 424 * 512 * Return: 0 if the initiation is successful, 425 * Return: 0 if the initiation is successful, otherwise: < 0 513 */ 426 */ 514 static int tipc_aead_init(struct tipc_aead **a 427 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 515 u8 mode) 428 u8 mode) 516 { 429 { 517 struct tipc_tfm *tfm_entry, *head; 430 struct tipc_tfm *tfm_entry, *head; 518 struct crypto_aead *tfm; 431 struct crypto_aead *tfm; 519 struct tipc_aead *tmp; 432 struct tipc_aead *tmp; 520 int keylen, err, cpu; 433 int keylen, err, cpu; 521 int tfm_cnt = 0; 434 int tfm_cnt = 0; 522 435 523 if (unlikely(*aead)) 436 if (unlikely(*aead)) 524 return -EEXIST; 437 return -EEXIST; 525 438 526 /* Allocate a new AEAD */ 439 /* Allocate a new AEAD */ 527 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC 440 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); 528 if (unlikely(!tmp)) 441 if (unlikely(!tmp)) 529 return -ENOMEM; 442 return -ENOMEM; 530 443 531 /* The key consists of two parts: [AES 444 /* The key consists of two parts: [AES-KEY][SALT] */ 532 keylen = ukey->keylen - TIPC_AES_GCM_S 445 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 533 446 534 /* Allocate per-cpu TFM entry pointer 447 /* Allocate per-cpu TFM entry pointer */ 535 tmp->tfm_entry = alloc_percpu(struct t 448 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); 536 if (!tmp->tfm_entry) { 449 if (!tmp->tfm_entry) { 537 kfree_sensitive(tmp); 450 kfree_sensitive(tmp); 538 return -ENOMEM; 451 return -ENOMEM; 539 } 452 } 540 453 541 /* Make a list of TFMs with the user k 454 /* Make a list of TFMs with the user key data */ 542 do { 455 do { 543 tfm = crypto_alloc_aead(ukey-> 456 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); 544 if (IS_ERR(tfm)) { 457 if (IS_ERR(tfm)) { 545 err = PTR_ERR(tfm); 458 err = PTR_ERR(tfm); 546 break; 459 break; 547 } 460 } 548 461 549 if (unlikely(!tfm_cnt && 462 if (unlikely(!tfm_cnt && 550 crypto_aead_ivsiz 463 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { 551 crypto_free_aead(tfm); 464 crypto_free_aead(tfm); 552 err = -ENOTSUPP; 465 err = -ENOTSUPP; 553 break; 466 break; 554 } 467 } 555 468 556 err = crypto_aead_setauthsize( 469 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); 557 err |= crypto_aead_setkey(tfm, 470 err |= crypto_aead_setkey(tfm, ukey->key, keylen); 558 if (unlikely(err)) { 471 if (unlikely(err)) { 559 crypto_free_aead(tfm); 472 crypto_free_aead(tfm); 560 break; 473 break; 561 } 474 } 562 475 563 tfm_entry = kmalloc(sizeof(*tf 476 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); 564 if (unlikely(!tfm_entry)) { 477 if (unlikely(!tfm_entry)) { 565 crypto_free_aead(tfm); 478 crypto_free_aead(tfm); 566 err = -ENOMEM; 479 err = -ENOMEM; 567 break; 480 break; 568 } 481 } 569 INIT_LIST_HEAD(&tfm_entry->lis 482 INIT_LIST_HEAD(&tfm_entry->list); 570 tfm_entry->tfm = tfm; 483 tfm_entry->tfm = tfm; 571 484 572 /* First entry? */ 485 /* First entry? */ 573 if (!tfm_cnt) { 486 if (!tfm_cnt) { 574 head = tfm_entry; 487 head = tfm_entry; 575 for_each_possible_cpu( 488 for_each_possible_cpu(cpu) { 576 *per_cpu_ptr(t 489 *per_cpu_ptr(tmp->tfm_entry, cpu) = head; 577 } 490 } 578 } else { 491 } else { 579 list_add_tail(&tfm_ent 492 list_add_tail(&tfm_entry->list, &head->list); 580 } 493 } 581 494 582 } while (++tfm_cnt < sysctl_tipc_max_t 495 } while (++tfm_cnt < sysctl_tipc_max_tfms); 583 496 584 /* Not any TFM is allocated? */ 497 /* Not any TFM is allocated? */ 585 if (!tfm_cnt) { 498 if (!tfm_cnt) { 586 free_percpu(tmp->tfm_entry); 499 free_percpu(tmp->tfm_entry); 587 kfree_sensitive(tmp); 500 kfree_sensitive(tmp); 588 return err; 501 return err; 589 } 502 } 590 503 591 /* Form a hex string of some last byte !! 504 /* Copy some chars from the user key as a hint */ 592 bin2hex(tmp->hint, ukey->key + keylen !! 505 memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN); 593 TIPC_AEAD_HINT_LEN); !! 506 tmp->hint[TIPC_AEAD_HINT_LEN] = '\0'; 594 507 595 /* Initialize the other data */ 508 /* Initialize the other data */ 596 tmp->mode = mode; 509 tmp->mode = mode; 597 tmp->cloned = NULL; 510 tmp->cloned = NULL; 598 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 511 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 599 tmp->key = kmemdup(ukey, tipc_aead_key << 600 if (!tmp->key) { << 601 tipc_aead_free(&tmp->rcu); << 602 return -ENOMEM; << 603 } << 604 memcpy(&tmp->salt, ukey->key + keylen, 512 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); 605 atomic_set(&tmp->users, 0); 513 atomic_set(&tmp->users, 0); 606 atomic64_set(&tmp->seqno, 0); 514 atomic64_set(&tmp->seqno, 0); 607 refcount_set(&tmp->refcnt, 1); 515 refcount_set(&tmp->refcnt, 1); 608 516 609 *aead = tmp; 517 *aead = tmp; 610 return 0; 518 return 0; 611 } 519 } 612 520 613 /** 521 /** 614 * tipc_aead_clone - Clone a TIPC AEAD key 522 * tipc_aead_clone - Clone a TIPC AEAD key 615 * @dst: dest key for the cloning 523 * @dst: dest key for the cloning 616 * @src: source key to clone from 524 * @src: source key to clone from 617 * 525 * 618 * Make a "copy" of the source AEAD key data t 526 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is 619 * common for the keys. 527 * common for the keys. 620 * A reference to the source is hold in the "c 528 * A reference to the source is hold in the "cloned" pointer for the later 621 * freeing purposes. 529 * freeing purposes. 622 * 530 * 623 * Note: this must be done in cluster-key mode 531 * Note: this must be done in cluster-key mode only! 624 * Return: 0 in case of success, otherwise < 0 532 * Return: 0 in case of success, otherwise < 0 625 */ 533 */ 626 static int tipc_aead_clone(struct tipc_aead ** 534 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) 627 { 535 { 628 struct tipc_aead *aead; 536 struct tipc_aead *aead; 629 int cpu; 537 int cpu; 630 538 631 if (!src) 539 if (!src) 632 return -ENOKEY; 540 return -ENOKEY; 633 541 634 if (src->mode != CLUSTER_KEY) 542 if (src->mode != CLUSTER_KEY) 635 return -EINVAL; 543 return -EINVAL; 636 544 637 if (unlikely(*dst)) 545 if (unlikely(*dst)) 638 return -EEXIST; 546 return -EEXIST; 639 547 640 aead = kzalloc(sizeof(*aead), GFP_ATOM 548 aead = kzalloc(sizeof(*aead), GFP_ATOMIC); 641 if (unlikely(!aead)) 549 if (unlikely(!aead)) 642 return -ENOMEM; 550 return -ENOMEM; 643 551 644 aead->tfm_entry = alloc_percpu_gfp(str 552 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); 645 if (unlikely(!aead->tfm_entry)) { 553 if (unlikely(!aead->tfm_entry)) { 646 kfree_sensitive(aead); 554 kfree_sensitive(aead); 647 return -ENOMEM; 555 return -ENOMEM; 648 } 556 } 649 557 650 for_each_possible_cpu(cpu) { 558 for_each_possible_cpu(cpu) { 651 *per_cpu_ptr(aead->tfm_entry, 559 *per_cpu_ptr(aead->tfm_entry, cpu) = 652 *per_cpu_ptr(s 560 *per_cpu_ptr(src->tfm_entry, cpu); 653 } 561 } 654 562 655 memcpy(aead->hint, src->hint, sizeof(s 563 memcpy(aead->hint, src->hint, sizeof(src->hint)); 656 aead->mode = src->mode; 564 aead->mode = src->mode; 657 aead->salt = src->salt; 565 aead->salt = src->salt; 658 aead->authsize = src->authsize; 566 aead->authsize = src->authsize; 659 atomic_set(&aead->users, 0); 567 atomic_set(&aead->users, 0); 660 atomic64_set(&aead->seqno, 0); 568 atomic64_set(&aead->seqno, 0); 661 refcount_set(&aead->refcnt, 1); 569 refcount_set(&aead->refcnt, 1); 662 570 663 WARN_ON(!refcount_inc_not_zero(&src->r 571 WARN_ON(!refcount_inc_not_zero(&src->refcnt)); 664 aead->cloned = src; 572 aead->cloned = src; 665 573 666 *dst = aead; 574 *dst = aead; 667 return 0; 575 return 0; 668 } 576 } 669 577 670 /** 578 /** 671 * tipc_aead_mem_alloc - Allocate memory for A 579 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations 672 * @tfm: cipher handle to be registered with t 580 * @tfm: cipher handle to be registered with the request 673 * @crypto_ctx_size: size of crypto context fo 581 * @crypto_ctx_size: size of crypto context for callback 674 * @iv: returned pointer to IV data 582 * @iv: returned pointer to IV data 675 * @req: returned pointer to AEAD request data 583 * @req: returned pointer to AEAD request data 676 * @sg: returned pointer to SG lists 584 * @sg: returned pointer to SG lists 677 * @nsg: number of SG lists to be allocated 585 * @nsg: number of SG lists to be allocated 678 * 586 * 679 * Allocate memory to store the crypto context 587 * Allocate memory to store the crypto context data, AEAD request, IV and SG 680 * lists, the memory layout is as follows: 588 * lists, the memory layout is as follows: 681 * crypto_ctx || iv || aead_req || sg[] 589 * crypto_ctx || iv || aead_req || sg[] 682 * 590 * 683 * Return: the pointer to the memory areas in 591 * Return: the pointer to the memory areas in case of success, otherwise NULL 684 */ 592 */ 685 static void *tipc_aead_mem_alloc(struct crypto 593 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 686 unsigned int 594 unsigned int crypto_ctx_size, 687 u8 **iv, stru 595 u8 **iv, struct aead_request **req, 688 struct scatte 596 struct scatterlist **sg, int nsg) 689 { 597 { 690 unsigned int iv_size, req_size; 598 unsigned int iv_size, req_size; 691 unsigned int len; 599 unsigned int len; 692 u8 *mem; 600 u8 *mem; 693 601 694 iv_size = crypto_aead_ivsize(tfm); 602 iv_size = crypto_aead_ivsize(tfm); 695 req_size = sizeof(**req) + crypto_aead 603 req_size = sizeof(**req) + crypto_aead_reqsize(tfm); 696 604 697 len = crypto_ctx_size; 605 len = crypto_ctx_size; 698 len += iv_size; 606 len += iv_size; 699 len += crypto_aead_alignmask(tfm) & ~( 607 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); 700 len = ALIGN(len, crypto_tfm_ctx_alignm 608 len = ALIGN(len, crypto_tfm_ctx_alignment()); 701 len += req_size; 609 len += req_size; 702 len = ALIGN(len, __alignof__(struct sc 610 len = ALIGN(len, __alignof__(struct scatterlist)); 703 len += nsg * sizeof(**sg); 611 len += nsg * sizeof(**sg); 704 612 705 mem = kmalloc(len, GFP_ATOMIC); 613 mem = kmalloc(len, GFP_ATOMIC); 706 if (!mem) 614 if (!mem) 707 return NULL; 615 return NULL; 708 616 709 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx 617 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, 710 crypto_aead_alig 618 crypto_aead_alignmask(tfm) + 1); 711 *req = (struct aead_request *)PTR_ALIG 619 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, 712 620 crypto_tfm_ctx_alignment()); 713 *sg = (struct scatterlist *)PTR_ALIGN( 621 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, 714 622 __alignof__(struct scatterlist)); 715 623 716 return (void *)mem; 624 return (void *)mem; 717 } 625 } 718 626 719 /** 627 /** 720 * tipc_aead_encrypt - Encrypt a message 628 * tipc_aead_encrypt - Encrypt a message 721 * @aead: TIPC AEAD key for the message encryp 629 * @aead: TIPC AEAD key for the message encryption 722 * @skb: the input/output skb 630 * @skb: the input/output skb 723 * @b: TIPC bearer where the message will be d 631 * @b: TIPC bearer where the message will be delivered after the encryption 724 * @dst: the destination media address 632 * @dst: the destination media address 725 * @__dnode: TIPC dest node if "known" 633 * @__dnode: TIPC dest node if "known" 726 * 634 * 727 * Return: 635 * Return: 728 * * 0 : if the encryption h !! 636 * 0 : if the encryption has completed 729 * * -EINPROGRESS/-EBUSY : if a callback will !! 637 * -EINPROGRESS/-EBUSY : if a callback will be performed 730 * * < 0 : the encryption has !! 638 * < 0 : the encryption has failed 731 */ 639 */ 732 static int tipc_aead_encrypt(struct tipc_aead 640 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 733 struct tipc_beare 641 struct tipc_bearer *b, 734 struct tipc_media 642 struct tipc_media_addr *dst, 735 struct tipc_node 643 struct tipc_node *__dnode) 736 { 644 { 737 struct crypto_aead *tfm = tipc_aead_tf 645 struct crypto_aead *tfm = tipc_aead_tfm_next(aead); 738 struct tipc_crypto_tx_ctx *tx_ctx; 646 struct tipc_crypto_tx_ctx *tx_ctx; 739 struct aead_request *req; 647 struct aead_request *req; 740 struct sk_buff *trailer; 648 struct sk_buff *trailer; 741 struct scatterlist *sg; 649 struct scatterlist *sg; 742 struct tipc_ehdr *ehdr; 650 struct tipc_ehdr *ehdr; 743 int ehsz, len, tailen, nsg, rc; 651 int ehsz, len, tailen, nsg, rc; 744 void *ctx; 652 void *ctx; 745 u32 salt; 653 u32 salt; 746 u8 *iv; 654 u8 *iv; 747 655 748 /* Make sure message len at least 4-by 656 /* Make sure message len at least 4-byte aligned */ 749 len = ALIGN(skb->len, 4); 657 len = ALIGN(skb->len, 4); 750 tailen = len - skb->len + aead->authsi 658 tailen = len - skb->len + aead->authsize; 751 659 752 /* Expand skb tail for authentication 660 /* Expand skb tail for authentication tag: 753 * As for simplicity, we'd have made s 661 * As for simplicity, we'd have made sure skb having enough tailroom 754 * for authentication tag @skb allocat 662 * for authentication tag @skb allocation. Even when skb is nonlinear 755 * but there is no frag_list, it shoul 663 * but there is no frag_list, it should be still fine! 756 * Otherwise, we must cow it to be a w 664 * Otherwise, we must cow it to be a writable buffer with the tailroom. 757 */ 665 */ >> 666 #ifdef TIPC_CRYPTO_DEBUG 758 SKB_LINEAR_ASSERT(skb); 667 SKB_LINEAR_ASSERT(skb); 759 if (tailen > skb_tailroom(skb)) { 668 if (tailen > skb_tailroom(skb)) { 760 pr_debug("TX(): skb tailroom i !! 669 pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n", 761 skb_tailroom(skb), ta !! 670 skb_tailroom(skb), tailen); 762 } 671 } >> 672 #endif 763 673 764 nsg = skb_cow_data(skb, tailen, &trail !! 674 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { 765 if (unlikely(nsg < 0)) { !! 675 nsg = 1; 766 pr_err("TX: skb_cow_data() ret !! 676 trailer = skb; 767 return nsg; !! 677 } else { >> 678 /* TODO: We could avoid skb_cow_data() if skb has no frag_list >> 679 * e.g. by skb_fill_page_desc() to add another page to the skb >> 680 * with the wanted tailen... However, page skbs look not often, >> 681 * so take it easy now! >> 682 * Cloned skbs e.g. from link_xmit() seems no choice though :( >> 683 */ >> 684 nsg = skb_cow_data(skb, tailen, &trailer); >> 685 if (unlikely(nsg < 0)) { >> 686 pr_err("TX: skb_cow_data() returned %d\n", nsg); >> 687 return nsg; >> 688 } 768 } 689 } 769 690 770 pskb_put(skb, trailer, tailen); 691 pskb_put(skb, trailer, tailen); 771 692 772 /* Allocate memory for the AEAD operat 693 /* Allocate memory for the AEAD operation */ 773 ctx = tipc_aead_mem_alloc(tfm, sizeof( 694 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); 774 if (unlikely(!ctx)) 695 if (unlikely(!ctx)) 775 return -ENOMEM; 696 return -ENOMEM; 776 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 697 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 777 698 778 /* Map skb to the sg lists */ 699 /* Map skb to the sg lists */ 779 sg_init_table(sg, nsg); 700 sg_init_table(sg, nsg); 780 rc = skb_to_sgvec(skb, sg, 0, skb->len 701 rc = skb_to_sgvec(skb, sg, 0, skb->len); 781 if (unlikely(rc < 0)) { 702 if (unlikely(rc < 0)) { 782 pr_err("TX: skb_to_sgvec() ret 703 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); 783 goto exit; 704 goto exit; 784 } 705 } 785 706 786 /* Prepare IV: [SALT (4 octets)][SEQNO 707 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] 787 * In case we're in cluster-key mode, 708 * In case we're in cluster-key mode, SALT is varied by xor-ing with 788 * the source address (or w0 of id), o 709 * the source address (or w0 of id), otherwise with the dest address 789 * if dest is known. 710 * if dest is known. 790 */ 711 */ 791 ehdr = (struct tipc_ehdr *)skb->data; 712 ehdr = (struct tipc_ehdr *)skb->data; 792 salt = aead->salt; 713 salt = aead->salt; 793 if (aead->mode == CLUSTER_KEY) 714 if (aead->mode == CLUSTER_KEY) 794 salt ^= __be32_to_cpu(ehdr->ad !! 715 salt ^= ehdr->addr; /* __be32 */ 795 else if (__dnode) 716 else if (__dnode) 796 salt ^= tipc_node_get_addr(__d 717 salt ^= tipc_node_get_addr(__dnode); 797 memcpy(iv, &salt, 4); 718 memcpy(iv, &salt, 4); 798 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 719 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 799 720 800 /* Prepare request */ 721 /* Prepare request */ 801 ehsz = tipc_ehdr_size(ehdr); 722 ehsz = tipc_ehdr_size(ehdr); 802 aead_request_set_tfm(req, tfm); 723 aead_request_set_tfm(req, tfm); 803 aead_request_set_ad(req, ehsz); 724 aead_request_set_ad(req, ehsz); 804 aead_request_set_crypt(req, sg, sg, le 725 aead_request_set_crypt(req, sg, sg, len - ehsz, iv); 805 726 806 /* Set callback function & data */ 727 /* Set callback function & data */ 807 aead_request_set_callback(req, CRYPTO_ 728 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 808 tipc_aead_en 729 tipc_aead_encrypt_done, skb); 809 tx_ctx = (struct tipc_crypto_tx_ctx *) 730 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; 810 tx_ctx->aead = aead; 731 tx_ctx->aead = aead; 811 tx_ctx->bearer = b; 732 tx_ctx->bearer = b; 812 memcpy(&tx_ctx->dst, dst, sizeof(*dst) 733 memcpy(&tx_ctx->dst, dst, sizeof(*dst)); 813 734 814 /* Hold bearer */ 735 /* Hold bearer */ 815 if (unlikely(!tipc_bearer_hold(b))) { 736 if (unlikely(!tipc_bearer_hold(b))) { 816 rc = -ENODEV; 737 rc = -ENODEV; 817 goto exit; 738 goto exit; 818 } 739 } 819 740 820 /* Now, do encrypt */ 741 /* Now, do encrypt */ 821 rc = crypto_aead_encrypt(req); 742 rc = crypto_aead_encrypt(req); 822 if (rc == -EINPROGRESS || rc == -EBUSY 743 if (rc == -EINPROGRESS || rc == -EBUSY) 823 return rc; 744 return rc; 824 745 825 tipc_bearer_put(b); 746 tipc_bearer_put(b); 826 747 827 exit: 748 exit: 828 kfree(ctx); 749 kfree(ctx); 829 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 750 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 830 return rc; 751 return rc; 831 } 752 } 832 753 833 static void tipc_aead_encrypt_done(void *data, !! 754 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) 834 { 755 { 835 struct sk_buff *skb = data; !! 756 struct sk_buff *skb = base->data; 836 struct tipc_crypto_tx_ctx *tx_ctx = TI 757 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 837 struct tipc_bearer *b = tx_ctx->bearer 758 struct tipc_bearer *b = tx_ctx->bearer; 838 struct tipc_aead *aead = tx_ctx->aead; 759 struct tipc_aead *aead = tx_ctx->aead; 839 struct tipc_crypto *tx = aead->crypto; 760 struct tipc_crypto *tx = aead->crypto; 840 struct net *net = tx->net; 761 struct net *net = tx->net; 841 762 842 switch (err) { 763 switch (err) { 843 case 0: 764 case 0: 844 this_cpu_inc(tx->stats->stat[S 765 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); 845 rcu_read_lock(); 766 rcu_read_lock(); 846 if (likely(test_bit(0, &b->up) 767 if (likely(test_bit(0, &b->up))) 847 b->media->send_msg(net 768 b->media->send_msg(net, skb, b, &tx_ctx->dst); 848 else 769 else 849 kfree_skb(skb); 770 kfree_skb(skb); 850 rcu_read_unlock(); 771 rcu_read_unlock(); 851 break; 772 break; 852 case -EINPROGRESS: 773 case -EINPROGRESS: 853 return; 774 return; 854 default: 775 default: 855 this_cpu_inc(tx->stats->stat[S 776 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); 856 kfree_skb(skb); 777 kfree_skb(skb); 857 break; 778 break; 858 } 779 } 859 780 860 kfree(tx_ctx); 781 kfree(tx_ctx); 861 tipc_bearer_put(b); 782 tipc_bearer_put(b); 862 tipc_aead_put(aead); 783 tipc_aead_put(aead); 863 } 784 } 864 785 865 /** 786 /** 866 * tipc_aead_decrypt - Decrypt an encrypted me 787 * tipc_aead_decrypt - Decrypt an encrypted message 867 * @net: struct net 788 * @net: struct net 868 * @aead: TIPC AEAD for the message decryption 789 * @aead: TIPC AEAD for the message decryption 869 * @skb: the input/output skb 790 * @skb: the input/output skb 870 * @b: TIPC bearer where the message has been 791 * @b: TIPC bearer where the message has been received 871 * 792 * 872 * Return: 793 * Return: 873 * * 0 : if the decryption h !! 794 * 0 : if the decryption has completed 874 * * -EINPROGRESS/-EBUSY : if a callback will !! 795 * -EINPROGRESS/-EBUSY : if a callback will be performed 875 * * < 0 : the decryption has !! 796 * < 0 : the decryption has failed 876 */ 797 */ 877 static int tipc_aead_decrypt(struct net *net, 798 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 878 struct sk_buff *s 799 struct sk_buff *skb, struct tipc_bearer *b) 879 { 800 { 880 struct tipc_crypto_rx_ctx *rx_ctx; 801 struct tipc_crypto_rx_ctx *rx_ctx; 881 struct aead_request *req; 802 struct aead_request *req; 882 struct crypto_aead *tfm; 803 struct crypto_aead *tfm; 883 struct sk_buff *unused; 804 struct sk_buff *unused; 884 struct scatterlist *sg; 805 struct scatterlist *sg; 885 struct tipc_ehdr *ehdr; 806 struct tipc_ehdr *ehdr; 886 int ehsz, nsg, rc; 807 int ehsz, nsg, rc; 887 void *ctx; 808 void *ctx; 888 u32 salt; 809 u32 salt; 889 u8 *iv; 810 u8 *iv; 890 811 891 if (unlikely(!aead)) 812 if (unlikely(!aead)) 892 return -ENOKEY; 813 return -ENOKEY; 893 814 894 nsg = skb_cow_data(skb, 0, &unused); !! 815 /* Cow skb data if needed */ 895 if (unlikely(nsg < 0)) { !! 816 if (likely(!skb_cloned(skb) && 896 pr_err("RX: skb_cow_data() ret !! 817 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) { 897 return nsg; !! 818 nsg = 1 + skb_shinfo(skb)->nr_frags; >> 819 } else { >> 820 nsg = skb_cow_data(skb, 0, &unused); >> 821 if (unlikely(nsg < 0)) { >> 822 pr_err("RX: skb_cow_data() returned %d\n", nsg); >> 823 return nsg; >> 824 } 898 } 825 } 899 826 900 /* Allocate memory for the AEAD operat 827 /* Allocate memory for the AEAD operation */ 901 tfm = tipc_aead_tfm_next(aead); 828 tfm = tipc_aead_tfm_next(aead); 902 ctx = tipc_aead_mem_alloc(tfm, sizeof( 829 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); 903 if (unlikely(!ctx)) 830 if (unlikely(!ctx)) 904 return -ENOMEM; 831 return -ENOMEM; 905 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 832 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 906 833 907 /* Map skb to the sg lists */ 834 /* Map skb to the sg lists */ 908 sg_init_table(sg, nsg); 835 sg_init_table(sg, nsg); 909 rc = skb_to_sgvec(skb, sg, 0, skb->len 836 rc = skb_to_sgvec(skb, sg, 0, skb->len); 910 if (unlikely(rc < 0)) { 837 if (unlikely(rc < 0)) { 911 pr_err("RX: skb_to_sgvec() ret 838 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); 912 goto exit; 839 goto exit; 913 } 840 } 914 841 915 /* Reconstruct IV: */ 842 /* Reconstruct IV: */ 916 ehdr = (struct tipc_ehdr *)skb->data; 843 ehdr = (struct tipc_ehdr *)skb->data; 917 salt = aead->salt; 844 salt = aead->salt; 918 if (aead->mode == CLUSTER_KEY) 845 if (aead->mode == CLUSTER_KEY) 919 salt ^= __be32_to_cpu(ehdr->ad !! 846 salt ^= ehdr->addr; /* __be32 */ 920 else if (ehdr->destined) 847 else if (ehdr->destined) 921 salt ^= tipc_own_addr(net); 848 salt ^= tipc_own_addr(net); 922 memcpy(iv, &salt, 4); 849 memcpy(iv, &salt, 4); 923 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 850 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 924 851 925 /* Prepare request */ 852 /* Prepare request */ 926 ehsz = tipc_ehdr_size(ehdr); 853 ehsz = tipc_ehdr_size(ehdr); 927 aead_request_set_tfm(req, tfm); 854 aead_request_set_tfm(req, tfm); 928 aead_request_set_ad(req, ehsz); 855 aead_request_set_ad(req, ehsz); 929 aead_request_set_crypt(req, sg, sg, sk 856 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); 930 857 931 /* Set callback function & data */ 858 /* Set callback function & data */ 932 aead_request_set_callback(req, CRYPTO_ 859 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 933 tipc_aead_de 860 tipc_aead_decrypt_done, skb); 934 rx_ctx = (struct tipc_crypto_rx_ctx *) 861 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; 935 rx_ctx->aead = aead; 862 rx_ctx->aead = aead; 936 rx_ctx->bearer = b; 863 rx_ctx->bearer = b; 937 864 938 /* Hold bearer */ 865 /* Hold bearer */ 939 if (unlikely(!tipc_bearer_hold(b))) { 866 if (unlikely(!tipc_bearer_hold(b))) { 940 rc = -ENODEV; 867 rc = -ENODEV; 941 goto exit; 868 goto exit; 942 } 869 } 943 870 944 /* Now, do decrypt */ 871 /* Now, do decrypt */ 945 rc = crypto_aead_decrypt(req); 872 rc = crypto_aead_decrypt(req); 946 if (rc == -EINPROGRESS || rc == -EBUSY 873 if (rc == -EINPROGRESS || rc == -EBUSY) 947 return rc; 874 return rc; 948 875 949 tipc_bearer_put(b); 876 tipc_bearer_put(b); 950 877 951 exit: 878 exit: 952 kfree(ctx); 879 kfree(ctx); 953 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 880 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 954 return rc; 881 return rc; 955 } 882 } 956 883 957 static void tipc_aead_decrypt_done(void *data, !! 884 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) 958 { 885 { 959 struct sk_buff *skb = data; !! 886 struct sk_buff *skb = base->data; 960 struct tipc_crypto_rx_ctx *rx_ctx = TI 887 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 961 struct tipc_bearer *b = rx_ctx->bearer 888 struct tipc_bearer *b = rx_ctx->bearer; 962 struct tipc_aead *aead = rx_ctx->aead; 889 struct tipc_aead *aead = rx_ctx->aead; 963 struct tipc_crypto_stats __percpu *sta 890 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; 964 struct net *net = aead->crypto->net; 891 struct net *net = aead->crypto->net; 965 892 966 switch (err) { 893 switch (err) { 967 case 0: 894 case 0: 968 this_cpu_inc(stats->stat[STAT_ 895 this_cpu_inc(stats->stat[STAT_ASYNC_OK]); 969 break; 896 break; 970 case -EINPROGRESS: 897 case -EINPROGRESS: 971 return; 898 return; 972 default: 899 default: 973 this_cpu_inc(stats->stat[STAT_ 900 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); 974 break; 901 break; 975 } 902 } 976 903 977 kfree(rx_ctx); 904 kfree(rx_ctx); 978 tipc_crypto_rcv_complete(net, aead, b, 905 tipc_crypto_rcv_complete(net, aead, b, &skb, err); 979 if (likely(skb)) { 906 if (likely(skb)) { 980 if (likely(test_bit(0, &b->up) 907 if (likely(test_bit(0, &b->up))) 981 tipc_rcv(net, skb, b); 908 tipc_rcv(net, skb, b); 982 else 909 else 983 kfree_skb(skb); 910 kfree_skb(skb); 984 } 911 } 985 912 986 tipc_bearer_put(b); 913 tipc_bearer_put(b); 987 } 914 } 988 915 989 static inline int tipc_ehdr_size(struct tipc_e 916 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) 990 { 917 { 991 return (ehdr->user != LINK_CONFIG) ? E 918 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 992 } 919 } 993 920 994 /** 921 /** 995 * tipc_ehdr_validate - Validate an encryption 922 * tipc_ehdr_validate - Validate an encryption message 996 * @skb: the message buffer 923 * @skb: the message buffer 997 * 924 * 998 * Return: "true" if this is a valid encryptio !! 925 * Returns "true" if this is a valid encryption message, otherwise "false" 999 */ 926 */ 1000 bool tipc_ehdr_validate(struct sk_buff *skb) 927 bool tipc_ehdr_validate(struct sk_buff *skb) 1001 { 928 { 1002 struct tipc_ehdr *ehdr; 929 struct tipc_ehdr *ehdr; 1003 int ehsz; 930 int ehsz; 1004 931 1005 if (unlikely(!pskb_may_pull(skb, EHDR 932 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) 1006 return false; 933 return false; 1007 934 1008 ehdr = (struct tipc_ehdr *)skb->data; 935 ehdr = (struct tipc_ehdr *)skb->data; 1009 if (unlikely(ehdr->version != TIPC_EV 936 if (unlikely(ehdr->version != TIPC_EVERSION)) 1010 return false; 937 return false; 1011 ehsz = tipc_ehdr_size(ehdr); 938 ehsz = tipc_ehdr_size(ehdr); 1012 if (unlikely(!pskb_may_pull(skb, ehsz 939 if (unlikely(!pskb_may_pull(skb, ehsz))) 1013 return false; 940 return false; 1014 if (unlikely(skb->len <= ehsz + TIPC_ 941 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) 1015 return false; 942 return false; >> 943 if (unlikely(!ehdr->tx_key)) >> 944 return false; 1016 945 1017 return true; 946 return true; 1018 } 947 } 1019 948 1020 /** 949 /** 1021 * tipc_ehdr_build - Build TIPC encryption me 950 * tipc_ehdr_build - Build TIPC encryption message header 1022 * @net: struct net 951 * @net: struct net 1023 * @aead: TX AEAD key to be used for the mess 952 * @aead: TX AEAD key to be used for the message encryption 1024 * @tx_key: key id used for the message encry 953 * @tx_key: key id used for the message encryption 1025 * @skb: input/output message skb 954 * @skb: input/output message skb 1026 * @__rx: RX crypto handle if dest is "known" 955 * @__rx: RX crypto handle if dest is "known" 1027 * 956 * 1028 * Return: the header size if the building is 957 * Return: the header size if the building is successful, otherwise < 0 1029 */ 958 */ 1030 static int tipc_ehdr_build(struct net *net, s 959 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 1031 u8 tx_key, struct 960 u8 tx_key, struct sk_buff *skb, 1032 struct tipc_crypto 961 struct tipc_crypto *__rx) 1033 { 962 { 1034 struct tipc_msg *hdr = buf_msg(skb); 963 struct tipc_msg *hdr = buf_msg(skb); 1035 struct tipc_ehdr *ehdr; 964 struct tipc_ehdr *ehdr; 1036 u32 user = msg_user(hdr); 965 u32 user = msg_user(hdr); 1037 u64 seqno; 966 u64 seqno; 1038 int ehsz; 967 int ehsz; 1039 968 1040 /* Make room for encryption header */ 969 /* Make room for encryption header */ 1041 ehsz = (user != LINK_CONFIG) ? EHDR_S 970 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 1042 WARN_ON(skb_headroom(skb) < ehsz); 971 WARN_ON(skb_headroom(skb) < ehsz); 1043 ehdr = (struct tipc_ehdr *)skb_push(s 972 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); 1044 973 1045 /* Obtain a seqno first: 974 /* Obtain a seqno first: 1046 * Use the key seqno (= cluster wise) 975 * Use the key seqno (= cluster wise) if dest is unknown or we're in 1047 * cluster key mode, otherwise it's b 976 * cluster key mode, otherwise it's better for a per-peer seqno! 1048 */ 977 */ 1049 if (!__rx || aead->mode == CLUSTER_KE 978 if (!__rx || aead->mode == CLUSTER_KEY) 1050 seqno = atomic64_inc_return(& 979 seqno = atomic64_inc_return(&aead->seqno); 1051 else 980 else 1052 seqno = atomic64_inc_return(& 981 seqno = atomic64_inc_return(&__rx->sndnxt); 1053 982 1054 /* Revoke the key if seqno is wrapped 983 /* Revoke the key if seqno is wrapped around */ 1055 if (unlikely(!seqno)) 984 if (unlikely(!seqno)) 1056 return tipc_crypto_key_revoke 985 return tipc_crypto_key_revoke(net, tx_key); 1057 986 1058 /* Word 1-2 */ 987 /* Word 1-2 */ 1059 ehdr->seqno = cpu_to_be64(seqno); 988 ehdr->seqno = cpu_to_be64(seqno); 1060 989 1061 /* Words 0, 3- */ 990 /* Words 0, 3- */ 1062 ehdr->version = TIPC_EVERSION; 991 ehdr->version = TIPC_EVERSION; 1063 ehdr->user = 0; 992 ehdr->user = 0; 1064 ehdr->keepalive = 0; 993 ehdr->keepalive = 0; 1065 ehdr->tx_key = tx_key; 994 ehdr->tx_key = tx_key; 1066 ehdr->destined = (__rx) ? 1 : 0; 995 ehdr->destined = (__rx) ? 1 : 0; 1067 ehdr->rx_key_active = (__rx) ? __rx-> 996 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; 1068 ehdr->rx_nokey = (__rx) ? __rx->nokey << 1069 ehdr->master_key = aead->crypto->key_ << 1070 ehdr->reserved_1 = 0; 997 ehdr->reserved_1 = 0; 1071 ehdr->reserved_2 = 0; 998 ehdr->reserved_2 = 0; 1072 999 1073 switch (user) { 1000 switch (user) { 1074 case LINK_CONFIG: 1001 case LINK_CONFIG: 1075 ehdr->user = LINK_CONFIG; 1002 ehdr->user = LINK_CONFIG; 1076 memcpy(ehdr->id, tipc_own_id( 1003 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); 1077 break; 1004 break; 1078 default: 1005 default: 1079 if (user == LINK_PROTOCOL && 1006 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { 1080 ehdr->user = LINK_PRO 1007 ehdr->user = LINK_PROTOCOL; 1081 ehdr->keepalive = msg 1008 ehdr->keepalive = msg_is_keepalive(hdr); 1082 } 1009 } 1083 ehdr->addr = hdr->hdr[3]; 1010 ehdr->addr = hdr->hdr[3]; 1084 break; 1011 break; 1085 } 1012 } 1086 1013 1087 return ehsz; 1014 return ehsz; 1088 } 1015 } 1089 1016 1090 static inline void tipc_crypto_key_set_state( 1017 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 1091 1018 u8 new_passive, 1092 1019 u8 new_active, 1093 1020 u8 new_pending) 1094 { 1021 { >> 1022 #ifdef TIPC_CRYPTO_DEBUG 1095 struct tipc_key old = c->key; 1023 struct tipc_key old = c->key; 1096 char buf[32]; 1024 char buf[32]; >> 1025 #endif 1097 1026 1098 c->key.keys = ((new_passive & KEY_MAS 1027 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | 1099 ((new_active & KEY_MAS 1028 ((new_active & KEY_MASK) << (KEY_BITS)) | 1100 ((new_pending & KEY_MAS 1029 ((new_pending & KEY_MASK)); 1101 1030 1102 pr_debug("%s: key changing %s ::%pS\n !! 1031 #ifdef TIPC_CRYPTO_DEBUG 1103 tipc_key_change_dump(old, c- !! 1032 pr_info("%s(%s): key changing %s ::%pS\n", 1104 __builtin_return_address(0)) !! 1033 (c->node) ? "RX" : "TX", >> 1034 (c->node) ? tipc_node_get_id_str(c->node) : >> 1035 tipc_own_id_string(c->net), >> 1036 tipc_key_change_dump(old, c->key, buf), >> 1037 __builtin_return_address(0)); >> 1038 #endif 1105 } 1039 } 1106 1040 1107 /** 1041 /** 1108 * tipc_crypto_key_init - Initiate a new user 1042 * tipc_crypto_key_init - Initiate a new user / AEAD key 1109 * @c: TIPC crypto to which new key is attach 1043 * @c: TIPC crypto to which new key is attached 1110 * @ukey: the user key 1044 * @ukey: the user key 1111 * @mode: the key mode (CLUSTER_KEY or PER_NO 1045 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) 1112 * @master_key: specify this is a cluster mas << 1113 * 1046 * 1114 * A new TIPC AEAD key will be allocated and 1047 * A new TIPC AEAD key will be allocated and initiated with the specified user 1115 * key, then attached to the TIPC crypto. 1048 * key, then attached to the TIPC crypto. 1116 * 1049 * 1117 * Return: new key id in case of success, oth 1050 * Return: new key id in case of success, otherwise: < 0 1118 */ 1051 */ 1119 int tipc_crypto_key_init(struct tipc_crypto * 1052 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, 1120 u8 mode, bool master !! 1053 u8 mode) 1121 { 1054 { 1122 struct tipc_aead *aead = NULL; 1055 struct tipc_aead *aead = NULL; 1123 int rc = 0; 1056 int rc = 0; 1124 1057 1125 /* Initiate with the new user key */ 1058 /* Initiate with the new user key */ 1126 rc = tipc_aead_init(&aead, ukey, mode 1059 rc = tipc_aead_init(&aead, ukey, mode); 1127 1060 1128 /* Attach it to the crypto */ 1061 /* Attach it to the crypto */ 1129 if (likely(!rc)) { 1062 if (likely(!rc)) { 1130 rc = tipc_crypto_key_attach(c !! 1063 rc = tipc_crypto_key_attach(c, aead, 0); 1131 if (rc < 0) 1064 if (rc < 0) 1132 tipc_aead_free(&aead- 1065 tipc_aead_free(&aead->rcu); 1133 } 1066 } 1134 1067 >> 1068 pr_info("%s(%s): key initiating, rc %d!\n", >> 1069 (c->node) ? "RX" : "TX", >> 1070 (c->node) ? tipc_node_get_id_str(c->node) : >> 1071 tipc_own_id_string(c->net), >> 1072 rc); >> 1073 1135 return rc; 1074 return rc; 1136 } 1075 } 1137 1076 1138 /** 1077 /** 1139 * tipc_crypto_key_attach - Attach a new AEAD 1078 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto 1140 * @c: TIPC crypto to which the new AEAD key 1079 * @c: TIPC crypto to which the new AEAD key is attached 1141 * @aead: the new AEAD key pointer 1080 * @aead: the new AEAD key pointer 1142 * @pos: desired slot in the crypto key array 1081 * @pos: desired slot in the crypto key array, = 0 if any! 1143 * @master_key: specify this is a cluster mas << 1144 * 1082 * 1145 * Return: new key id in case of success, oth 1083 * Return: new key id in case of success, otherwise: -EBUSY 1146 */ 1084 */ 1147 static int tipc_crypto_key_attach(struct tipc 1085 static int tipc_crypto_key_attach(struct tipc_crypto *c, 1148 struct tipc !! 1086 struct tipc_aead *aead, u8 pos) 1149 bool master << 1150 { 1087 { >> 1088 u8 new_pending, new_passive, new_key; 1151 struct tipc_key key; 1089 struct tipc_key key; 1152 int rc = -EBUSY; 1090 int rc = -EBUSY; 1153 u8 new_key; << 1154 1091 1155 spin_lock_bh(&c->lock); 1092 spin_lock_bh(&c->lock); 1156 key = c->key; 1093 key = c->key; 1157 if (master_key) { << 1158 new_key = KEY_MASTER; << 1159 goto attach; << 1160 } << 1161 if (key.active && key.passive) 1094 if (key.active && key.passive) 1162 goto exit; 1095 goto exit; >> 1096 if (key.passive && !tipc_aead_users(c->aead[key.passive])) >> 1097 goto exit; 1163 if (key.pending) { 1098 if (key.pending) { >> 1099 if (pos) >> 1100 goto exit; 1164 if (tipc_aead_users(c->aead[k 1101 if (tipc_aead_users(c->aead[key.pending]) > 0) 1165 goto exit; 1102 goto exit; 1166 /* if (pos): ok with replacin << 1167 /* Replace it */ 1103 /* Replace it */ 1168 new_key = key.pending; !! 1104 new_pending = key.pending; >> 1105 new_passive = key.passive; >> 1106 new_key = new_pending; 1169 } else { 1107 } else { 1170 if (pos) { 1108 if (pos) { 1171 if (key.active && pos 1109 if (key.active && pos != key_next(key.active)) { 1172 key.passive = !! 1110 new_pending = key.pending; 1173 new_key = pos !! 1111 new_passive = pos; >> 1112 new_key = new_passive; 1174 goto attach; 1113 goto attach; 1175 } else if (!key.activ 1114 } else if (!key.active && !key.passive) { 1176 key.pending = !! 1115 new_pending = pos; 1177 new_key = pos !! 1116 new_passive = key.passive; >> 1117 new_key = new_pending; 1178 goto attach; 1118 goto attach; 1179 } 1119 } 1180 } 1120 } 1181 key.pending = key_next(key.ac !! 1121 new_pending = key_next(key.active ?: key.passive); 1182 new_key = key.pending; !! 1122 new_passive = key.passive; >> 1123 new_key = new_pending; 1183 } 1124 } 1184 1125 1185 attach: 1126 attach: 1186 aead->crypto = c; 1127 aead->crypto = c; 1187 aead->gen = (is_tx(c)) ? ++c->key_gen !! 1128 tipc_crypto_key_set_state(c, new_passive, key.active, new_pending); 1188 tipc_aead_rcu_replace(c->aead[new_key 1129 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); 1189 if (likely(c->key.keys != key.keys)) !! 1130 1190 tipc_crypto_key_set_state(c, << 1191 key << 1192 c->working = 1; 1131 c->working = 1; 1193 c->nokey = 0; !! 1132 c->timer1 = jiffies; 1194 c->key_master |= master_key; !! 1133 c->timer2 = jiffies; 1195 rc = new_key; 1134 rc = new_key; 1196 1135 1197 exit: 1136 exit: 1198 spin_unlock_bh(&c->lock); 1137 spin_unlock_bh(&c->lock); 1199 return rc; 1138 return rc; 1200 } 1139 } 1201 1140 1202 void tipc_crypto_key_flush(struct tipc_crypto 1141 void tipc_crypto_key_flush(struct tipc_crypto *c) 1203 { 1142 { 1204 struct tipc_crypto *tx, *rx; << 1205 int k; 1143 int k; 1206 1144 1207 spin_lock_bh(&c->lock); 1145 spin_lock_bh(&c->lock); 1208 if (is_rx(c)) { !! 1146 c->working = 0; 1209 /* Try to cancel pending work << 1210 rx = c; << 1211 tx = tipc_net(rx->net)->crypt << 1212 if (cancel_delayed_work(&rx-> << 1213 kfree(rx->skey); << 1214 rx->skey = NULL; << 1215 atomic_xchg(&rx->key_ << 1216 tipc_node_put(rx->nod << 1217 } << 1218 /* RX stopping => decrease TX << 1219 k = atomic_xchg(&rx->peer_rx_ << 1220 if (k) { << 1221 tipc_aead_users_dec(t << 1222 /* Mark the point TX << 1223 tx->timer1 = jiffies; << 1224 } << 1225 } << 1226 << 1227 c->flags = 0; << 1228 tipc_crypto_key_set_state(c, 0, 0, 0) 1147 tipc_crypto_key_set_state(c, 0, 0, 0); 1229 for (k = KEY_MIN; k <= KEY_MAX; k++) 1148 for (k = KEY_MIN; k <= KEY_MAX; k++) 1230 tipc_crypto_key_detach(c->aea 1149 tipc_crypto_key_detach(c->aead[k], &c->lock); >> 1150 atomic_set(&c->peer_rx_active, 0); 1231 atomic64_set(&c->sndnxt, 0); 1151 atomic64_set(&c->sndnxt, 0); 1232 spin_unlock_bh(&c->lock); 1152 spin_unlock_bh(&c->lock); 1233 } 1153 } 1234 1154 1235 /** 1155 /** 1236 * tipc_crypto_key_try_align - Align RX keys 1156 * tipc_crypto_key_try_align - Align RX keys if possible 1237 * @rx: RX crypto handle 1157 * @rx: RX crypto handle 1238 * @new_pending: new pending slot if aligned 1158 * @new_pending: new pending slot if aligned (= TX key from peer) 1239 * 1159 * 1240 * Peer has used an unknown key slot, this on 1160 * Peer has used an unknown key slot, this only happens when peer has left and 1241 * rejoned, or we are newcomer. 1161 * rejoned, or we are newcomer. 1242 * That means, there must be no active key bu 1162 * That means, there must be no active key but a pending key at unaligned slot. 1243 * If so, we try to move the pending key to t 1163 * If so, we try to move the pending key to the new slot. 1244 * Note: A potential passive key can exist, i 1164 * Note: A potential passive key can exist, it will be shifted correspondingly! 1245 * 1165 * 1246 * Return: "true" if key is successfully alig 1166 * Return: "true" if key is successfully aligned, otherwise "false" 1247 */ 1167 */ 1248 static bool tipc_crypto_key_try_align(struct 1168 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) 1249 { 1169 { 1250 struct tipc_aead *tmp1, *tmp2 = NULL; 1170 struct tipc_aead *tmp1, *tmp2 = NULL; 1251 struct tipc_key key; 1171 struct tipc_key key; 1252 bool aligned = false; 1172 bool aligned = false; 1253 u8 new_passive = 0; 1173 u8 new_passive = 0; 1254 int x; 1174 int x; 1255 1175 1256 spin_lock(&rx->lock); 1176 spin_lock(&rx->lock); 1257 key = rx->key; 1177 key = rx->key; 1258 if (key.pending == new_pending) { 1178 if (key.pending == new_pending) { 1259 aligned = true; 1179 aligned = true; 1260 goto exit; 1180 goto exit; 1261 } 1181 } 1262 if (key.active) 1182 if (key.active) 1263 goto exit; 1183 goto exit; 1264 if (!key.pending) 1184 if (!key.pending) 1265 goto exit; 1185 goto exit; 1266 if (tipc_aead_users(rx->aead[key.pend 1186 if (tipc_aead_users(rx->aead[key.pending]) > 0) 1267 goto exit; 1187 goto exit; 1268 1188 1269 /* Try to "isolate" this pending key 1189 /* Try to "isolate" this pending key first */ 1270 tmp1 = tipc_aead_rcu_ptr(rx->aead[key 1190 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); 1271 if (!refcount_dec_if_one(&tmp1->refcn 1191 if (!refcount_dec_if_one(&tmp1->refcnt)) 1272 goto exit; 1192 goto exit; 1273 rcu_assign_pointer(rx->aead[key.pendi 1193 rcu_assign_pointer(rx->aead[key.pending], NULL); 1274 1194 1275 /* Move passive key if any */ 1195 /* Move passive key if any */ 1276 if (key.passive) { 1196 if (key.passive) { 1277 tmp2 = rcu_replace_pointer(rx 1197 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); 1278 x = (key.passive - key.pendin 1198 x = (key.passive - key.pending + new_pending) % KEY_MAX; 1279 new_passive = (x <= 0) ? x + 1199 new_passive = (x <= 0) ? x + KEY_MAX : x; 1280 } 1200 } 1281 1201 1282 /* Re-allocate the key(s) */ 1202 /* Re-allocate the key(s) */ 1283 tipc_crypto_key_set_state(rx, new_pas 1203 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1284 rcu_assign_pointer(rx->aead[new_pendi 1204 rcu_assign_pointer(rx->aead[new_pending], tmp1); 1285 if (new_passive) 1205 if (new_passive) 1286 rcu_assign_pointer(rx->aead[n 1206 rcu_assign_pointer(rx->aead[new_passive], tmp2); 1287 refcount_set(&tmp1->refcnt, 1); 1207 refcount_set(&tmp1->refcnt, 1); 1288 aligned = true; 1208 aligned = true; 1289 pr_info_ratelimited("%s: key[%d] -> k !! 1209 pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node)); 1290 new_pending); << 1291 1210 1292 exit: 1211 exit: 1293 spin_unlock(&rx->lock); 1212 spin_unlock(&rx->lock); 1294 return aligned; 1213 return aligned; 1295 } 1214 } 1296 1215 1297 /** 1216 /** 1298 * tipc_crypto_key_pick_tx - Pick one TX key 1217 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption 1299 * @tx: TX crypto handle 1218 * @tx: TX crypto handle 1300 * @rx: RX crypto handle (can be NULL) 1219 * @rx: RX crypto handle (can be NULL) 1301 * @skb: the message skb which will be decryp 1220 * @skb: the message skb which will be decrypted later 1302 * @tx_key: peer TX key id << 1303 * 1221 * 1304 * This function looks up the existing TX key 1222 * This function looks up the existing TX keys and pick one which is suitable 1305 * for the message decryption, that must be a 1223 * for the message decryption, that must be a cluster key and not used before 1306 * on the same message (i.e. recursive). 1224 * on the same message (i.e. recursive). 1307 * 1225 * 1308 * Return: the TX AEAD key handle in case of 1226 * Return: the TX AEAD key handle in case of success, otherwise NULL 1309 */ 1227 */ 1310 static struct tipc_aead *tipc_crypto_key_pick 1228 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 1311 1229 struct tipc_crypto *rx, 1312 !! 1230 struct sk_buff *skb) 1313 << 1314 { 1231 { 1315 struct tipc_skb_cb *skb_cb = TIPC_SKB 1232 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); 1316 struct tipc_aead *aead = NULL; 1233 struct tipc_aead *aead = NULL; 1317 struct tipc_key key = tx->key; 1234 struct tipc_key key = tx->key; 1318 u8 k, i = 0; 1235 u8 k, i = 0; 1319 1236 1320 /* Initialize data if not yet */ 1237 /* Initialize data if not yet */ 1321 if (!skb_cb->tx_clone_deferred) { 1238 if (!skb_cb->tx_clone_deferred) { 1322 skb_cb->tx_clone_deferred = 1 1239 skb_cb->tx_clone_deferred = 1; 1323 memset(&skb_cb->tx_clone_ctx, 1240 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1324 } 1241 } 1325 1242 1326 skb_cb->tx_clone_ctx.rx = rx; 1243 skb_cb->tx_clone_ctx.rx = rx; 1327 if (++skb_cb->tx_clone_ctx.recurs > 2 1244 if (++skb_cb->tx_clone_ctx.recurs > 2) 1328 return NULL; 1245 return NULL; 1329 1246 1330 /* Pick one TX key */ 1247 /* Pick one TX key */ 1331 spin_lock(&tx->lock); 1248 spin_lock(&tx->lock); 1332 if (tx_key == KEY_MASTER) { << 1333 aead = tipc_aead_rcu_ptr(tx-> << 1334 goto done; << 1335 } << 1336 do { 1249 do { 1337 k = (i == 0) ? key.pending : 1250 k = (i == 0) ? key.pending : 1338 ((i == 1) ? key.activ 1251 ((i == 1) ? key.active : key.passive); 1339 if (!k) 1252 if (!k) 1340 continue; 1253 continue; 1341 aead = tipc_aead_rcu_ptr(tx-> 1254 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); 1342 if (!aead) 1255 if (!aead) 1343 continue; 1256 continue; 1344 if (aead->mode != CLUSTER_KEY 1257 if (aead->mode != CLUSTER_KEY || 1345 aead == skb_cb->tx_clone_ 1258 aead == skb_cb->tx_clone_ctx.last) { 1346 aead = NULL; 1259 aead = NULL; 1347 continue; 1260 continue; 1348 } 1261 } 1349 /* Ok, found one cluster key 1262 /* Ok, found one cluster key */ 1350 skb_cb->tx_clone_ctx.last = a 1263 skb_cb->tx_clone_ctx.last = aead; 1351 WARN_ON(skb->next); 1264 WARN_ON(skb->next); 1352 skb->next = skb_clone(skb, GF 1265 skb->next = skb_clone(skb, GFP_ATOMIC); 1353 if (unlikely(!skb->next)) 1266 if (unlikely(!skb->next)) 1354 pr_warn("Failed to cl 1267 pr_warn("Failed to clone skb for next round if any\n"); >> 1268 WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); 1355 break; 1269 break; 1356 } while (++i < 3); 1270 } while (++i < 3); 1357 << 1358 done: << 1359 if (likely(aead)) << 1360 WARN_ON(!refcount_inc_not_zer << 1361 spin_unlock(&tx->lock); 1271 spin_unlock(&tx->lock); 1362 1272 1363 return aead; 1273 return aead; 1364 } 1274 } 1365 1275 1366 /** 1276 /** 1367 * tipc_crypto_key_synch: Synch own key data 1277 * tipc_crypto_key_synch: Synch own key data according to peer key status 1368 * @rx: RX crypto handle 1278 * @rx: RX crypto handle 1369 * @skb: TIPCv2 message buffer (incl. the ehd !! 1279 * @new_rx_active: latest RX active key from peer >> 1280 * @hdr: TIPCv2 message 1370 * 1281 * 1371 * This function updates the peer node relate 1282 * This function updates the peer node related data as the peer RX active key 1372 * has changed, so the number of TX keys' use 1283 * has changed, so the number of TX keys' users on this node are increased and 1373 * decreased correspondingly. 1284 * decreased correspondingly. 1374 * 1285 * 1375 * It also considers if peer has no key, then << 1376 * (if any) taking over i.e. starting grace p << 1377 * distributing process. << 1378 * << 1379 * The "per-peer" sndnxt is also reset when t 1286 * The "per-peer" sndnxt is also reset when the peer key has switched. 1380 */ 1287 */ 1381 static void tipc_crypto_key_synch(struct tipc !! 1288 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, >> 1289 struct tipc_msg *hdr) 1382 { 1290 { 1383 struct tipc_ehdr *ehdr = (struct tipc !! 1291 struct net *net = rx->net; 1384 struct tipc_crypto *tx = tipc_net(rx- !! 1292 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1385 struct tipc_msg *hdr = buf_msg(skb); !! 1293 u8 cur_rx_active; 1386 u32 self = tipc_own_addr(rx->net); << 1387 u8 cur, new; << 1388 unsigned long delay; << 1389 1294 1390 /* Update RX 'key_master' flag accord !! 1295 /* TX might be even not ready yet */ 1391 * a peer has no master key. !! 1296 if (unlikely(!tx->key.active && !tx->key.pending)) 1392 */ !! 1297 return; 1393 rx->key_master = ehdr->master_key; << 1394 if (!rx->key_master) << 1395 tx->legacy_user = 1; << 1396 1298 1397 /* For later cases, apply only if mes !! 1299 cur_rx_active = atomic_read(&rx->peer_rx_active); 1398 if (!ehdr->destined || msg_short(hdr) !! 1300 if (likely(cur_rx_active == new_rx_active)) 1399 return; 1301 return; 1400 1302 1401 /* Case 1: Peer has no keys, let's ma !! 1303 /* Make sure this message destined for this node */ 1402 if (ehdr->rx_nokey) { !! 1304 if (unlikely(msg_short(hdr) || 1403 /* Set or extend grace period !! 1305 msg_destnode(hdr) != tipc_own_addr(net))) 1404 tx->timer2 = jiffies; !! 1306 return; 1405 /* Schedule key distributing << 1406 if (tx->key.keys && << 1407 !atomic_cmpxchg(&rx->key_ << 1408 get_random_bytes(&del << 1409 delay %= 5; << 1410 delay = msecs_to_jiff << 1411 if (queue_delayed_wor << 1412 tipc_node_get << 1413 } << 1414 } else { << 1415 /* Cancel a pending key distr << 1416 atomic_xchg(&rx->key_distr, 0 << 1417 } << 1418 1307 1419 /* Case 2: Peer RX active key has cha !! 1308 /* Peer RX active key has changed, try to update owns' & TX users */ 1420 cur = atomic_read(&rx->peer_rx_active !! 1309 if (atomic_cmpxchg(&rx->peer_rx_active, 1421 new = ehdr->rx_key_active; !! 1310 cur_rx_active, 1422 if (tx->key.keys && !! 1311 new_rx_active) == cur_rx_active) { 1423 cur != new && !! 1312 if (new_rx_active) 1424 atomic_cmpxchg(&rx->peer_rx_activ !! 1313 tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX); 1425 if (new) !! 1314 if (cur_rx_active) 1426 tipc_aead_users_inc(t !! 1315 tipc_aead_users_dec(tx->aead[cur_rx_active], 0); 1427 if (cur) << 1428 tipc_aead_users_dec(t << 1429 1316 1430 atomic64_set(&rx->sndnxt, 0); 1317 atomic64_set(&rx->sndnxt, 0); 1431 /* Mark the point TX key user 1318 /* Mark the point TX key users changed */ 1432 tx->timer1 = jiffies; 1319 tx->timer1 = jiffies; 1433 1320 1434 pr_debug("%s: key users chang !! 1321 #ifdef TIPC_CRYPTO_DEBUG 1435 tx->name, cur, new, !! 1322 pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n", >> 1323 tipc_own_id_string(net), cur_rx_active, >> 1324 new_rx_active, tipc_node_get_id_str(rx->node)); >> 1325 #endif 1436 } 1326 } 1437 } 1327 } 1438 1328 1439 static int tipc_crypto_key_revoke(struct net 1329 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) 1440 { 1330 { 1441 struct tipc_crypto *tx = tipc_net(net 1331 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1442 struct tipc_key key; 1332 struct tipc_key key; 1443 1333 1444 spin_lock_bh(&tx->lock); !! 1334 spin_lock(&tx->lock); 1445 key = tx->key; 1335 key = tx->key; 1446 WARN_ON(!key.active || tx_key != key. 1336 WARN_ON(!key.active || tx_key != key.active); 1447 1337 1448 /* Free the active key */ 1338 /* Free the active key */ 1449 tipc_crypto_key_set_state(tx, key.pas 1339 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); 1450 tipc_crypto_key_detach(tx->aead[key.a 1340 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1451 spin_unlock_bh(&tx->lock); !! 1341 spin_unlock(&tx->lock); 1452 1342 1453 pr_warn("%s: key is revoked\n", tx->n !! 1343 pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net)); 1454 return -EKEYREVOKED; 1344 return -EKEYREVOKED; 1455 } 1345 } 1456 1346 1457 int tipc_crypto_start(struct tipc_crypto **cr 1347 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, 1458 struct tipc_node *node) 1348 struct tipc_node *node) 1459 { 1349 { 1460 struct tipc_crypto *c; 1350 struct tipc_crypto *c; 1461 1351 1462 if (*crypto) 1352 if (*crypto) 1463 return -EEXIST; 1353 return -EEXIST; 1464 1354 1465 /* Allocate crypto */ 1355 /* Allocate crypto */ 1466 c = kzalloc(sizeof(*c), GFP_ATOMIC); 1356 c = kzalloc(sizeof(*c), GFP_ATOMIC); 1467 if (!c) 1357 if (!c) 1468 return -ENOMEM; 1358 return -ENOMEM; 1469 1359 1470 /* Allocate workqueue on TX */ << 1471 if (!node) { << 1472 c->wq = alloc_ordered_workque << 1473 if (!c->wq) { << 1474 kfree(c); << 1475 return -ENOMEM; << 1476 } << 1477 } << 1478 << 1479 /* Allocate statistic structure */ 1360 /* Allocate statistic structure */ 1480 c->stats = alloc_percpu_gfp(struct ti 1361 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); 1481 if (!c->stats) { 1362 if (!c->stats) { 1482 if (c->wq) << 1483 destroy_workqueue(c-> << 1484 kfree_sensitive(c); 1363 kfree_sensitive(c); 1485 return -ENOMEM; 1364 return -ENOMEM; 1486 } 1365 } 1487 1366 1488 c->flags = 0; !! 1367 c->working = 0; 1489 c->net = net; 1368 c->net = net; 1490 c->node = node; 1369 c->node = node; 1491 get_random_bytes(&c->key_gen, 2); << 1492 tipc_crypto_key_set_state(c, 0, 0, 0) 1370 tipc_crypto_key_set_state(c, 0, 0, 0); 1493 atomic_set(&c->key_distr, 0); << 1494 atomic_set(&c->peer_rx_active, 0); 1371 atomic_set(&c->peer_rx_active, 0); 1495 atomic64_set(&c->sndnxt, 0); 1372 atomic64_set(&c->sndnxt, 0); 1496 c->timer1 = jiffies; 1373 c->timer1 = jiffies; 1497 c->timer2 = jiffies; 1374 c->timer2 = jiffies; 1498 c->rekeying_intv = TIPC_REKEYING_INTV << 1499 spin_lock_init(&c->lock); 1375 spin_lock_init(&c->lock); 1500 scnprintf(c->name, 48, "%s(%s)", (is_ << 1501 (is_rx(c)) ? tipc_node_get_ << 1502 tipc_own_id_st << 1503 << 1504 if (is_rx(c)) << 1505 INIT_DELAYED_WORK(&c->work, t << 1506 else << 1507 INIT_DELAYED_WORK(&c->work, t << 1508 << 1509 *crypto = c; 1376 *crypto = c; >> 1377 1510 return 0; 1378 return 0; 1511 } 1379 } 1512 1380 1513 void tipc_crypto_stop(struct tipc_crypto **cr 1381 void tipc_crypto_stop(struct tipc_crypto **crypto) 1514 { 1382 { 1515 struct tipc_crypto *c = *crypto; !! 1383 struct tipc_crypto *c, *tx, *rx; >> 1384 bool is_rx; 1516 u8 k; 1385 u8 k; 1517 1386 1518 if (!c) !! 1387 if (!*crypto) 1519 return; 1388 return; 1520 1389 1521 /* Flush any queued works & destroy w !! 1390 rcu_read_lock(); 1522 if (is_tx(c)) { !! 1391 /* RX stopping? => decrease TX key users if any */ 1523 c->rekeying_intv = 0; !! 1392 is_rx = !!((*crypto)->node); 1524 cancel_delayed_work_sync(&c-> !! 1393 if (is_rx) { 1525 destroy_workqueue(c->wq); !! 1394 rx = *crypto; >> 1395 tx = tipc_net(rx->net)->crypto_tx; >> 1396 k = atomic_read(&rx->peer_rx_active); >> 1397 if (k) { >> 1398 tipc_aead_users_dec(tx->aead[k], 0); >> 1399 /* Mark the point TX key users changed */ >> 1400 tx->timer1 = jiffies; >> 1401 } 1526 } 1402 } 1527 1403 1528 /* Release AEAD keys */ 1404 /* Release AEAD keys */ 1529 rcu_read_lock(); !! 1405 c = *crypto; 1530 for (k = KEY_MIN; k <= KEY_MAX; k++) 1406 for (k = KEY_MIN; k <= KEY_MAX; k++) 1531 tipc_aead_put(rcu_dereference 1407 tipc_aead_put(rcu_dereference(c->aead[k])); 1532 rcu_read_unlock(); 1408 rcu_read_unlock(); 1533 pr_debug("%s: has been stopped\n", c- !! 1409 >> 1410 pr_warn("%s(%s) has been purged, node left!\n", >> 1411 (is_rx) ? "RX" : "TX", >> 1412 (is_rx) ? tipc_node_get_id_str((*crypto)->node) : >> 1413 tipc_own_id_string((*crypto)->net)); 1534 1414 1535 /* Free this crypto statistics */ 1415 /* Free this crypto statistics */ 1536 free_percpu(c->stats); 1416 free_percpu(c->stats); 1537 1417 1538 *crypto = NULL; 1418 *crypto = NULL; 1539 kfree_sensitive(c); 1419 kfree_sensitive(c); 1540 } 1420 } 1541 1421 1542 void tipc_crypto_timeout(struct tipc_crypto * 1422 void tipc_crypto_timeout(struct tipc_crypto *rx) 1543 { 1423 { 1544 struct tipc_net *tn = tipc_net(rx->ne 1424 struct tipc_net *tn = tipc_net(rx->net); 1545 struct tipc_crypto *tx = tn->crypto_t 1425 struct tipc_crypto *tx = tn->crypto_tx; 1546 struct tipc_key key; 1426 struct tipc_key key; >> 1427 u8 new_pending, new_passive; 1547 int cmd; 1428 int cmd; 1548 1429 1549 /* TX pending: taking all users & sta !! 1430 /* TX key activating: >> 1431 * The pending key (users > 0) -> active >> 1432 * The active key if any (users == 0) -> free >> 1433 */ 1550 spin_lock(&tx->lock); 1434 spin_lock(&tx->lock); 1551 key = tx->key; 1435 key = tx->key; 1552 if (key.active && tipc_aead_users(tx- 1436 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) 1553 goto s1; 1437 goto s1; 1554 if (!key.pending || tipc_aead_users(t 1438 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) 1555 goto s1; 1439 goto s1; 1556 if (time_before(jiffies, tx->timer1 + !! 1440 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM)) 1557 goto s1; 1441 goto s1; 1558 1442 1559 tipc_crypto_key_set_state(tx, key.pas 1443 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); 1560 if (key.active) 1444 if (key.active) 1561 tipc_crypto_key_detach(tx->ae 1445 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1562 this_cpu_inc(tx->stats->stat[STAT_SWI 1446 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); 1563 pr_info("%s: key[%d] is activated\n", !! 1447 pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net), >> 1448 key.pending); 1564 1449 1565 s1: 1450 s1: 1566 spin_unlock(&tx->lock); 1451 spin_unlock(&tx->lock); 1567 1452 1568 /* RX pending: having user -> active !! 1453 /* RX key activating: >> 1454 * The pending key (users > 0) -> active >> 1455 * The active key if any -> passive, freed later >> 1456 */ 1569 spin_lock(&rx->lock); 1457 spin_lock(&rx->lock); 1570 key = rx->key; 1458 key = rx->key; 1571 if (!key.pending || tipc_aead_users(r 1459 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) 1572 goto s2; 1460 goto s2; 1573 1461 1574 if (key.active) !! 1462 new_pending = (key.passive && 1575 key.passive = key.active; !! 1463 !tipc_aead_users(rx->aead[key.passive])) ? 1576 key.active = key.pending; !! 1464 key.passive : 0; 1577 rx->timer2 = jiffies; !! 1465 new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive); 1578 tipc_crypto_key_set_state(rx, key.pas !! 1466 tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending); 1579 this_cpu_inc(rx->stats->stat[STAT_SWI 1467 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); 1580 pr_info("%s: key[%d] is activated\n", !! 1468 pr_info("RX(%s): key %d is activated!\n", >> 1469 tipc_node_get_id_str(rx->node), key.pending); 1581 goto s5; 1470 goto s5; 1582 1471 1583 s2: 1472 s2: 1584 /* RX pending: not working -> remove !! 1473 /* RX key "faulty" switching: 1585 if (!key.pending || tipc_aead_users(r !! 1474 * The faulty pending key (users < -30) -> passive >> 1475 * The passive key (users = 0) -> pending >> 1476 * Note: This only happens after RX deactivated - s3! >> 1477 */ >> 1478 key = rx->key; >> 1479 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30) >> 1480 goto s3; >> 1481 if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0) 1586 goto s3; 1482 goto s3; 1587 1483 1588 tipc_crypto_key_set_state(rx, key.pas !! 1484 new_pending = key.passive; 1589 tipc_crypto_key_detach(rx->aead[key.p !! 1485 new_passive = key.pending; 1590 pr_debug("%s: key[%d] is removed\n", !! 1486 tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending); 1591 goto s5; 1487 goto s5; 1592 1488 1593 s3: 1489 s3: 1594 /* RX active: timed out or no user -> !! 1490 /* RX key deactivating: >> 1491 * The passive key if any -> pending >> 1492 * The active key -> passive (users = 0) / pending >> 1493 * The pending key if any -> passive (users = 0) >> 1494 */ >> 1495 key = rx->key; 1595 if (!key.active) 1496 if (!key.active) 1596 goto s4; 1497 goto s4; 1597 if (time_before(jiffies, rx->timer1 + !! 1498 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM)) 1598 tipc_aead_users(rx->aead[key.acti << 1599 goto s4; 1499 goto s4; 1600 1500 1601 if (key.pending) !! 1501 new_pending = (key.passive) ?: key.active; 1602 key.passive = key.active; !! 1502 new_passive = (key.passive) ? key.active : key.pending; 1603 else !! 1503 tipc_aead_users_set(rx->aead[new_pending], 0); 1604 key.pending = key.active; !! 1504 if (new_passive) 1605 rx->timer2 = jiffies; !! 1505 tipc_aead_users_set(rx->aead[new_passive], 0); 1606 tipc_crypto_key_set_state(rx, key.pas !! 1506 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1607 tipc_aead_users_set(rx->aead[key.pend !! 1507 pr_info("RX(%s): key %d is deactivated!\n", 1608 pr_debug("%s: key[%d] is deactivated\ !! 1508 tipc_node_get_id_str(rx->node), key.active); 1609 goto s5; 1509 goto s5; 1610 1510 1611 s4: 1511 s4: 1612 /* RX passive: outdated or not workin !! 1512 /* RX key passive -> freed: */ 1613 if (!key.passive) !! 1513 key = rx->key; >> 1514 if (!key.passive || !tipc_aead_users(rx->aead[key.passive])) 1614 goto s5; 1515 goto s5; 1615 if (time_before(jiffies, rx->timer2 + !! 1516 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM)) 1616 tipc_aead_users(rx->aead[key.pass << 1617 goto s5; 1517 goto s5; 1618 1518 1619 tipc_crypto_key_set_state(rx, 0, key. 1519 tipc_crypto_key_set_state(rx, 0, key.active, key.pending); 1620 tipc_crypto_key_detach(rx->aead[key.p 1520 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); 1621 pr_debug("%s: key[%d] is freed\n", rx !! 1521 pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node), >> 1522 key.passive); 1622 1523 1623 s5: 1524 s5: 1624 spin_unlock(&rx->lock); 1525 spin_unlock(&rx->lock); 1625 1526 1626 /* Relax it here, the flag will be se << 1627 * when we are not in grace period fo << 1628 */ << 1629 if (time_after(jiffies, tx->timer2 + << 1630 tx->legacy_user = 0; << 1631 << 1632 /* Limit max_tfms & do debug commands 1527 /* Limit max_tfms & do debug commands if needed */ 1633 if (likely(sysctl_tipc_max_tfms <= TI 1528 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) 1634 return; 1529 return; 1635 1530 1636 cmd = sysctl_tipc_max_tfms; 1531 cmd = sysctl_tipc_max_tfms; 1637 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_ 1532 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; 1638 tipc_crypto_do_cmd(rx->net, cmd); 1533 tipc_crypto_do_cmd(rx->net, cmd); 1639 } 1534 } 1640 1535 1641 static inline void tipc_crypto_clone_msg(stru << 1642 stru << 1643 stru << 1644 stru << 1645 { << 1646 struct sk_buff *skb; << 1647 << 1648 skb = skb_clone(_skb, GFP_ATOMIC); << 1649 if (skb) { << 1650 TIPC_SKB_CB(skb)->xmit_type = << 1651 tipc_crypto_xmit(net, &skb, b << 1652 if (skb) << 1653 b->media->send_msg(ne << 1654 } << 1655 } << 1656 << 1657 /** 1536 /** 1658 * tipc_crypto_xmit - Build & encrypt TIPC me 1537 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit 1659 * @net: struct net 1538 * @net: struct net 1660 * @skb: input/output message skb pointer 1539 * @skb: input/output message skb pointer 1661 * @b: bearer used for xmit later 1540 * @b: bearer used for xmit later 1662 * @dst: destination media address 1541 * @dst: destination media address 1663 * @__dnode: destination node for reference i 1542 * @__dnode: destination node for reference if any 1664 * 1543 * 1665 * First, build an encryption message header 1544 * First, build an encryption message header on the top of the message, then 1666 * encrypt the original TIPC message by using !! 1545 * encrypt the original TIPC message by using the active or pending TX key. 1667 * key with this preference order. << 1668 * If the encryption is successful, the encry 1546 * If the encryption is successful, the encrypted skb is returned directly or 1669 * via the callback. 1547 * via the callback. 1670 * Otherwise, the skb is freed! 1548 * Otherwise, the skb is freed! 1671 * 1549 * 1672 * Return: 1550 * Return: 1673 * * 0 : the encryption has !! 1551 * 0 : the encryption has succeeded (or no encryption) 1674 * * -EINPROGRESS/-EBUSY : the encryption is !! 1552 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made 1675 * * -ENOKEK : the encryption has !! 1553 * -ENOKEK : the encryption has failed due to no key 1676 * * -EKEYREVOKED : the encryption has !! 1554 * -EKEYREVOKED : the encryption has failed due to key revoked 1677 * * -ENOMEM : the encryption has !! 1555 * -ENOMEM : the encryption has failed due to no memory 1678 * * < 0 : the encryption has !! 1556 * < 0 : the encryption has failed due to other reasons 1679 */ 1557 */ 1680 int tipc_crypto_xmit(struct net *net, struct 1558 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, 1681 struct tipc_bearer *b, s 1559 struct tipc_bearer *b, struct tipc_media_addr *dst, 1682 struct tipc_node *__dnod 1560 struct tipc_node *__dnode) 1683 { 1561 { 1684 struct tipc_crypto *__rx = tipc_node_ 1562 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); 1685 struct tipc_crypto *tx = tipc_net(net 1563 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1686 struct tipc_crypto_stats __percpu *st 1564 struct tipc_crypto_stats __percpu *stats = tx->stats; 1687 struct tipc_msg *hdr = buf_msg(*skb); << 1688 struct tipc_key key = tx->key; 1565 struct tipc_key key = tx->key; 1689 struct tipc_aead *aead = NULL; 1566 struct tipc_aead *aead = NULL; 1690 u32 user = msg_user(hdr); !! 1567 struct sk_buff *probe; 1691 u32 type = msg_type(hdr); << 1692 int rc = -ENOKEY; 1568 int rc = -ENOKEY; 1693 u8 tx_key = 0; !! 1569 u8 tx_key; 1694 1570 1695 /* No encryption? */ 1571 /* No encryption? */ 1696 if (!tx->working) 1572 if (!tx->working) 1697 return 0; 1573 return 0; 1698 1574 1699 /* Pending key if peer has active on !! 1575 /* Try with the pending key if available and: >> 1576 * 1) This is the only choice (i.e. no active key) or; >> 1577 * 2) Peer has switched to this key (unicast only) or; >> 1578 * 3) It is time to do a pending key probe; >> 1579 */ 1700 if (unlikely(key.pending)) { 1580 if (unlikely(key.pending)) { 1701 tx_key = key.pending; 1581 tx_key = key.pending; 1702 if (!tx->key_master && !key.a !! 1582 if (!key.active) 1703 goto encrypt; 1583 goto encrypt; 1704 if (__rx && atomic_read(&__rx 1584 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) 1705 goto encrypt; 1585 goto encrypt; 1706 if (TIPC_SKB_CB(*skb)->xmit_t !! 1586 if (TIPC_SKB_CB(*skb)->probe) 1707 pr_debug("%s: probing << 1708 key.pending) << 1709 goto encrypt; 1587 goto encrypt; 1710 } !! 1588 if (!__rx && 1711 if (user == LINK_CONFIG || us !! 1589 time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) { 1712 tipc_crypto_clone_msg !! 1590 tx->timer2 = jiffies; 1713 !! 1591 probe = skb_clone(*skb, GFP_ATOMIC); 1714 } !! 1592 if (probe) { 1715 !! 1593 TIPC_SKB_CB(probe)->probe = 1; 1716 /* Master key if this is a *vital* me !! 1594 tipc_crypto_xmit(net, &probe, b, dst, __dnode); 1717 if (tx->key_master) { !! 1595 if (probe) 1718 tx_key = KEY_MASTER; !! 1596 b->media->send_msg(net, probe, b, dst); 1719 if (!key.active) << 1720 goto encrypt; << 1721 if (TIPC_SKB_CB(*skb)->xmit_t << 1722 pr_debug("%s: gracing << 1723 user, type); << 1724 goto encrypt; << 1725 } << 1726 if (user == LINK_CONFIG || << 1727 (user == LINK_PROTOCOL && << 1728 (user == MSG_CRYPTO && ty << 1729 time_before(jiffies, tx-> << 1730 if (__rx && __rx->key << 1731 !atomic_read(&__r << 1732 goto encrypt; << 1733 if (!__rx) { << 1734 if (likely(!t << 1735 goto << 1736 tipc_crypto_c << 1737 << 1738 } 1597 } 1739 } 1598 } 1740 } 1599 } 1741 << 1742 /* Else, use the active key if any */ 1600 /* Else, use the active key if any */ 1743 if (likely(key.active)) { 1601 if (likely(key.active)) { 1744 tx_key = key.active; 1602 tx_key = key.active; 1745 goto encrypt; 1603 goto encrypt; 1746 } 1604 } 1747 << 1748 goto exit; 1605 goto exit; 1749 1606 1750 encrypt: 1607 encrypt: 1751 aead = tipc_aead_get(tx->aead[tx_key] 1608 aead = tipc_aead_get(tx->aead[tx_key]); 1752 if (unlikely(!aead)) 1609 if (unlikely(!aead)) 1753 goto exit; 1610 goto exit; 1754 rc = tipc_ehdr_build(net, aead, tx_ke 1611 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); 1755 if (likely(rc > 0)) 1612 if (likely(rc > 0)) 1756 rc = tipc_aead_encrypt(aead, 1613 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); 1757 1614 1758 exit: 1615 exit: 1759 switch (rc) { 1616 switch (rc) { 1760 case 0: 1617 case 0: 1761 this_cpu_inc(stats->stat[STAT 1618 this_cpu_inc(stats->stat[STAT_OK]); 1762 break; 1619 break; 1763 case -EINPROGRESS: 1620 case -EINPROGRESS: 1764 case -EBUSY: 1621 case -EBUSY: 1765 this_cpu_inc(stats->stat[STAT 1622 this_cpu_inc(stats->stat[STAT_ASYNC]); 1766 *skb = NULL; 1623 *skb = NULL; 1767 return rc; 1624 return rc; 1768 default: 1625 default: 1769 this_cpu_inc(stats->stat[STAT 1626 this_cpu_inc(stats->stat[STAT_NOK]); 1770 if (rc == -ENOKEY) 1627 if (rc == -ENOKEY) 1771 this_cpu_inc(stats->s 1628 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1772 else if (rc == -EKEYREVOKED) 1629 else if (rc == -EKEYREVOKED) 1773 this_cpu_inc(stats->s 1630 this_cpu_inc(stats->stat[STAT_BADKEYS]); 1774 kfree_skb(*skb); 1631 kfree_skb(*skb); 1775 *skb = NULL; 1632 *skb = NULL; 1776 break; 1633 break; 1777 } 1634 } 1778 1635 1779 tipc_aead_put(aead); 1636 tipc_aead_put(aead); 1780 return rc; 1637 return rc; 1781 } 1638 } 1782 1639 1783 /** 1640 /** 1784 * tipc_crypto_rcv - Decrypt an encrypted TIP 1641 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer 1785 * @net: struct net 1642 * @net: struct net 1786 * @rx: RX crypto handle 1643 * @rx: RX crypto handle 1787 * @skb: input/output message skb pointer 1644 * @skb: input/output message skb pointer 1788 * @b: bearer where the message has been rece 1645 * @b: bearer where the message has been received 1789 * 1646 * 1790 * If the decryption is successful, the decry 1647 * If the decryption is successful, the decrypted skb is returned directly or 1791 * as the callback, the encryption header and 1648 * as the callback, the encryption header and auth tag will be trimed out 1792 * before forwarding to tipc_rcv() via the ti 1649 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). 1793 * Otherwise, the skb will be freed! 1650 * Otherwise, the skb will be freed! 1794 * Note: RX key(s) can be re-aligned, or in c 1651 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX 1795 * cluster key(s) can be taken for decryption 1652 * cluster key(s) can be taken for decryption (- recursive). 1796 * 1653 * 1797 * Return: 1654 * Return: 1798 * * 0 : the decryption has !! 1655 * 0 : the decryption has successfully completed 1799 * * -EINPROGRESS/-EBUSY : the decryption is !! 1656 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made 1800 * * -ENOKEY : the decryption has !! 1657 * -ENOKEY : the decryption has failed due to no key 1801 * * -EBADMSG : the decryption has !! 1658 * -EBADMSG : the decryption has failed due to bad message 1802 * * -ENOMEM : the decryption has !! 1659 * -ENOMEM : the decryption has failed due to no memory 1803 * * < 0 : the decryption has !! 1660 * < 0 : the decryption has failed due to other reasons 1804 */ 1661 */ 1805 int tipc_crypto_rcv(struct net *net, struct t 1662 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, 1806 struct sk_buff **skb, str 1663 struct sk_buff **skb, struct tipc_bearer *b) 1807 { 1664 { 1808 struct tipc_crypto *tx = tipc_net(net 1665 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1809 struct tipc_crypto_stats __percpu *st 1666 struct tipc_crypto_stats __percpu *stats; 1810 struct tipc_aead *aead = NULL; 1667 struct tipc_aead *aead = NULL; 1811 struct tipc_key key; 1668 struct tipc_key key; 1812 int rc = -ENOKEY; 1669 int rc = -ENOKEY; 1813 u8 tx_key, n; !! 1670 u8 tx_key = 0; 1814 << 1815 tx_key = ((struct tipc_ehdr *)(*skb)- << 1816 1671 1817 /* New peer? 1672 /* New peer? 1818 * Let's try with TX key (i.e. cluste 1673 * Let's try with TX key (i.e. cluster mode) & verify the skb first! 1819 */ 1674 */ 1820 if (unlikely(!rx || tx_key == KEY_MAS !! 1675 if (unlikely(!rx)) 1821 goto pick_tx; 1676 goto pick_tx; 1822 1677 1823 /* Pick RX key according to TX key if !! 1678 /* Pick RX key according to TX key, three cases are possible: >> 1679 * 1) The current active key (likely) or; >> 1680 * 2) The pending (new or deactivated) key (if any) or; >> 1681 * 3) The passive or old active key (i.e. users > 0); >> 1682 */ >> 1683 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; 1824 key = rx->key; 1684 key = rx->key; 1825 if (tx_key == key.active || tx_key == !! 1685 if (likely(tx_key == key.active)) 1826 tx_key == key.passive) << 1827 goto decrypt; 1686 goto decrypt; >> 1687 if (tx_key == key.pending) >> 1688 goto decrypt; >> 1689 if (tx_key == key.passive) { >> 1690 rx->timer2 = jiffies; >> 1691 if (tipc_aead_users(rx->aead[key.passive]) > 0) >> 1692 goto decrypt; >> 1693 } 1828 1694 1829 /* Unknown key, let's try to align RX 1695 /* Unknown key, let's try to align RX key(s) */ 1830 if (tipc_crypto_key_try_align(rx, tx_ 1696 if (tipc_crypto_key_try_align(rx, tx_key)) 1831 goto decrypt; 1697 goto decrypt; 1832 1698 1833 pick_tx: 1699 pick_tx: 1834 /* No key suitable? Try to pick one f 1700 /* No key suitable? Try to pick one from TX... */ 1835 aead = tipc_crypto_key_pick_tx(tx, rx !! 1701 aead = tipc_crypto_key_pick_tx(tx, rx, *skb); 1836 if (aead) 1702 if (aead) 1837 goto decrypt; 1703 goto decrypt; 1838 goto exit; 1704 goto exit; 1839 1705 1840 decrypt: 1706 decrypt: 1841 rcu_read_lock(); 1707 rcu_read_lock(); 1842 if (!aead) 1708 if (!aead) 1843 aead = tipc_aead_get(rx->aead 1709 aead = tipc_aead_get(rx->aead[tx_key]); 1844 rc = tipc_aead_decrypt(net, aead, *sk 1710 rc = tipc_aead_decrypt(net, aead, *skb, b); 1845 rcu_read_unlock(); 1711 rcu_read_unlock(); 1846 1712 1847 exit: 1713 exit: 1848 stats = ((rx) ?: tx)->stats; 1714 stats = ((rx) ?: tx)->stats; 1849 switch (rc) { 1715 switch (rc) { 1850 case 0: 1716 case 0: 1851 this_cpu_inc(stats->stat[STAT 1717 this_cpu_inc(stats->stat[STAT_OK]); 1852 break; 1718 break; 1853 case -EINPROGRESS: 1719 case -EINPROGRESS: 1854 case -EBUSY: 1720 case -EBUSY: 1855 this_cpu_inc(stats->stat[STAT 1721 this_cpu_inc(stats->stat[STAT_ASYNC]); 1856 *skb = NULL; 1722 *skb = NULL; 1857 return rc; 1723 return rc; 1858 default: 1724 default: 1859 this_cpu_inc(stats->stat[STAT 1725 this_cpu_inc(stats->stat[STAT_NOK]); 1860 if (rc == -ENOKEY) { 1726 if (rc == -ENOKEY) { 1861 kfree_skb(*skb); 1727 kfree_skb(*skb); 1862 *skb = NULL; 1728 *skb = NULL; 1863 if (rx) { !! 1729 if (rx) 1864 /* Mark rx->n << 1865 * pending re << 1866 * one i.e. i << 1867 */ << 1868 n = key_next( << 1869 rx->nokey = ! << 1870 << 1871 pr_debug_rate << 1872 << 1873 << 1874 tipc_node_put 1730 tipc_node_put(rx->node); 1875 } << 1876 this_cpu_inc(stats->s 1731 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1877 return rc; 1732 return rc; 1878 } else if (rc == -EBADMSG) { 1733 } else if (rc == -EBADMSG) { 1879 this_cpu_inc(stats->s 1734 this_cpu_inc(stats->stat[STAT_BADMSGS]); 1880 } 1735 } 1881 break; 1736 break; 1882 } 1737 } 1883 1738 1884 tipc_crypto_rcv_complete(net, aead, b 1739 tipc_crypto_rcv_complete(net, aead, b, skb, rc); 1885 return rc; 1740 return rc; 1886 } 1741 } 1887 1742 1888 static void tipc_crypto_rcv_complete(struct n 1743 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 1889 struct t 1744 struct tipc_bearer *b, 1890 struct s 1745 struct sk_buff **skb, int err) 1891 { 1746 { 1892 struct tipc_skb_cb *skb_cb = TIPC_SKB 1747 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); 1893 struct tipc_crypto *rx = aead->crypto 1748 struct tipc_crypto *rx = aead->crypto; 1894 struct tipc_aead *tmp = NULL; 1749 struct tipc_aead *tmp = NULL; 1895 struct tipc_ehdr *ehdr; 1750 struct tipc_ehdr *ehdr; 1896 struct tipc_node *n; 1751 struct tipc_node *n; >> 1752 u8 rx_key_active; >> 1753 bool destined; 1897 1754 1898 /* Is this completed by TX? */ 1755 /* Is this completed by TX? */ 1899 if (unlikely(is_tx(aead->crypto))) { !! 1756 if (unlikely(!rx->node)) { 1900 rx = skb_cb->tx_clone_ctx.rx; 1757 rx = skb_cb->tx_clone_ctx.rx; 1901 pr_debug("TX->RX(%s): err %d, !! 1758 #ifdef TIPC_CRYPTO_DEBUG 1902 (rx) ? tipc_node_get !! 1759 pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", 1903 (*skb)->next, skb_cb !! 1760 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, 1904 pr_debug("skb_cb [recurs %d, !! 1761 (*skb)->next, skb_cb->flags); 1905 skb_cb->tx_clone_ctx !! 1762 pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", 1906 aead->crypto->aead[1 !! 1763 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, 1907 aead->crypto->aead[3 !! 1764 aead->crypto->aead[1], aead->crypto->aead[2], >> 1765 aead->crypto->aead[3]); >> 1766 #endif 1908 if (unlikely(err)) { 1767 if (unlikely(err)) { 1909 if (err == -EBADMSG & 1768 if (err == -EBADMSG && (*skb)->next) 1910 tipc_rcv(net, 1769 tipc_rcv(net, (*skb)->next, b); 1911 goto free_skb; 1770 goto free_skb; 1912 } 1771 } 1913 1772 1914 if (likely((*skb)->next)) { 1773 if (likely((*skb)->next)) { 1915 kfree_skb((*skb)->nex 1774 kfree_skb((*skb)->next); 1916 (*skb)->next = NULL; 1775 (*skb)->next = NULL; 1917 } 1776 } 1918 ehdr = (struct tipc_ehdr *)(* 1777 ehdr = (struct tipc_ehdr *)(*skb)->data; 1919 if (!rx) { 1778 if (!rx) { 1920 WARN_ON(ehdr->user != 1779 WARN_ON(ehdr->user != LINK_CONFIG); 1921 n = tipc_node_create( 1780 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, 1922 1781 true); 1923 rx = tipc_node_crypto 1782 rx = tipc_node_crypto_rx(n); 1924 if (unlikely(!rx)) 1783 if (unlikely(!rx)) 1925 goto free_skb 1784 goto free_skb; 1926 } 1785 } 1927 1786 1928 /* Ignore cloning if it was T !! 1787 /* Skip cloning this time as we had a RX pending key */ 1929 if (ehdr->tx_key == KEY_MASTE !! 1788 if (rx->key.pending) 1930 goto rcv; 1789 goto rcv; 1931 if (tipc_aead_clone(&tmp, aea 1790 if (tipc_aead_clone(&tmp, aead) < 0) 1932 goto rcv; 1791 goto rcv; 1933 WARN_ON(!refcount_inc_not_zer !! 1792 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) { 1934 if (tipc_crypto_key_attach(rx << 1935 tipc_aead_free(&tmp-> 1793 tipc_aead_free(&tmp->rcu); 1936 goto rcv; 1794 goto rcv; 1937 } 1795 } 1938 tipc_aead_put(aead); 1796 tipc_aead_put(aead); 1939 aead = tmp; !! 1797 aead = tipc_aead_get(tmp); 1940 } 1798 } 1941 1799 1942 if (unlikely(err)) { 1800 if (unlikely(err)) { 1943 tipc_aead_users_dec((struct t !! 1801 tipc_aead_users_dec(aead, INT_MIN); 1944 goto free_skb; 1802 goto free_skb; 1945 } 1803 } 1946 1804 1947 /* Set the RX key's user */ 1805 /* Set the RX key's user */ 1948 tipc_aead_users_set((struct tipc_aead !! 1806 tipc_aead_users_set(aead, 1); 1949 1807 >> 1808 rcv: 1950 /* Mark this point, RX works */ 1809 /* Mark this point, RX works */ 1951 rx->timer1 = jiffies; 1810 rx->timer1 = jiffies; 1952 1811 1953 rcv: << 1954 /* Remove ehdr & auth. tag prior to t 1812 /* Remove ehdr & auth. tag prior to tipc_rcv() */ 1955 ehdr = (struct tipc_ehdr *)(*skb)->da 1813 ehdr = (struct tipc_ehdr *)(*skb)->data; 1956 !! 1814 destined = ehdr->destined; 1957 /* Mark this point, RX passive still !! 1815 rx_key_active = ehdr->rx_key_active; 1958 if (rx->key.passive && ehdr->tx_key = << 1959 rx->timer2 = jiffies; << 1960 << 1961 skb_reset_network_header(*skb); << 1962 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1816 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1963 if (pskb_trim(*skb, (*skb)->len - aea !! 1817 pskb_trim(*skb, (*skb)->len - aead->authsize); 1964 goto free_skb; << 1965 1818 1966 /* Validate TIPCv2 message */ 1819 /* Validate TIPCv2 message */ 1967 if (unlikely(!tipc_msg_validate(skb)) 1820 if (unlikely(!tipc_msg_validate(skb))) { 1968 pr_err_ratelimited("Packet dr 1821 pr_err_ratelimited("Packet dropped after decryption!\n"); 1969 goto free_skb; 1822 goto free_skb; 1970 } 1823 } 1971 1824 1972 /* Ok, everything's fine, try to sync !! 1825 /* Update peer RX active key & TX users */ 1973 tipc_crypto_key_synch(rx, *skb); !! 1826 if (destined) 1974 !! 1827 tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb)); 1975 /* Re-fetch skb cb as skb might be ch << 1976 skb_cb = TIPC_SKB_CB(*skb); << 1977 1828 1978 /* Mark skb decrypted */ 1829 /* Mark skb decrypted */ 1979 skb_cb->decrypted = 1; 1830 skb_cb->decrypted = 1; 1980 1831 1981 /* Clear clone cxt if any */ 1832 /* Clear clone cxt if any */ 1982 if (likely(!skb_cb->tx_clone_deferred 1833 if (likely(!skb_cb->tx_clone_deferred)) 1983 goto exit; 1834 goto exit; 1984 skb_cb->tx_clone_deferred = 0; 1835 skb_cb->tx_clone_deferred = 0; 1985 memset(&skb_cb->tx_clone_ctx, 0, size 1836 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1986 goto exit; 1837 goto exit; 1987 1838 1988 free_skb: 1839 free_skb: 1989 kfree_skb(*skb); 1840 kfree_skb(*skb); 1990 *skb = NULL; 1841 *skb = NULL; 1991 1842 1992 exit: 1843 exit: 1993 tipc_aead_put(aead); 1844 tipc_aead_put(aead); 1994 if (rx) 1845 if (rx) 1995 tipc_node_put(rx->node); 1846 tipc_node_put(rx->node); 1996 } 1847 } 1997 1848 1998 static void tipc_crypto_do_cmd(struct net *ne 1849 static void tipc_crypto_do_cmd(struct net *net, int cmd) 1999 { 1850 { 2000 struct tipc_net *tn = tipc_net(net); 1851 struct tipc_net *tn = tipc_net(net); 2001 struct tipc_crypto *tx = tn->crypto_t 1852 struct tipc_crypto *tx = tn->crypto_tx, *rx; 2002 struct list_head *p; 1853 struct list_head *p; 2003 unsigned int stat; 1854 unsigned int stat; 2004 int i, j, cpu; 1855 int i, j, cpu; 2005 char buf[200]; 1856 char buf[200]; 2006 1857 2007 /* Currently only one command is supp 1858 /* Currently only one command is supported */ 2008 switch (cmd) { 1859 switch (cmd) { 2009 case 0xfff1: 1860 case 0xfff1: 2010 goto print_stats; 1861 goto print_stats; 2011 default: 1862 default: 2012 return; 1863 return; 2013 } 1864 } 2014 1865 2015 print_stats: 1866 print_stats: 2016 /* Print a header */ 1867 /* Print a header */ 2017 pr_info("\n=============== TIPC Crypt 1868 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); 2018 1869 2019 /* Print key status */ 1870 /* Print key status */ 2020 pr_info("Key status:\n"); 1871 pr_info("Key status:\n"); 2021 pr_info("TX(%7.7s)\n%s", tipc_own_id_ 1872 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), 2022 tipc_crypto_key_dump(tx, buf) 1873 tipc_crypto_key_dump(tx, buf)); 2023 1874 2024 rcu_read_lock(); 1875 rcu_read_lock(); 2025 for (p = tn->node_list.next; p != &tn 1876 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2026 rx = tipc_node_crypto_rx_by_l 1877 rx = tipc_node_crypto_rx_by_list(p); 2027 pr_info("RX(%7.7s)\n%s", tipc 1878 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), 2028 tipc_crypto_key_dump( 1879 tipc_crypto_key_dump(rx, buf)); 2029 } 1880 } 2030 rcu_read_unlock(); 1881 rcu_read_unlock(); 2031 1882 2032 /* Print crypto statistics */ 1883 /* Print crypto statistics */ 2033 for (i = 0, j = 0; i < MAX_STATS; i++ 1884 for (i = 0, j = 0; i < MAX_STATS; i++) 2034 j += scnprintf(buf + j, 200 - 1885 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); 2035 pr_info("Counter %s", buf); !! 1886 pr_info("\nCounter %s", buf); 2036 1887 2037 memset(buf, '-', 115); 1888 memset(buf, '-', 115); 2038 buf[115] = '\0'; 1889 buf[115] = '\0'; 2039 pr_info("%s\n", buf); 1890 pr_info("%s\n", buf); 2040 1891 2041 j = scnprintf(buf, 200, "TX(%7.7s) ", 1892 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); 2042 for_each_possible_cpu(cpu) { 1893 for_each_possible_cpu(cpu) { 2043 for (i = 0; i < MAX_STATS; i+ 1894 for (i = 0; i < MAX_STATS; i++) { 2044 stat = per_cpu_ptr(tx 1895 stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; 2045 j += scnprintf(buf + 1896 j += scnprintf(buf + j, 200 - j, "|%11d ", stat); 2046 } 1897 } 2047 pr_info("%s", buf); 1898 pr_info("%s", buf); 2048 j = scnprintf(buf, 200, "%12s 1899 j = scnprintf(buf, 200, "%12s", " "); 2049 } 1900 } 2050 1901 2051 rcu_read_lock(); 1902 rcu_read_lock(); 2052 for (p = tn->node_list.next; p != &tn 1903 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2053 rx = tipc_node_crypto_rx_by_l 1904 rx = tipc_node_crypto_rx_by_list(p); 2054 j = scnprintf(buf, 200, "RX(% 1905 j = scnprintf(buf, 200, "RX(%7.7s) ", 2055 tipc_node_get_i 1906 tipc_node_get_id_str(rx->node)); 2056 for_each_possible_cpu(cpu) { 1907 for_each_possible_cpu(cpu) { 2057 for (i = 0; i < MAX_S 1908 for (i = 0; i < MAX_STATS; i++) { 2058 stat = per_cp 1909 stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; 2059 j += scnprint 1910 j += scnprintf(buf + j, 200 - j, "|%11d ", 2060 1911 stat); 2061 } 1912 } 2062 pr_info("%s", buf); 1913 pr_info("%s", buf); 2063 j = scnprintf(buf, 20 1914 j = scnprintf(buf, 200, "%12s", " "); 2064 } 1915 } 2065 } 1916 } 2066 rcu_read_unlock(); 1917 rcu_read_unlock(); 2067 1918 2068 pr_info("\n======================== D 1919 pr_info("\n======================== Done ========================\n"); 2069 } 1920 } 2070 1921 2071 static char *tipc_crypto_key_dump(struct tipc 1922 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) 2072 { 1923 { 2073 struct tipc_key key = c->key; 1924 struct tipc_key key = c->key; 2074 struct tipc_aead *aead; 1925 struct tipc_aead *aead; 2075 int k, i = 0; 1926 int k, i = 0; 2076 char *s; 1927 char *s; 2077 1928 2078 for (k = KEY_MIN; k <= KEY_MAX; k++) 1929 for (k = KEY_MIN; k <= KEY_MAX; k++) { 2079 if (k == KEY_MASTER) { !! 1930 if (k == key.passive) 2080 if (is_rx(c)) !! 1931 s = "PAS"; 2081 continue; !! 1932 else if (k == key.active) 2082 if (time_before(jiffi !! 1933 s = "ACT"; 2083 c->ti !! 1934 else if (k == key.pending) 2084 s = "ACT"; !! 1935 s = "PEN"; 2085 else !! 1936 else 2086 s = "PAS"; !! 1937 s = "-"; 2087 } else { << 2088 if (k == key.passive) << 2089 s = "PAS"; << 2090 else if (k == key.act << 2091 s = "ACT"; << 2092 else if (k == key.pen << 2093 s = "PEN"; << 2094 else << 2095 s = "-"; << 2096 } << 2097 i += scnprintf(buf + i, 200 - 1938 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); 2098 1939 2099 rcu_read_lock(); 1940 rcu_read_lock(); 2100 aead = rcu_dereference(c->aea 1941 aead = rcu_dereference(c->aead[k]); 2101 if (aead) 1942 if (aead) 2102 i += scnprintf(buf + 1943 i += scnprintf(buf + i, 200 - i, 2103 "{\"0x !! 1944 "{\"%s...\", \"%s\"}/%d:%d", 2104 aead-> 1945 aead->hint, 2105 (aead- 1946 (aead->mode == CLUSTER_KEY) ? "c" : "p", 2106 atomic 1947 atomic_read(&aead->users), 2107 refcou 1948 refcount_read(&aead->refcnt)); 2108 rcu_read_unlock(); 1949 rcu_read_unlock(); 2109 i += scnprintf(buf + i, 200 - 1950 i += scnprintf(buf + i, 200 - i, "\n"); 2110 } 1951 } 2111 1952 2112 if (is_rx(c)) !! 1953 if (c->node) 2113 i += scnprintf(buf + i, 200 - 1954 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", 2114 atomic_read(&c 1955 atomic_read(&c->peer_rx_active)); 2115 1956 2116 return buf; 1957 return buf; 2117 } 1958 } 2118 1959 >> 1960 #ifdef TIPC_CRYPTO_DEBUG 2119 static char *tipc_key_change_dump(struct tipc 1961 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 2120 char *buf) 1962 char *buf) 2121 { 1963 { 2122 struct tipc_key *key = &old; 1964 struct tipc_key *key = &old; 2123 int k, i = 0; 1965 int k, i = 0; 2124 char *s; 1966 char *s; 2125 1967 2126 /* Output format: "[%s %s %s] -> [%s 1968 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ 2127 again: 1969 again: 2128 i += scnprintf(buf + i, 32 - i, "["); 1970 i += scnprintf(buf + i, 32 - i, "["); 2129 for (k = KEY_1; k <= KEY_3; k++) { !! 1971 for (k = KEY_MIN; k <= KEY_MAX; k++) { 2130 if (k == key->passive) 1972 if (k == key->passive) 2131 s = "pas"; 1973 s = "pas"; 2132 else if (k == key->active) 1974 else if (k == key->active) 2133 s = "act"; 1975 s = "act"; 2134 else if (k == key->pending) 1976 else if (k == key->pending) 2135 s = "pen"; 1977 s = "pen"; 2136 else 1978 else 2137 s = "-"; 1979 s = "-"; 2138 i += scnprintf(buf + i, 32 - 1980 i += scnprintf(buf + i, 32 - i, 2139 (k != KEY_3) ? !! 1981 (k != KEY_MAX) ? "%s " : "%s", s); 2140 } 1982 } 2141 if (key != &new) { 1983 if (key != &new) { 2142 i += scnprintf(buf + i, 32 - 1984 i += scnprintf(buf + i, 32 - i, "] -> "); 2143 key = &new; 1985 key = &new; 2144 goto again; 1986 goto again; 2145 } 1987 } 2146 i += scnprintf(buf + i, 32 - i, "]"); 1988 i += scnprintf(buf + i, 32 - i, "]"); 2147 return buf; 1989 return buf; 2148 } 1990 } 2149 !! 1991 #endif 2150 /** << 2151 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' << 2152 * @net: the struct net << 2153 * @skb: the receiving message buffer << 2154 */ << 2155 void tipc_crypto_msg_rcv(struct net *net, str << 2156 { << 2157 struct tipc_crypto *rx; << 2158 struct tipc_msg *hdr; << 2159 << 2160 if (unlikely(skb_linearize(skb))) << 2161 goto exit; << 2162 << 2163 hdr = buf_msg(skb); << 2164 rx = tipc_node_crypto_rx_by_addr(net, << 2165 if (unlikely(!rx)) << 2166 goto exit; << 2167 << 2168 switch (msg_type(hdr)) { << 2169 case KEY_DISTR_MSG: << 2170 if (tipc_crypto_key_rcv(rx, h << 2171 goto exit; << 2172 break; << 2173 default: << 2174 break; << 2175 } << 2176 << 2177 tipc_node_put(rx->node); << 2178 << 2179 exit: << 2180 kfree_skb(skb); << 2181 } << 2182 << 2183 /** << 2184 * tipc_crypto_key_distr - Distribute a TX ke << 2185 * @tx: the TX crypto << 2186 * @key: the key's index << 2187 * @dest: the destination tipc node, = NULL i << 2188 * << 2189 * Return: 0 in case of success, otherwise < << 2190 */ << 2191 int tipc_crypto_key_distr(struct tipc_crypto << 2192 struct tipc_node *d << 2193 { << 2194 struct tipc_aead *aead; << 2195 u32 dnode = tipc_node_get_addr(dest); << 2196 int rc = -ENOKEY; << 2197 << 2198 if (!sysctl_tipc_key_exchange_enabled << 2199 return 0; << 2200 << 2201 if (key) { << 2202 rcu_read_lock(); << 2203 aead = tipc_aead_get(tx->aead << 2204 if (likely(aead)) { << 2205 rc = tipc_crypto_key_ << 2206 << 2207 << 2208 tipc_aead_put(aead); << 2209 } << 2210 rcu_read_unlock(); << 2211 } << 2212 << 2213 return rc; << 2214 } << 2215 << 2216 /** << 2217 * tipc_crypto_key_xmit - Send a session key << 2218 * @net: the struct net << 2219 * @skey: the session key to be sent << 2220 * @gen: the key's generation << 2221 * @mode: the key's mode << 2222 * @dnode: the destination node address, = 0 << 2223 * << 2224 * The session key 'skey' is packed in a TIPC << 2225 * as its data section, then xmit-ed through << 2226 * << 2227 * Return: 0 in case of success, otherwise < << 2228 */ << 2229 static int tipc_crypto_key_xmit(struct net *n << 2230 u16 gen, u8 m << 2231 { << 2232 struct sk_buff_head pkts; << 2233 struct tipc_msg *hdr; << 2234 struct sk_buff *skb; << 2235 u16 size, cong_link_cnt; << 2236 u8 *data; << 2237 int rc; << 2238 << 2239 size = tipc_aead_key_size(skey); << 2240 skb = tipc_buf_acquire(INT_H_SIZE + s << 2241 if (!skb) << 2242 return -ENOMEM; << 2243 << 2244 hdr = buf_msg(skb); << 2245 tipc_msg_init(tipc_own_addr(net), hdr << 2246 INT_H_SIZE, dnode); << 2247 msg_set_size(hdr, INT_H_SIZE + size); << 2248 msg_set_key_gen(hdr, gen); << 2249 msg_set_key_mode(hdr, mode); << 2250 << 2251 data = msg_data(hdr); << 2252 *((__be32 *)(data + TIPC_AEAD_ALG_NAM << 2253 memcpy(data, skey->alg_name, TIPC_AEA << 2254 memcpy(data + TIPC_AEAD_ALG_NAME + si << 2255 skey->keylen); << 2256 << 2257 __skb_queue_head_init(&pkts); << 2258 __skb_queue_tail(&pkts, skb); << 2259 if (dnode) << 2260 rc = tipc_node_xmit(net, &pkt << 2261 else << 2262 rc = tipc_bcast_xmit(net, &pk << 2263 << 2264 return rc; << 2265 } << 2266 << 2267 /** << 2268 * tipc_crypto_key_rcv - Receive a session ke << 2269 * @rx: the RX crypto << 2270 * @hdr: the TIPC v2 message incl. the receiv << 2271 * << 2272 * This function retrieves the session key in << 2273 * schedules a RX work to attach the key to t << 2274 * << 2275 * Return: "true" if the key has been schedul << 2276 * "false". << 2277 */ << 2278 static bool tipc_crypto_key_rcv(struct tipc_c << 2279 { << 2280 struct tipc_crypto *tx = tipc_net(rx- << 2281 struct tipc_aead_key *skey = NULL; << 2282 u16 key_gen = msg_key_gen(hdr); << 2283 u32 size = msg_data_sz(hdr); << 2284 u8 *data = msg_data(hdr); << 2285 unsigned int keylen; << 2286 << 2287 /* Verify whether the size can exist << 2288 if (unlikely(size < sizeof(struct tip << 2289 pr_debug("%s: message data si << 2290 goto exit; << 2291 } << 2292 << 2293 keylen = ntohl(*((__be32 *)(data + TI << 2294 << 2295 /* Verify the supplied size values */ << 2296 if (unlikely(size != keylen + sizeof( << 2297 keylen > TIPC_AEAD_KEY_S << 2298 pr_debug("%s: invalid MSG_CRY << 2299 goto exit; << 2300 } << 2301 << 2302 spin_lock(&rx->lock); << 2303 if (unlikely(rx->skey || (key_gen == << 2304 pr_err("%s: key existed <%p>, << 2305 rx->skey, key_gen, rx- << 2306 goto exit_unlock; << 2307 } << 2308 << 2309 /* Allocate memory for the key */ << 2310 skey = kmalloc(size, GFP_ATOMIC); << 2311 if (unlikely(!skey)) { << 2312 pr_err("%s: unable to allocat << 2313 goto exit_unlock; << 2314 } << 2315 << 2316 /* Copy key from msg data */ << 2317 skey->keylen = keylen; << 2318 memcpy(skey->alg_name, data, TIPC_AEA << 2319 memcpy(skey->key, data + TIPC_AEAD_AL << 2320 skey->keylen); << 2321 << 2322 rx->key_gen = key_gen; << 2323 rx->skey_mode = msg_key_mode(hdr); << 2324 rx->skey = skey; << 2325 rx->nokey = 0; << 2326 mb(); /* for nokey flag */ << 2327 << 2328 exit_unlock: << 2329 spin_unlock(&rx->lock); << 2330 << 2331 exit: << 2332 /* Schedule the key attaching on this << 2333 if (likely(skey && queue_delayed_work << 2334 return true; << 2335 << 2336 return false; << 2337 } << 2338 << 2339 /** << 2340 * tipc_crypto_work_rx - Scheduled RX works h << 2341 * @work: the struct RX work << 2342 * << 2343 * The function processes the previous schedu << 2344 * or attaching a received session key on RX << 2345 */ << 2346 static void tipc_crypto_work_rx(struct work_s << 2347 { << 2348 struct delayed_work *dwork = to_delay << 2349 struct tipc_crypto *rx = container_of << 2350 struct tipc_crypto *tx = tipc_net(rx- << 2351 unsigned long delay = msecs_to_jiffie << 2352 bool resched = false; << 2353 u8 key; << 2354 int rc; << 2355 << 2356 /* Case 1: Distribute TX key to peer << 2357 if (atomic_cmpxchg(&rx->key_distr, << 2358 KEY_DISTR_SCHED, << 2359 KEY_DISTR_COMPL) = << 2360 /* Always pick the newest one << 2361 key = tx->key.pending ?: tx-> << 2362 rc = tipc_crypto_key_distr(tx << 2363 if (unlikely(rc)) << 2364 pr_warn("%s: unable t << 2365 tx->name, key << 2366 rc); << 2367 << 2368 /* Sched for key_distr releas << 2369 resched = true; << 2370 } else { << 2371 atomic_cmpxchg(&rx->key_distr << 2372 } << 2373 << 2374 /* Case 2: Attach a pending received << 2375 if (rx->skey) { << 2376 rc = tipc_crypto_key_init(rx, << 2377 if (unlikely(rc < 0)) << 2378 pr_warn("%s: unable t << 2379 rx->name, rc) << 2380 switch (rc) { << 2381 case -EBUSY: << 2382 case -ENOMEM: << 2383 /* Resched the key at << 2384 resched = true; << 2385 break; << 2386 default: << 2387 synchronize_rcu(); << 2388 kfree(rx->skey); << 2389 rx->skey = NULL; << 2390 break; << 2391 } << 2392 } << 2393 << 2394 if (resched && queue_delayed_work(tx- << 2395 return; << 2396 << 2397 tipc_node_put(rx->node); << 2398 } << 2399 << 2400 /** << 2401 * tipc_crypto_rekeying_sched - (Re)schedule << 2402 * @tx: TX crypto << 2403 * @changed: if the rekeying needs to be resc << 2404 * @new_intv: new rekeying interval (when "ch << 2405 */ << 2406 void tipc_crypto_rekeying_sched(struct tipc_c << 2407 u32 new_intv) << 2408 { << 2409 unsigned long delay; << 2410 bool now = false; << 2411 << 2412 if (changed) { << 2413 if (new_intv == TIPC_REKEYING << 2414 now = true; << 2415 else << 2416 tx->rekeying_intv = n << 2417 cancel_delayed_work_sync(&tx- << 2418 } << 2419 << 2420 if (tx->rekeying_intv || now) { << 2421 delay = (now) ? 0 : tx->rekey << 2422 queue_delayed_work(tx->wq, &t << 2423 } << 2424 } << 2425 << 2426 /** << 2427 * tipc_crypto_work_tx - Scheduled TX works h << 2428 * @work: the struct TX work << 2429 * << 2430 * The function processes the previous schedu << 2431 * generating a new session key based on curr << 2432 * TX crypto and finally distributing it to p << 2433 * rekeying if needed. << 2434 */ << 2435 static void tipc_crypto_work_tx(struct work_s << 2436 { << 2437 struct delayed_work *dwork = to_delay << 2438 struct tipc_crypto *tx = container_of << 2439 struct tipc_aead_key *skey = NULL; << 2440 struct tipc_key key = tx->key; << 2441 struct tipc_aead *aead; << 2442 int rc = -ENOMEM; << 2443 << 2444 if (unlikely(key.pending)) << 2445 goto resched; << 2446 << 2447 /* Take current key as a template */ << 2448 rcu_read_lock(); << 2449 aead = rcu_dereference(tx->aead[key.a << 2450 if (unlikely(!aead)) { << 2451 rcu_read_unlock(); << 2452 /* At least one key should ex << 2453 return; << 2454 } << 2455 << 2456 /* Lets duplicate it first */ << 2457 skey = kmemdup(aead->key, tipc_aead_k << 2458 rcu_read_unlock(); << 2459 << 2460 /* Now, generate new key, initiate & << 2461 if (likely(skey)) { << 2462 rc = tipc_aead_key_generate(s << 2463 tipc_crypto_key_init(tx, << 2464 if (likely(rc > 0)) << 2465 rc = tipc_crypto_key_ << 2466 kfree_sensitive(skey); << 2467 } << 2468 << 2469 if (unlikely(rc)) << 2470 pr_warn_ratelimited("%s: reke << 2471 << 2472 resched: << 2473 /* Re-schedule rekeying if any */ << 2474 tipc_crypto_rekeying_sched(tx, false, << 2475 } << 2476 1992
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.