1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 2 3 //! String representations. 3 //! String representations. 4 4 5 use crate::alloc::{flags::*, vec_ext::VecExt, !! 5 use core::fmt; 6 use alloc::vec::Vec; << 7 use core::fmt::{self, Write}; << 8 use core::ops::{self, Deref, DerefMut, Index}; << 9 << 10 use crate::error::{code::*, Error}; << 11 << 12 /// Byte string without UTF-8 validity guarant << 13 #[repr(transparent)] << 14 pub struct BStr([u8]); << 15 << 16 impl BStr { << 17 /// Returns the length of this string. << 18 #[inline] << 19 pub const fn len(&self) -> usize { << 20 self.0.len() << 21 } << 22 << 23 /// Returns `true` if the string is empty. << 24 #[inline] << 25 pub const fn is_empty(&self) -> bool { << 26 self.len() == 0 << 27 } << 28 << 29 /// Creates a [`BStr`] from a `[u8]`. << 30 #[inline] << 31 pub const fn from_bytes(bytes: &[u8]) -> & << 32 // SAFETY: `BStr` is transparent to `[ << 33 unsafe { &*(bytes as *const [u8] as *c << 34 } << 35 } << 36 << 37 impl fmt::Display for BStr { << 38 /// Formats printable ASCII characters, es << 39 /// << 40 /// ``` << 41 /// # use kernel::{fmt, b_str, str::{BStr, << 42 /// let ascii = b_str!("Hello, BStr!"); << 43 /// let s = CString::try_from_fmt(fmt!("{} << 44 /// assert_eq!(s.as_bytes(), "Hello, BStr! << 45 /// << 46 /// let non_ascii = b_str!("🦀"); << 47 /// let s = CString::try_from_fmt(fmt!("{} << 48 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\ << 49 /// ``` << 50 fn fmt(&self, f: &mut fmt::Formatter<'_>) << 51 for &b in &self.0 { << 52 match b { << 53 // Common escape codes. << 54 b'\t' => f.write_str("\\t")?, << 55 b'\n' => f.write_str("\\n")?, << 56 b'\r' => f.write_str("\\r")?, << 57 // Printable characters. << 58 0x20..=0x7e => f.write_char(b << 59 _ => write!(f, "\\x{:02x}", b) << 60 } << 61 } << 62 Ok(()) << 63 } << 64 } << 65 << 66 impl fmt::Debug for BStr { << 67 /// Formats printable ASCII characters wit << 68 /// escaping the rest. << 69 /// << 70 /// ``` << 71 /// # use kernel::{fmt, b_str, str::{BStr, << 72 /// // Embedded double quotes are escaped. << 73 /// let ascii = b_str!("Hello, \"BStr\"!") << 74 /// let s = CString::try_from_fmt(fmt!("{: << 75 /// assert_eq!(s.as_bytes(), "\"Hello, \\\ << 76 /// << 77 /// let non_ascii = b_str!("😺"); << 78 /// let s = CString::try_from_fmt(fmt!("{: << 79 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f << 80 /// ``` << 81 fn fmt(&self, f: &mut fmt::Formatter<'_>) << 82 f.write_char('"')?; << 83 for &b in &self.0 { << 84 match b { << 85 // Common escape codes. << 86 b'\t' => f.write_str("\\t")?, << 87 b'\n' => f.write_str("\\n")?, << 88 b'\r' => f.write_str("\\r")?, << 89 // String escape characters. << 90 b'\"' => f.write_str("\\\"")?, << 91 b'\\' => f.write_str("\\\\")?, << 92 // Printable characters. << 93 0x20..=0x7e => f.write_char(b << 94 _ => write!(f, "\\x{:02x}", b) << 95 } << 96 } << 97 f.write_char('"') << 98 } << 99 } << 100 << 101 impl Deref for BStr { << 102 type Target = [u8]; << 103 << 104 #[inline] << 105 fn deref(&self) -> &Self::Target { << 106 &self.0 << 107 } << 108 } << 109 << 110 /// Creates a new [`BStr`] from a string liter << 111 /// << 112 /// `b_str!` converts the supplied string lite << 113 /// characters can be included. << 114 /// << 115 /// # Examples << 116 /// << 117 /// ``` << 118 /// # use kernel::b_str; << 119 /// # use kernel::str::BStr; << 120 /// const MY_BSTR: &BStr = b_str!("My awesome << 121 /// ``` << 122 #[macro_export] << 123 macro_rules! b_str { << 124 ($str:literal) => {{ << 125 const S: &'static str = $str; << 126 const C: &'static $crate::str::BStr = << 127 C << 128 }}; << 129 } << 130 << 131 /// Possible errors when using conversion func << 132 #[derive(Debug, Clone, Copy)] << 133 pub enum CStrConvertError { << 134 /// Supplied bytes contain an interior `NU << 135 InteriorNul, << 136 << 137 /// Supplied bytes are not terminated by ` << 138 NotNulTerminated, << 139 } << 140 << 141 impl From<CStrConvertError> for Error { << 142 #[inline] << 143 fn from(_: CStrConvertError) -> Error { << 144 EINVAL << 145 } << 146 } << 147 << 148 /// A string that is guaranteed to have exactl << 149 /// end. << 150 /// << 151 /// Used for interoperability with kernel APIs << 152 #[repr(transparent)] << 153 pub struct CStr([u8]); << 154 << 155 impl CStr { << 156 /// Returns the length of this string excl << 157 #[inline] << 158 pub const fn len(&self) -> usize { << 159 self.len_with_nul() - 1 << 160 } << 161 << 162 /// Returns the length of this string with << 163 #[inline] << 164 pub const fn len_with_nul(&self) -> usize << 165 // SAFETY: This is one of the invarian << 166 // We add a `unreachable_unchecked` he << 167 // the value returned from this functi << 168 if self.0.is_empty() { << 169 unsafe { core::hint::unreachable_u << 170 } << 171 self.0.len() << 172 } << 173 << 174 /// Returns `true` if the string only incl << 175 #[inline] << 176 pub const fn is_empty(&self) -> bool { << 177 self.len() == 0 << 178 } << 179 << 180 /// Wraps a raw C string pointer. << 181 /// << 182 /// # Safety << 183 /// << 184 /// `ptr` must be a valid pointer to a `NU << 185 /// last at least `'a`. When `CStr` is ali << 186 /// must not be mutated. << 187 #[inline] << 188 pub unsafe fn from_char_ptr<'a>(ptr: *cons << 189 // SAFETY: The safety precondition gua << 190 // to a `NUL`-terminated C string. << 191 let len = unsafe { bindings::strlen(pt << 192 // SAFETY: Lifetime guaranteed by the << 193 let bytes = unsafe { core::slice::from << 194 // SAFETY: As `len` is returned by `st << 195 // As we have added 1 to `len`, the la << 196 unsafe { Self::from_bytes_with_nul_unc << 197 } << 198 << 199 /// Creates a [`CStr`] from a `[u8]`. << 200 /// << 201 /// The provided slice must be `NUL`-termi << 202 /// interior `NUL` bytes. << 203 pub const fn from_bytes_with_nul(bytes: &[ << 204 if bytes.is_empty() { << 205 return Err(CStrConvertError::NotNu << 206 } << 207 if bytes[bytes.len() - 1] != 0 { << 208 return Err(CStrConvertError::NotNu << 209 } << 210 let mut i = 0; << 211 // `i + 1 < bytes.len()` allows LLVM t << 212 // while it couldn't optimize away bou << 213 while i + 1 < bytes.len() { << 214 if bytes[i] == 0 { << 215 return Err(CStrConvertError::I << 216 } << 217 i += 1; << 218 } << 219 // SAFETY: We just checked that all pr << 220 Ok(unsafe { Self::from_bytes_with_nul_ << 221 } << 222 << 223 /// Creates a [`CStr`] from a `[u8]` witho << 224 /// checks. << 225 /// << 226 /// # Safety << 227 /// << 228 /// `bytes` *must* end with a `NUL` byte, << 229 /// `NUL` byte (or the string will be trun << 230 #[inline] << 231 pub const unsafe fn from_bytes_with_nul_un << 232 // SAFETY: Properties of `bytes` guara << 233 unsafe { core::mem::transmute(bytes) } << 234 } << 235 << 236 /// Creates a mutable [`CStr`] from a `[u8 << 237 /// additional checks. << 238 /// << 239 /// # Safety << 240 /// << 241 /// `bytes` *must* end with a `NUL` byte, << 242 /// `NUL` byte (or the string will be trun << 243 #[inline] << 244 pub unsafe fn from_bytes_with_nul_unchecke << 245 // SAFETY: Properties of `bytes` guara << 246 unsafe { &mut *(bytes as *mut [u8] as << 247 } << 248 << 249 /// Returns a C pointer to the string. << 250 #[inline] << 251 pub const fn as_char_ptr(&self) -> *const << 252 self.0.as_ptr() as _ << 253 } << 254 << 255 /// Convert the string to a byte slice wit << 256 #[inline] << 257 pub fn as_bytes(&self) -> &[u8] { << 258 &self.0[..self.len()] << 259 } << 260 << 261 /// Convert the string to a byte slice con << 262 #[inline] << 263 pub const fn as_bytes_with_nul(&self) -> & << 264 &self.0 << 265 } << 266 << 267 /// Yields a [`&str`] slice if the [`CStr` << 268 /// << 269 /// If the contents of the [`CStr`] are va << 270 /// function will return the corresponding << 271 /// it will return an error with details o << 272 /// << 273 /// # Examples << 274 /// << 275 /// ``` << 276 /// # use kernel::str::CStr; << 277 /// let cstr = CStr::from_bytes_with_nul(b << 278 /// assert_eq!(cstr.to_str(), Ok("foo")); << 279 /// ``` << 280 #[inline] << 281 pub fn to_str(&self) -> Result<&str, core: << 282 core::str::from_utf8(self.as_bytes()) << 283 } << 284 << 285 /// Unsafely convert this [`CStr`] into a << 286 /// valid UTF-8. << 287 /// << 288 /// # Safety << 289 /// << 290 /// The contents must be valid UTF-8. << 291 /// << 292 /// # Examples << 293 /// << 294 /// ``` << 295 /// # use kernel::c_str; << 296 /// # use kernel::str::CStr; << 297 /// let bar = c_str!("ツ"); << 298 /// // SAFETY: String literals are guarant << 299 /// // by the Rust compiler. << 300 /// assert_eq!(unsafe { bar.as_str_uncheck << 301 /// ``` << 302 #[inline] << 303 pub unsafe fn as_str_unchecked(&self) -> & << 304 unsafe { core::str::from_utf8_unchecke << 305 } << 306 << 307 /// Convert this [`CStr`] into a [`CString << 308 /// copying over the string data. << 309 pub fn to_cstring(&self) -> Result<CString << 310 CString::try_from(self) << 311 } << 312 << 313 /// Converts this [`CStr`] to its ASCII lo << 314 /// << 315 /// ASCII letters 'A' to 'Z' are mapped to << 316 /// but non-ASCII letters are unchanged. << 317 /// << 318 /// To return a new lowercased value witho << 319 /// [`to_ascii_lowercase()`]. << 320 /// << 321 /// [`to_ascii_lowercase()`]: #method.to_a << 322 pub fn make_ascii_lowercase(&mut self) { << 323 // INVARIANT: This doesn't introduce o << 324 // string. << 325 self.0.make_ascii_lowercase(); << 326 } << 327 << 328 /// Converts this [`CStr`] to its ASCII up << 329 /// << 330 /// ASCII letters 'a' to 'z' are mapped to << 331 /// but non-ASCII letters are unchanged. << 332 /// << 333 /// To return a new uppercased value witho << 334 /// [`to_ascii_uppercase()`]. << 335 /// << 336 /// [`to_ascii_uppercase()`]: #method.to_a << 337 pub fn make_ascii_uppercase(&mut self) { << 338 // INVARIANT: This doesn't introduce o << 339 // string. << 340 self.0.make_ascii_uppercase(); << 341 } << 342 << 343 /// Returns a copy of this [`CString`] whe << 344 /// ASCII lower case equivalent. << 345 /// << 346 /// ASCII letters 'A' to 'Z' are mapped to << 347 /// but non-ASCII letters are unchanged. << 348 /// << 349 /// To lowercase the value in-place, use [ << 350 /// << 351 /// [`make_ascii_lowercase`]: str::make_as << 352 pub fn to_ascii_lowercase(&self) -> Result << 353 let mut s = self.to_cstring()?; << 354 << 355 s.make_ascii_lowercase(); << 356 << 357 Ok(s) << 358 } << 359 << 360 /// Returns a copy of this [`CString`] whe << 361 /// ASCII upper case equivalent. << 362 /// << 363 /// ASCII letters 'a' to 'z' are mapped to << 364 /// but non-ASCII letters are unchanged. << 365 /// << 366 /// To uppercase the value in-place, use [ << 367 /// << 368 /// [`make_ascii_uppercase`]: str::make_as << 369 pub fn to_ascii_uppercase(&self) -> Result << 370 let mut s = self.to_cstring()?; << 371 << 372 s.make_ascii_uppercase(); << 373 << 374 Ok(s) << 375 } << 376 } << 377 << 378 impl fmt::Display for CStr { << 379 /// Formats printable ASCII characters, es << 380 /// << 381 /// ``` << 382 /// # use kernel::c_str; << 383 /// # use kernel::fmt; << 384 /// # use kernel::str::CStr; << 385 /// # use kernel::str::CString; << 386 /// let penguin = c_str!("🐧"); << 387 /// let s = CString::try_from_fmt(fmt!("{} << 388 /// assert_eq!(s.as_bytes_with_nul(), "\\x << 389 /// << 390 /// let ascii = c_str!("so \"cool\""); << 391 /// let s = CString::try_from_fmt(fmt!("{} << 392 /// assert_eq!(s.as_bytes_with_nul(), "so << 393 /// ``` << 394 fn fmt(&self, f: &mut fmt::Formatter<'_>) << 395 for &c in self.as_bytes() { << 396 if (0x20..0x7f).contains(&c) { << 397 // Printable character. << 398 f.write_char(c as char)?; << 399 } else { << 400 write!(f, "\\x{:02x}", c)?; << 401 } << 402 } << 403 Ok(()) << 404 } << 405 } << 406 << 407 impl fmt::Debug for CStr { << 408 /// Formats printable ASCII characters wit << 409 /// << 410 /// ``` << 411 /// # use kernel::c_str; << 412 /// # use kernel::fmt; << 413 /// # use kernel::str::CStr; << 414 /// # use kernel::str::CString; << 415 /// let penguin = c_str!("🐧"); << 416 /// let s = CString::try_from_fmt(fmt!("{: << 417 /// assert_eq!(s.as_bytes_with_nul(), "\"\ << 418 /// << 419 /// // Embedded double quotes are escaped. << 420 /// let ascii = c_str!("so \"cool\""); << 421 /// let s = CString::try_from_fmt(fmt!("{: << 422 /// assert_eq!(s.as_bytes_with_nul(), "\"s << 423 /// ``` << 424 fn fmt(&self, f: &mut fmt::Formatter<'_>) << 425 f.write_str("\"")?; << 426 for &c in self.as_bytes() { << 427 match c { << 428 // Printable characters. << 429 b'\"' => f.write_str("\\\"")?, << 430 0x20..=0x7e => f.write_char(c << 431 _ => write!(f, "\\x{:02x}", c) << 432 } << 433 } << 434 f.write_str("\"") << 435 } << 436 } << 437 << 438 impl AsRef<BStr> for CStr { << 439 #[inline] << 440 fn as_ref(&self) -> &BStr { << 441 BStr::from_bytes(self.as_bytes()) << 442 } << 443 } << 444 << 445 impl Deref for CStr { << 446 type Target = BStr; << 447 << 448 #[inline] << 449 fn deref(&self) -> &Self::Target { << 450 self.as_ref() << 451 } << 452 } << 453 << 454 impl Index<ops::RangeFrom<usize>> for CStr { << 455 type Output = CStr; << 456 << 457 #[inline] << 458 fn index(&self, index: ops::RangeFrom<usiz << 459 // Delegate bounds checking to slice. << 460 // Assign to _ to mute clippy's unnece << 461 let _ = &self.as_bytes()[index.start.. << 462 // SAFETY: We just checked the bounds. << 463 unsafe { Self::from_bytes_with_nul_unc << 464 } << 465 } << 466 << 467 impl Index<ops::RangeFull> for CStr { << 468 type Output = CStr; << 469 << 470 #[inline] << 471 fn index(&self, _index: ops::RangeFull) -> << 472 self << 473 } << 474 } << 475 << 476 mod private { << 477 use core::ops; << 478 << 479 // Marker trait for index types that can b << 480 pub trait CStrIndex {} << 481 << 482 impl CStrIndex for usize {} << 483 impl CStrIndex for ops::Range<usize> {} << 484 impl CStrIndex for ops::RangeInclusive<usi << 485 impl CStrIndex for ops::RangeToInclusive<u << 486 } << 487 << 488 impl<Idx> Index<Idx> for CStr << 489 where << 490 Idx: private::CStrIndex, << 491 BStr: Index<Idx>, << 492 { << 493 type Output = <BStr as Index<Idx>>::Output << 494 << 495 #[inline] << 496 fn index(&self, index: Idx) -> &Self::Outp << 497 &self.as_ref()[index] << 498 } << 499 } << 500 << 501 /// Creates a new [`CStr`] from a string liter << 502 /// << 503 /// The string literal should not contain any << 504 /// << 505 /// # Examples << 506 /// << 507 /// ``` << 508 /// # use kernel::c_str; << 509 /// # use kernel::str::CStr; << 510 /// const MY_CSTR: &CStr = c_str!("My awesome << 511 /// ``` << 512 #[macro_export] << 513 macro_rules! c_str { << 514 ($str:expr) => {{ << 515 const S: &str = concat!($str, "\0"); << 516 const C: &$crate::str::CStr = match $c << 517 Ok(v) => v, << 518 Err(_) => panic!("string contains << 519 }; << 520 C << 521 }}; << 522 } << 523 << 524 #[cfg(test)] << 525 mod tests { << 526 use super::*; << 527 use alloc::format; << 528 << 529 const ALL_ASCII_CHARS: &'static str = << 530 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\ << 531 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x << 532 !\"#$%&'()*+,-./0123456789:;<=>?@\ << 533 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcde << 534 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x << 535 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x << 536 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\x << 537 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\x << 538 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\x << 539 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\x << 540 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\x << 541 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\x << 542 << 543 #[test] << 544 fn test_cstr_to_str() { << 545 let good_bytes = b"\xf0\x9f\xa6\x80\0" << 546 let checked_cstr = CStr::from_bytes_wi << 547 let checked_str = checked_cstr.to_str( << 548 assert_eq!(checked_str, "🦀"); << 549 } << 550 << 551 #[test] << 552 #[should_panic] << 553 fn test_cstr_to_str_panic() { << 554 let bad_bytes = b"\xc3\x28\0"; << 555 let checked_cstr = CStr::from_bytes_wi << 556 checked_cstr.to_str().unwrap(); << 557 } << 558 << 559 #[test] << 560 fn test_cstr_as_str_unchecked() { << 561 let good_bytes = b"\xf0\x9f\x90\xA7\0" << 562 let checked_cstr = CStr::from_bytes_wi << 563 let unchecked_str = unsafe { checked_c << 564 assert_eq!(unchecked_str, "🐧"); << 565 } << 566 << 567 #[test] << 568 fn test_cstr_display() { << 569 let hello_world = CStr::from_bytes_wit << 570 assert_eq!(format!("{}", hello_world), << 571 let non_printables = CStr::from_bytes_ << 572 assert_eq!(format!("{}", non_printable << 573 let non_ascii = CStr::from_bytes_with_ << 574 assert_eq!(format!("{}", non_ascii), " << 575 let good_bytes = CStr::from_bytes_with << 576 assert_eq!(format!("{}", good_bytes), << 577 } << 578 << 579 #[test] << 580 fn test_cstr_display_all_bytes() { << 581 let mut bytes: [u8; 256] = [0; 256]; << 582 // fill `bytes` with [1..=255] + [0] << 583 for i in u8::MIN..=u8::MAX { << 584 bytes[i as usize] = i.wrapping_add << 585 } << 586 let cstr = CStr::from_bytes_with_nul(& << 587 assert_eq!(format!("{}", cstr), ALL_AS << 588 } << 589 << 590 #[test] << 591 fn test_cstr_debug() { << 592 let hello_world = CStr::from_bytes_wit << 593 assert_eq!(format!("{:?}", hello_world << 594 let non_printables = CStr::from_bytes_ << 595 assert_eq!(format!("{:?}", non_printab << 596 let non_ascii = CStr::from_bytes_with_ << 597 assert_eq!(format!("{:?}", non_ascii), << 598 let good_bytes = CStr::from_bytes_with << 599 assert_eq!(format!("{:?}", good_bytes) << 600 } << 601 << 602 #[test] << 603 fn test_bstr_display() { << 604 let hello_world = BStr::from_bytes(b"h << 605 assert_eq!(format!("{}", hello_world), << 606 let escapes = BStr::from_bytes(b"_\t_\ << 607 assert_eq!(format!("{}", escapes), "_\ << 608 let others = BStr::from_bytes(b"\x01") << 609 assert_eq!(format!("{}", others), "\\x << 610 let non_ascii = BStr::from_bytes(b"d\x << 611 assert_eq!(format!("{}", non_ascii), " << 612 let good_bytes = BStr::from_bytes(b"\x << 613 assert_eq!(format!("{}", good_bytes), << 614 } << 615 << 616 #[test] << 617 fn test_bstr_debug() { << 618 let hello_world = BStr::from_bytes(b"h << 619 assert_eq!(format!("{:?}", hello_world << 620 let escapes = BStr::from_bytes(b"_\t_\ << 621 assert_eq!(format!("{:?}", escapes), " << 622 let others = BStr::from_bytes(b"\x01") << 623 assert_eq!(format!("{:?}", others), "\ << 624 let non_ascii = BStr::from_bytes(b"d\x << 625 assert_eq!(format!("{:?}", non_ascii), << 626 let good_bytes = BStr::from_bytes(b"\x << 627 assert_eq!(format!("{:?}", good_bytes) << 628 } << 629 } << 630 6 631 /// Allows formatting of [`fmt::Arguments`] in 7 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 632 /// 8 /// 633 /// It does not fail if callers write past the 9 /// It does not fail if callers write past the end of the buffer so that they can calculate the 634 /// size required to fit everything. 10 /// size required to fit everything. 635 /// 11 /// 636 /// # Invariants 12 /// # Invariants 637 /// 13 /// 638 /// The memory region between `pos` (inclusive 14 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 639 /// is less than `end`. 15 /// is less than `end`. 640 pub(crate) struct RawFormatter { 16 pub(crate) struct RawFormatter { 641 // Use `usize` to use `saturating_*` funct 17 // Use `usize` to use `saturating_*` functions. >> 18 #[allow(dead_code)] 642 beg: usize, 19 beg: usize, 643 pos: usize, 20 pos: usize, 644 end: usize, 21 end: usize, 645 } 22 } 646 23 647 impl RawFormatter { 24 impl RawFormatter { 648 /// Creates a new instance of [`RawFormatt << 649 fn new() -> Self { << 650 // INVARIANT: The buffer is empty, so << 651 Self { << 652 beg: 0, << 653 pos: 0, << 654 end: 0, << 655 } << 656 } << 657 << 658 /// Creates a new instance of [`RawFormatt 25 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 659 /// 26 /// 660 /// # Safety 27 /// # Safety 661 /// 28 /// 662 /// If `pos` is less than `end`, then the 29 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 663 /// (exclusive) must be valid for writes f 30 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 664 pub(crate) unsafe fn from_ptrs(pos: *mut u 31 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 665 // INVARIANT: The safety requirements 32 // INVARIANT: The safety requirements guarantee the type invariants. 666 Self { 33 Self { 667 beg: pos as _, 34 beg: pos as _, 668 pos: pos as _, 35 pos: pos as _, 669 end: end as _, 36 end: end as _, 670 } 37 } 671 } 38 } 672 39 673 /// Creates a new instance of [`RawFormatt << 674 /// << 675 /// # Safety << 676 /// << 677 /// The memory region starting at `buf` an << 678 /// for the lifetime of the returned [`Raw << 679 pub(crate) unsafe fn from_buffer(buf: *mut << 680 let pos = buf as usize; << 681 // INVARIANT: We ensure that `end` is << 682 // guarantees that the memory region i << 683 Self { << 684 pos, << 685 beg: pos, << 686 end: pos.saturating_add(len), << 687 } << 688 } << 689 << 690 /// Returns the current insert position. 40 /// Returns the current insert position. 691 /// 41 /// 692 /// N.B. It may point to invalid memory. 42 /// N.B. It may point to invalid memory. 693 pub(crate) fn pos(&self) -> *mut u8 { 43 pub(crate) fn pos(&self) -> *mut u8 { 694 self.pos as _ 44 self.pos as _ 695 } 45 } 696 << 697 /// Returns the number of bytes written to << 698 pub(crate) fn bytes_written(&self) -> usiz << 699 self.pos - self.beg << 700 } << 701 } 46 } 702 47 703 impl fmt::Write for RawFormatter { 48 impl fmt::Write for RawFormatter { 704 fn write_str(&mut self, s: &str) -> fmt::R 49 fn write_str(&mut self, s: &str) -> fmt::Result { 705 // `pos` value after writing `len` byt 50 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 706 // don't want it to wrap around to 0. 51 // don't want it to wrap around to 0. 707 let pos_new = self.pos.saturating_add( 52 let pos_new = self.pos.saturating_add(s.len()); 708 53 709 // Amount that we can copy. `saturatin 54 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 710 let len_to_copy = core::cmp::min(pos_n 55 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 711 56 712 if len_to_copy > 0 { 57 if len_to_copy > 0 { 713 // SAFETY: If `len_to_copy` is non 58 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 714 // yet, so it is valid for write p 59 // yet, so it is valid for write per the type invariants. 715 unsafe { 60 unsafe { 716 core::ptr::copy_nonoverlapping 61 core::ptr::copy_nonoverlapping( 717 s.as_bytes().as_ptr(), 62 s.as_bytes().as_ptr(), 718 self.pos as *mut u8, 63 self.pos as *mut u8, 719 len_to_copy, 64 len_to_copy, 720 ) 65 ) 721 }; 66 }; 722 } 67 } 723 68 724 self.pos = pos_new; 69 self.pos = pos_new; 725 Ok(()) 70 Ok(()) 726 } 71 } 727 } << 728 << 729 /// Allows formatting of [`fmt::Arguments`] in << 730 /// << 731 /// Fails if callers attempt to write more tha << 732 pub(crate) struct Formatter(RawFormatter); << 733 << 734 impl Formatter { << 735 /// Creates a new instance of [`Formatter` << 736 /// << 737 /// # Safety << 738 /// << 739 /// The memory region starting at `buf` an << 740 /// for the lifetime of the returned [`For << 741 pub(crate) unsafe fn from_buffer(buf: *mut << 742 // SAFETY: The safety requirements of << 743 Self(unsafe { RawFormatter::from_buffe << 744 } << 745 } << 746 << 747 impl Deref for Formatter { << 748 type Target = RawFormatter; << 749 << 750 fn deref(&self) -> &Self::Target { << 751 &self.0 << 752 } << 753 } << 754 << 755 impl fmt::Write for Formatter { << 756 fn write_str(&mut self, s: &str) -> fmt::R << 757 self.0.write_str(s)?; << 758 << 759 // Fail the request if we go past the << 760 if self.0.pos > self.0.end { << 761 Err(fmt::Error) << 762 } else { << 763 Ok(()) << 764 } << 765 } << 766 } << 767 << 768 /// An owned string that is guaranteed to have << 769 /// << 770 /// Used for interoperability with kernel APIs << 771 /// << 772 /// # Invariants << 773 /// << 774 /// The string is always `NUL`-terminated and << 775 /// << 776 /// # Examples << 777 /// << 778 /// ``` << 779 /// use kernel::{str::CString, fmt}; << 780 /// << 781 /// let s = CString::try_from_fmt(fmt!("{}{}{} << 782 /// assert_eq!(s.as_bytes_with_nul(), "abc1020 << 783 /// << 784 /// let tmp = "testing"; << 785 /// let s = CString::try_from_fmt(fmt!("{tmp}{ << 786 /// assert_eq!(s.as_bytes_with_nul(), "testing << 787 /// << 788 /// // This fails because it has an embedded ` << 789 /// let s = CString::try_from_fmt(fmt!("a\0b{} << 790 /// assert_eq!(s.is_ok(), false); << 791 /// ``` << 792 pub struct CString { << 793 buf: Vec<u8>, << 794 } << 795 << 796 impl CString { << 797 /// Creates an instance of [`CString`] fro << 798 pub fn try_from_fmt(args: fmt::Arguments<' << 799 // Calculate the size needed (formatte << 800 let mut f = RawFormatter::new(); << 801 f.write_fmt(args)?; << 802 f.write_str("\0")?; << 803 let size = f.bytes_written(); << 804 << 805 // Allocate a vector with the required << 806 let mut buf = <Vec<_> as VecExt<_>>::w << 807 // SAFETY: The buffer stored in `buf` << 808 let mut f = unsafe { Formatter::from_b << 809 f.write_fmt(args)?; << 810 f.write_str("\0")?; << 811 << 812 // SAFETY: The number of bytes that ca << 813 // `buf`'s capacity. The contents of t << 814 unsafe { buf.set_len(f.bytes_written() << 815 << 816 // Check that there are no `NUL` bytes << 817 // SAFETY: The buffer is valid for rea << 818 // (which the minimum buffer size) and << 819 // so `f.bytes_written() - 1` doesn't << 820 let ptr = unsafe { bindings::memchr(bu << 821 if !ptr.is_null() { << 822 return Err(EINVAL); << 823 } << 824 << 825 // INVARIANT: We wrote the `NUL` termi << 826 // exist in the buffer. << 827 Ok(Self { buf }) << 828 } << 829 } << 830 << 831 impl Deref for CString { << 832 type Target = CStr; << 833 << 834 fn deref(&self) -> &Self::Target { << 835 // SAFETY: The type invariants guarant << 836 // other `NUL` bytes exist. << 837 unsafe { CStr::from_bytes_with_nul_unc << 838 } << 839 } << 840 << 841 impl DerefMut for CString { << 842 fn deref_mut(&mut self) -> &mut Self::Targ << 843 // SAFETY: A `CString` is always NUL-t << 844 // NUL bytes. << 845 unsafe { CStr::from_bytes_with_nul_unc << 846 } << 847 } << 848 << 849 impl<'a> TryFrom<&'a CStr> for CString { << 850 type Error = AllocError; << 851 << 852 fn try_from(cstr: &'a CStr) -> Result<CStr << 853 let mut buf = Vec::new(); << 854 << 855 <Vec<_> as VecExt<_>>::extend_from_sli << 856 .map_err(|_| AllocError)?; << 857 << 858 // INVARIANT: The `CStr` and `CString` << 859 // the string data, and we copied it o << 860 Ok(CString { buf }) << 861 } << 862 } << 863 << 864 impl fmt::Debug for CString { << 865 fn fmt(&self, f: &mut fmt::Formatter<'_>) << 866 fmt::Debug::fmt(&**self, f) << 867 } << 868 } << 869 << 870 /// A convenience alias for [`core::format_arg << 871 #[macro_export] << 872 macro_rules! fmt { << 873 ($($f:tt)*) => ( core::format_args!($($f)* << 874 } 72 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.