1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 2 3 //! A reference-counted pointer. 3 //! A reference-counted pointer. 4 //! 4 //! 5 //! This module implements a way for users to 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increme 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 8 //! threads. 9 //! 9 //! 10 //! It is different from the standard library' 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_ 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, wh 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instea 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implici << 16 //! 15 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/syn 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 17 19 use crate::{ 18 use crate::{ 20 alloc::{box_ext::BoxExt, AllocError, Flags 19 alloc::{box_ext::BoxExt, AllocError, Flags}, 21 bindings, !! 20 error::{self, Error}, 22 init::{self, InPlaceInit, Init, PinInit}, 21 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 22 try_init, 24 types::{ForeignOwnable, Opaque}, 23 types::{ForeignOwnable, Opaque}, 25 }; 24 }; 26 use alloc::boxed::Box; 25 use alloc::boxed::Box; 27 use core::{ 26 use core::{ 28 alloc::Layout, 27 alloc::Layout, 29 fmt, 28 fmt, 30 marker::{PhantomData, Unsize}, 29 marker::{PhantomData, Unsize}, 31 mem::{ManuallyDrop, MaybeUninit}, 30 mem::{ManuallyDrop, MaybeUninit}, 32 ops::{Deref, DerefMut}, 31 ops::{Deref, DerefMut}, 33 pin::Pin, 32 pin::Pin, 34 ptr::NonNull, 33 ptr::NonNull, 35 }; 34 }; 36 use macros::pin_data; 35 use macros::pin_data; 37 36 38 mod std_vendor; 37 mod std_vendor; 39 38 40 /// A reference-counted pointer to an instance 39 /// A reference-counted pointer to an instance of `T`. 41 /// 40 /// 42 /// The reference count is incremented when ne 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 43 /// when they are dropped. When the count reac 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 44 /// 43 /// 45 /// # Invariants 44 /// # Invariants 46 /// 45 /// 47 /// The reference count on an instance of [`Ar 46 /// The reference count on an instance of [`Arc`] is always non-zero. 48 /// The object pointed to by [`Arc`] is always 47 /// The object pointed to by [`Arc`] is always pinned. 49 /// 48 /// 50 /// # Examples 49 /// # Examples 51 /// 50 /// 52 /// ``` 51 /// ``` 53 /// use kernel::sync::Arc; 52 /// use kernel::sync::Arc; 54 /// 53 /// 55 /// struct Example { 54 /// struct Example { 56 /// a: u32, 55 /// a: u32, 57 /// b: u32, 56 /// b: u32, 58 /// } 57 /// } 59 /// 58 /// 60 /// // Create a refcounted instance of `Exampl 59 /// // Create a refcounted instance of `Example`. 61 /// let obj = Arc::new(Example { a: 10, b: 20 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 62 /// 61 /// 63 /// // Get a new pointer to `obj` and incremen 62 /// // Get a new pointer to `obj` and increment the refcount. 64 /// let cloned = obj.clone(); 63 /// let cloned = obj.clone(); 65 /// 64 /// 66 /// // Assert that both `obj` and `cloned` poi 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 67 /// assert!(core::ptr::eq(&*obj, &*cloned)); 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 68 /// 67 /// 69 /// // Destroy `obj` and decrement its refcoun 68 /// // Destroy `obj` and decrement its refcount. 70 /// drop(obj); 69 /// drop(obj); 71 /// 70 /// 72 /// // Check that the values are still accessi 71 /// // Check that the values are still accessible through `cloned`. 73 /// assert_eq!(cloned.a, 10); 72 /// assert_eq!(cloned.a, 10); 74 /// assert_eq!(cloned.b, 20); 73 /// assert_eq!(cloned.b, 20); 75 /// 74 /// 76 /// // The refcount drops to zero when `cloned 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 77 /// # Ok::<(), Error>(()) 76 /// # Ok::<(), Error>(()) 78 /// ``` 77 /// ``` 79 /// 78 /// 80 /// Using `Arc<T>` as the type of `self`: 79 /// Using `Arc<T>` as the type of `self`: 81 /// 80 /// 82 /// ``` 81 /// ``` 83 /// use kernel::sync::Arc; 82 /// use kernel::sync::Arc; 84 /// 83 /// 85 /// struct Example { 84 /// struct Example { 86 /// a: u32, 85 /// a: u32, 87 /// b: u32, 86 /// b: u32, 88 /// } 87 /// } 89 /// 88 /// 90 /// impl Example { 89 /// impl Example { 91 /// fn take_over(self: Arc<Self>) { 90 /// fn take_over(self: Arc<Self>) { 92 /// // ... 91 /// // ... 93 /// } 92 /// } 94 /// 93 /// 95 /// fn use_reference(self: &Arc<Self>) { 94 /// fn use_reference(self: &Arc<Self>) { 96 /// // ... 95 /// // ... 97 /// } 96 /// } 98 /// } 97 /// } 99 /// 98 /// 100 /// let obj = Arc::new(Example { a: 10, b: 20 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 101 /// obj.use_reference(); 100 /// obj.use_reference(); 102 /// obj.take_over(); 101 /// obj.take_over(); 103 /// # Ok::<(), Error>(()) 102 /// # Ok::<(), Error>(()) 104 /// ``` 103 /// ``` 105 /// 104 /// 106 /// Coercion from `Arc<Example>` to `Arc<dyn M 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 107 /// 106 /// 108 /// ``` 107 /// ``` 109 /// use kernel::sync::{Arc, ArcBorrow}; 108 /// use kernel::sync::{Arc, ArcBorrow}; 110 /// 109 /// 111 /// trait MyTrait { 110 /// trait MyTrait { 112 /// // Trait has a function whose `self` t 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 113 /// fn example1(self: Arc<Self>) {} 112 /// fn example1(self: Arc<Self>) {} 114 /// 113 /// 115 /// // Trait has a function whose `self` t 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 116 /// fn example2(self: ArcBorrow<'_, Self>) 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 117 /// } 116 /// } 118 /// 117 /// 119 /// struct Example; 118 /// struct Example; 120 /// impl MyTrait for Example {} 119 /// impl MyTrait for Example {} 121 /// 120 /// 122 /// // `obj` has type `Arc<Example>`. 121 /// // `obj` has type `Arc<Example>`. 123 /// let obj: Arc<Example> = Arc::new(Example, 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 124 /// 123 /// 125 /// // `coerced` has type `Arc<dyn MyTrait>`. 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 126 /// let coerced: Arc<dyn MyTrait> = obj; 125 /// let coerced: Arc<dyn MyTrait> = obj; 127 /// # Ok::<(), Error>(()) 126 /// # Ok::<(), Error>(()) 128 /// ``` 127 /// ``` 129 pub struct Arc<T: ?Sized> { 128 pub struct Arc<T: ?Sized> { 130 ptr: NonNull<ArcInner<T>>, 129 ptr: NonNull<ArcInner<T>>, 131 _p: PhantomData<ArcInner<T>>, 130 _p: PhantomData<ArcInner<T>>, 132 } 131 } 133 132 134 #[pin_data] 133 #[pin_data] 135 #[repr(C)] 134 #[repr(C)] 136 struct ArcInner<T: ?Sized> { 135 struct ArcInner<T: ?Sized> { 137 refcount: Opaque<bindings::refcount_t>, 136 refcount: Opaque<bindings::refcount_t>, 138 data: T, 137 data: T, 139 } 138 } 140 139 141 impl<T: ?Sized> ArcInner<T> { 140 impl<T: ?Sized> ArcInner<T> { 142 /// Converts a pointer to the contents of 141 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 143 /// 142 /// 144 /// # Safety 143 /// # Safety 145 /// 144 /// 146 /// `ptr` must have been returned by a pre 145 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 147 /// not yet have been destroyed. 146 /// not yet have been destroyed. 148 unsafe fn container_of(ptr: *const T) -> N 147 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 149 let refcount_layout = Layout::new::<bi 148 let refcount_layout = Layout::new::<bindings::refcount_t>(); 150 // SAFETY: The caller guarantees that 149 // SAFETY: The caller guarantees that the pointer is valid. 151 let val_layout = Layout::for_value(uns 150 let val_layout = Layout::for_value(unsafe { &*ptr }); 152 // SAFETY: We're computing the layout 151 // SAFETY: We're computing the layout of a real struct that existed when compiling this 153 // binary, so its layout is not so lar 152 // binary, so its layout is not so large that it can trigger arithmetic overflow. 154 let val_offset = unsafe { refcount_lay 153 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 155 154 156 // Pointer casts leave the metadata un 155 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 157 // `ArcInner<T>` is the same since `Ar 156 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 158 // 157 // 159 // This is documented at: 158 // This is documented at: 160 // <https://doc.rust-lang.org/std/ptr/ 159 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 161 let ptr = ptr as *const ArcInner<T>; 160 let ptr = ptr as *const ArcInner<T>; 162 161 163 // SAFETY: The pointer is in-bounds of 162 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 164 // pointer, since it originates from a 163 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 165 // still valid. 164 // still valid. 166 let ptr = unsafe { ptr.byte_sub(val_of 165 let ptr = unsafe { ptr.byte_sub(val_offset) }; 167 166 168 // SAFETY: The pointer can't be null s 167 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 169 // address. 168 // address. 170 unsafe { NonNull::new_unchecked(ptr.ca 169 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 171 } 170 } 172 } 171 } 173 172 174 // This is to allow [`Arc`] (and variants) to 173 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 175 impl<T: ?Sized> core::ops::Receiver for Arc<T> 174 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 176 175 177 // This is to allow coercion from `Arc<T>` to 176 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 178 // dynamically-sized type (DST) `U`. 177 // dynamically-sized type (DST) `U`. 179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::o 178 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 180 179 181 // This is to allow `Arc<U>` to be dispatched 180 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 182 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::o 181 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 183 182 184 // SAFETY: It is safe to send `Arc<T>` to anot 183 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 185 // it effectively means sharing `&T` (which is 184 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 186 // `T` to be `Send` because any thread that ha 185 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 187 // mutable reference when the reference count 186 // mutable reference when the reference count reaches zero and `T` is dropped. 188 unsafe impl<T: ?Sized + Sync + Send> Send for 187 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 189 188 190 // SAFETY: It is safe to send `&Arc<T>` to ano 189 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 191 // because it effectively means sharing `&T` ( 190 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 192 // it needs `T` to be `Send` because any threa 191 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 193 // `Arc<T>` on that thread, so the thread may 192 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 194 // the reference count reaches zero and `T` is 193 // the reference count reaches zero and `T` is dropped. 195 unsafe impl<T: ?Sized + Sync + Send> Sync for 194 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 196 195 197 impl<T> Arc<T> { 196 impl<T> Arc<T> { 198 /// Constructs a new reference counted ins 197 /// Constructs a new reference counted instance of `T`. 199 pub fn new(contents: T, flags: Flags) -> R 198 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 200 // INVARIANT: The refcount is initiali 199 // INVARIANT: The refcount is initialised to a non-zero value. 201 let value = ArcInner { 200 let value = ArcInner { 202 // SAFETY: There are no safety req 201 // SAFETY: There are no safety requirements for this FFI call. 203 refcount: Opaque::new(unsafe { bin 202 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 204 data: contents, 203 data: contents, 205 }; 204 }; 206 205 207 let inner = <Box<_> as BoxExt<_>>::new 206 let inner = <Box<_> as BoxExt<_>>::new(value, flags)?; 208 207 209 // SAFETY: We just created `inner` wit 208 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 210 // `Arc` object. 209 // `Arc` object. 211 Ok(unsafe { Self::from_inner(Box::leak 210 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) >> 211 } >> 212 >> 213 /// Use the given initializer to in-place initialize a `T`. >> 214 /// >> 215 /// If `T: !Unpin` it will not be able to move afterwards. >> 216 #[inline] >> 217 pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self> >> 218 where >> 219 Error: From<E>, >> 220 { >> 221 UniqueArc::pin_init(init, flags).map(|u| u.into()) >> 222 } >> 223 >> 224 /// Use the given initializer to in-place initialize a `T`. >> 225 /// >> 226 /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned. >> 227 #[inline] >> 228 pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self> >> 229 where >> 230 Error: From<E>, >> 231 { >> 232 UniqueArc::init(init, flags).map(|u| u.into()) 212 } 233 } 213 } 234 } 214 235 215 impl<T: ?Sized> Arc<T> { 236 impl<T: ?Sized> Arc<T> { 216 /// Constructs a new [`Arc`] from an exist 237 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 217 /// 238 /// 218 /// # Safety 239 /// # Safety 219 /// 240 /// 220 /// The caller must ensure that `inner` po 241 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 221 /// count, one of which will be owned by t 242 /// count, one of which will be owned by the new [`Arc`] instance. 222 unsafe fn from_inner(inner: NonNull<ArcInn 243 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 223 // INVARIANT: By the safety requiremen 244 // INVARIANT: By the safety requirements, the invariants hold. 224 Arc { 245 Arc { 225 ptr: inner, 246 ptr: inner, 226 _p: PhantomData, 247 _p: PhantomData, 227 } 248 } 228 } 249 } 229 250 230 /// Convert the [`Arc`] into a raw pointer 251 /// Convert the [`Arc`] into a raw pointer. 231 /// 252 /// 232 /// The raw pointer has ownership of the r 253 /// The raw pointer has ownership of the refcount that this Arc object owned. 233 pub fn into_raw(self) -> *const T { 254 pub fn into_raw(self) -> *const T { 234 let ptr = self.ptr.as_ptr(); 255 let ptr = self.ptr.as_ptr(); 235 core::mem::forget(self); 256 core::mem::forget(self); 236 // SAFETY: The pointer is valid. 257 // SAFETY: The pointer is valid. 237 unsafe { core::ptr::addr_of!((*ptr).da 258 unsafe { core::ptr::addr_of!((*ptr).data) } 238 } 259 } 239 260 240 /// Recreates an [`Arc`] instance previous 261 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 241 /// 262 /// 242 /// # Safety 263 /// # Safety 243 /// 264 /// 244 /// `ptr` must have been returned by a pre 265 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 245 /// must not be called more than once for 266 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 246 pub unsafe fn from_raw(ptr: *const T) -> S 267 pub unsafe fn from_raw(ptr: *const T) -> Self { 247 // SAFETY: The caller promises that th 268 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 248 // `Arc` that is still valid. 269 // `Arc` that is still valid. 249 let ptr = unsafe { ArcInner::container 270 let ptr = unsafe { ArcInner::container_of(ptr) }; 250 271 251 // SAFETY: By the safety requirements 272 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 252 // reference count held then will be o 273 // reference count held then will be owned by the new `Arc` object. 253 unsafe { Self::from_inner(ptr) } 274 unsafe { Self::from_inner(ptr) } 254 } 275 } 255 276 256 /// Returns an [`ArcBorrow`] from the give 277 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 257 /// 278 /// 258 /// This is useful when the argument of a 279 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 259 /// receiver), but we have an [`Arc`] inst 280 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 260 #[inline] 281 #[inline] 261 pub fn as_arc_borrow(&self) -> ArcBorrow<' 282 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 262 // SAFETY: The constraint that the lif 283 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 263 // the returned `ArcBorrow` ensures th 284 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 264 // reference can be created. 285 // reference can be created. 265 unsafe { ArcBorrow::new(self.ptr) } 286 unsafe { ArcBorrow::new(self.ptr) } 266 } 287 } 267 288 268 /// Compare whether two [`Arc`] pointers r 289 /// Compare whether two [`Arc`] pointers reference the same underlying object. 269 pub fn ptr_eq(this: &Self, other: &Self) - 290 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 270 core::ptr::eq(this.ptr.as_ptr(), other 291 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 271 } 292 } 272 293 273 /// Converts this [`Arc`] into a [`UniqueA 294 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 274 /// 295 /// 275 /// When this destroys the `Arc`, it does 296 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 276 /// this method will never call the destru 297 /// this method will never call the destructor of the value. 277 /// 298 /// 278 /// # Examples 299 /// # Examples 279 /// 300 /// 280 /// ``` 301 /// ``` 281 /// use kernel::sync::{Arc, UniqueArc}; 302 /// use kernel::sync::{Arc, UniqueArc}; 282 /// 303 /// 283 /// let arc = Arc::new(42, GFP_KERNEL)?; 304 /// let arc = Arc::new(42, GFP_KERNEL)?; 284 /// let unique_arc = arc.into_unique_or_dr 305 /// let unique_arc = arc.into_unique_or_drop(); 285 /// 306 /// 286 /// // The above conversion should succeed 307 /// // The above conversion should succeed since refcount of `arc` is 1. 287 /// assert!(unique_arc.is_some()); 308 /// assert!(unique_arc.is_some()); 288 /// 309 /// 289 /// assert_eq!(*(unique_arc.unwrap()), 42) 310 /// assert_eq!(*(unique_arc.unwrap()), 42); 290 /// 311 /// 291 /// # Ok::<(), Error>(()) 312 /// # Ok::<(), Error>(()) 292 /// ``` 313 /// ``` 293 /// 314 /// 294 /// ``` 315 /// ``` 295 /// use kernel::sync::{Arc, UniqueArc}; 316 /// use kernel::sync::{Arc, UniqueArc}; 296 /// 317 /// 297 /// let arc = Arc::new(42, GFP_KERNEL)?; 318 /// let arc = Arc::new(42, GFP_KERNEL)?; 298 /// let another = arc.clone(); 319 /// let another = arc.clone(); 299 /// 320 /// 300 /// let unique_arc = arc.into_unique_or_dr 321 /// let unique_arc = arc.into_unique_or_drop(); 301 /// 322 /// 302 /// // The above conversion should fail si 323 /// // The above conversion should fail since refcount of `arc` is >1. 303 /// assert!(unique_arc.is_none()); 324 /// assert!(unique_arc.is_none()); 304 /// 325 /// 305 /// # Ok::<(), Error>(()) 326 /// # Ok::<(), Error>(()) 306 /// ``` 327 /// ``` 307 pub fn into_unique_or_drop(self) -> Option 328 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 308 // We will manually manage the refcoun 329 // We will manually manage the refcount in this method, so we disable the destructor. 309 let me = ManuallyDrop::new(self); 330 let me = ManuallyDrop::new(self); 310 // SAFETY: We own a refcount, so the p 331 // SAFETY: We own a refcount, so the pointer is still valid. 311 let refcount = unsafe { me.ptr.as_ref( 332 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 312 333 313 // If the refcount reaches a non-zero 334 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 314 // return without further touching the 335 // return without further touching the `Arc`. If the refcount reaches zero, then there are 315 // no other arcs, and we can create a 336 // no other arcs, and we can create a `UniqueArc`. 316 // 337 // 317 // SAFETY: We own a refcount, so the p 338 // SAFETY: We own a refcount, so the pointer is not dangling. 318 let is_zero = unsafe { bindings::refco 339 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 319 if is_zero { 340 if is_zero { 320 // SAFETY: We have exclusive acces 341 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 321 // accesses to the refcount. 342 // accesses to the refcount. 322 unsafe { core::ptr::write(refcount 343 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 323 344 324 // INVARIANT: We own the only refc 345 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 325 // must pin the `UniqueArc` becaus 346 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 326 // their values. 347 // their values. 327 Some(Pin::from(UniqueArc { 348 Some(Pin::from(UniqueArc { 328 inner: ManuallyDrop::into_inne 349 inner: ManuallyDrop::into_inner(me), 329 })) 350 })) 330 } else { 351 } else { 331 None 352 None 332 } 353 } 333 } 354 } 334 } 355 } 335 356 336 impl<T: 'static> ForeignOwnable for Arc<T> { 357 impl<T: 'static> ForeignOwnable for Arc<T> { 337 type Borrowed<'a> = ArcBorrow<'a, T>; 358 type Borrowed<'a> = ArcBorrow<'a, T>; 338 359 339 fn into_foreign(self) -> *const core::ffi: 360 fn into_foreign(self) -> *const core::ffi::c_void { 340 ManuallyDrop::new(self).ptr.as_ptr() a 361 ManuallyDrop::new(self).ptr.as_ptr() as _ 341 } 362 } 342 363 343 unsafe fn borrow<'a>(ptr: *const core::ffi 364 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 344 // SAFETY: By the safety requirement o 365 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 345 // a previous call to `Arc::into_forei 366 // a previous call to `Arc::into_foreign`. 346 let inner = NonNull::new(ptr as *mut A 367 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 347 368 348 // SAFETY: The safety requirements of 369 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 349 // for the lifetime of the returned va 370 // for the lifetime of the returned value. 350 unsafe { ArcBorrow::new(inner) } 371 unsafe { ArcBorrow::new(inner) } 351 } 372 } 352 373 353 unsafe fn from_foreign(ptr: *const core::f 374 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 354 // SAFETY: By the safety requirement o 375 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 355 // a previous call to `Arc::into_forei 376 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 356 // holds a reference count increment t 377 // holds a reference count increment that is transferrable to us. 357 unsafe { Self::from_inner(NonNull::new 378 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 358 } 379 } 359 } 380 } 360 381 361 impl<T: ?Sized> Deref for Arc<T> { 382 impl<T: ?Sized> Deref for Arc<T> { 362 type Target = T; 383 type Target = T; 363 384 364 fn deref(&self) -> &Self::Target { 385 fn deref(&self) -> &Self::Target { 365 // SAFETY: By the type invariant, ther 386 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 366 // safe to dereference it. 387 // safe to dereference it. 367 unsafe { &self.ptr.as_ref().data } 388 unsafe { &self.ptr.as_ref().data } 368 } 389 } 369 } 390 } 370 391 371 impl<T: ?Sized> AsRef<T> for Arc<T> { 392 impl<T: ?Sized> AsRef<T> for Arc<T> { 372 fn as_ref(&self) -> &T { 393 fn as_ref(&self) -> &T { 373 self.deref() 394 self.deref() 374 } 395 } 375 } 396 } 376 397 377 impl<T: ?Sized> Clone for Arc<T> { 398 impl<T: ?Sized> Clone for Arc<T> { 378 fn clone(&self) -> Self { 399 fn clone(&self) -> Self { 379 // INVARIANT: C `refcount_inc` saturat 400 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 380 // SAFETY: By the type invariant, ther 401 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 381 // safe to increment the refcount. 402 // safe to increment the refcount. 382 unsafe { bindings::refcount_inc(self.p 403 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 383 404 384 // SAFETY: We just incremented the ref 405 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 385 unsafe { Self::from_inner(self.ptr) } 406 unsafe { Self::from_inner(self.ptr) } 386 } 407 } 387 } 408 } 388 409 389 impl<T: ?Sized> Drop for Arc<T> { 410 impl<T: ?Sized> Drop for Arc<T> { 390 fn drop(&mut self) { 411 fn drop(&mut self) { 391 // SAFETY: By the type invariant, ther 412 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 392 // touch `refcount` after it's decreme 413 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 393 // may concurrently decrement it to ze 414 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 394 // freed/invalid memory as long as it 415 // freed/invalid memory as long as it is never dereferenced. 395 let refcount = unsafe { self.ptr.as_re 416 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 396 417 397 // INVARIANT: If the refcount reaches 418 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 398 // this instance is being dropped, so 419 // this instance is being dropped, so the broken invariant is not observable. 399 // SAFETY: Also by the type invariant, 420 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 400 let is_zero = unsafe { bindings::refco 421 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 401 if is_zero { 422 if is_zero { 402 // The count reached zero, we must 423 // The count reached zero, we must free the memory. 403 // 424 // 404 // SAFETY: The pointer was initial 425 // SAFETY: The pointer was initialised from the result of `Box::leak`. 405 unsafe { drop(Box::from_raw(self.p 426 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 406 } 427 } 407 } 428 } 408 } 429 } 409 430 410 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> 431 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 411 fn from(item: UniqueArc<T>) -> Self { 432 fn from(item: UniqueArc<T>) -> Self { 412 item.inner 433 item.inner 413 } 434 } 414 } 435 } 415 436 416 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Ar 437 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 417 fn from(item: Pin<UniqueArc<T>>) -> Self { 438 fn from(item: Pin<UniqueArc<T>>) -> Self { 418 // SAFETY: The type invariants of `Arc 439 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 419 unsafe { Pin::into_inner_unchecked(ite 440 unsafe { Pin::into_inner_unchecked(item).inner } 420 } 441 } 421 } 442 } 422 443 423 /// A borrowed reference to an [`Arc`] instanc 444 /// A borrowed reference to an [`Arc`] instance. 424 /// 445 /// 425 /// For cases when one doesn't ever need to in 446 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 426 /// to use just `&T`, which we can trivially g 447 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 427 /// 448 /// 428 /// However, when one may need to increment th 449 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 429 /// over `&Arc<T>` because the latter results 450 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 430 /// to a pointer ([`Arc<T>`]) to the object (` 451 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 431 /// indirection while still allowing one to in 452 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 432 /// needed. 453 /// needed. 433 /// 454 /// 434 /// # Invariants 455 /// # Invariants 435 /// 456 /// 436 /// There are no mutable references to the und 457 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 437 /// lifetime of the [`ArcBorrow`] instance. 458 /// lifetime of the [`ArcBorrow`] instance. 438 /// 459 /// 439 /// # Example 460 /// # Example 440 /// 461 /// 441 /// ``` 462 /// ``` 442 /// use kernel::sync::{Arc, ArcBorrow}; 463 /// use kernel::sync::{Arc, ArcBorrow}; 443 /// 464 /// 444 /// struct Example; 465 /// struct Example; 445 /// 466 /// 446 /// fn do_something(e: ArcBorrow<'_, Example>) 467 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 447 /// e.into() 468 /// e.into() 448 /// } 469 /// } 449 /// 470 /// 450 /// let obj = Arc::new(Example, GFP_KERNEL)?; 471 /// let obj = Arc::new(Example, GFP_KERNEL)?; 451 /// let cloned = do_something(obj.as_arc_borro 472 /// let cloned = do_something(obj.as_arc_borrow()); 452 /// 473 /// 453 /// // Assert that both `obj` and `cloned` poi 474 /// // Assert that both `obj` and `cloned` point to the same underlying object. 454 /// assert!(core::ptr::eq(&*obj, &*cloned)); 475 /// assert!(core::ptr::eq(&*obj, &*cloned)); 455 /// # Ok::<(), Error>(()) 476 /// # Ok::<(), Error>(()) 456 /// ``` 477 /// ``` 457 /// 478 /// 458 /// Using `ArcBorrow<T>` as the type of `self` 479 /// Using `ArcBorrow<T>` as the type of `self`: 459 /// 480 /// 460 /// ``` 481 /// ``` 461 /// use kernel::sync::{Arc, ArcBorrow}; 482 /// use kernel::sync::{Arc, ArcBorrow}; 462 /// 483 /// 463 /// struct Example { 484 /// struct Example { 464 /// a: u32, 485 /// a: u32, 465 /// b: u32, 486 /// b: u32, 466 /// } 487 /// } 467 /// 488 /// 468 /// impl Example { 489 /// impl Example { 469 /// fn use_reference(self: ArcBorrow<'_, S 490 /// fn use_reference(self: ArcBorrow<'_, Self>) { 470 /// // ... 491 /// // ... 471 /// } 492 /// } 472 /// } 493 /// } 473 /// 494 /// 474 /// let obj = Arc::new(Example { a: 10, b: 20 495 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 475 /// obj.as_arc_borrow().use_reference(); 496 /// obj.as_arc_borrow().use_reference(); 476 /// # Ok::<(), Error>(()) 497 /// # Ok::<(), Error>(()) 477 /// ``` 498 /// ``` 478 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 499 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 479 inner: NonNull<ArcInner<T>>, 500 inner: NonNull<ArcInner<T>>, 480 _p: PhantomData<&'a ()>, 501 _p: PhantomData<&'a ()>, 481 } 502 } 482 503 483 // This is to allow [`ArcBorrow`] (and variant 504 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 484 impl<T: ?Sized> core::ops::Receiver for ArcBor 505 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 485 506 486 // This is to allow `ArcBorrow<U>` to be dispa 507 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 487 // `ArcBorrow<U>`. 508 // `ArcBorrow<U>`. 488 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::o 509 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 489 for ArcBorrow<'_, T> 510 for ArcBorrow<'_, T> 490 { 511 { 491 } 512 } 492 513 493 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 514 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 494 fn clone(&self) -> Self { 515 fn clone(&self) -> Self { 495 *self 516 *self 496 } 517 } 497 } 518 } 498 519 499 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 520 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 500 521 501 impl<T: ?Sized> ArcBorrow<'_, T> { 522 impl<T: ?Sized> ArcBorrow<'_, T> { 502 /// Creates a new [`ArcBorrow`] instance. 523 /// Creates a new [`ArcBorrow`] instance. 503 /// 524 /// 504 /// # Safety 525 /// # Safety 505 /// 526 /// 506 /// Callers must ensure the following for 527 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 507 /// 1. That `inner` remains valid; 528 /// 1. That `inner` remains valid; 508 /// 2. That no mutable references to `inne 529 /// 2. That no mutable references to `inner` are created. 509 unsafe fn new(inner: NonNull<ArcInner<T>>) 530 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 510 // INVARIANT: The safety requirements 531 // INVARIANT: The safety requirements guarantee the invariants. 511 Self { 532 Self { 512 inner, 533 inner, 513 _p: PhantomData, 534 _p: PhantomData, 514 } 535 } 515 } 536 } 516 537 517 /// Creates an [`ArcBorrow`] to an [`Arc`] 538 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 518 /// [`Arc::into_raw`]. 539 /// [`Arc::into_raw`]. 519 /// 540 /// 520 /// # Safety 541 /// # Safety 521 /// 542 /// 522 /// * The provided pointer must originate 543 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 523 /// * For the duration of the lifetime ann 544 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 524 /// not hit zero. 545 /// not hit zero. 525 /// * For the duration of the lifetime ann 546 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 526 /// [`UniqueArc`] reference to this valu 547 /// [`UniqueArc`] reference to this value. 527 pub unsafe fn from_raw(ptr: *const T) -> S 548 pub unsafe fn from_raw(ptr: *const T) -> Self { 528 // SAFETY: The caller promises that th 549 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 529 // `Arc` that is still valid. 550 // `Arc` that is still valid. 530 let ptr = unsafe { ArcInner::container 551 let ptr = unsafe { ArcInner::container_of(ptr) }; 531 552 532 // SAFETY: The caller promises that th 553 // SAFETY: The caller promises that the value remains valid since the reference count must 533 // not hit zero, and no mutable refere 554 // not hit zero, and no mutable reference will be created since that would involve a 534 // `UniqueArc`. 555 // `UniqueArc`. 535 unsafe { Self::new(ptr) } 556 unsafe { Self::new(ptr) } 536 } 557 } 537 } 558 } 538 559 539 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc 560 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 540 fn from(b: ArcBorrow<'_, T>) -> Self { 561 fn from(b: ArcBorrow<'_, T>) -> Self { 541 // SAFETY: The existence of `b` guaran 562 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 542 // guarantees that `drop` isn't called 563 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 543 // increment. 564 // increment. 544 ManuallyDrop::new(unsafe { Arc::from_i 565 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 545 .deref() 566 .deref() 546 .clone() 567 .clone() 547 } 568 } 548 } 569 } 549 570 550 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 571 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 551 type Target = T; 572 type Target = T; 552 573 553 fn deref(&self) -> &Self::Target { 574 fn deref(&self) -> &Self::Target { 554 // SAFETY: By the type invariant, the 575 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 555 // references to it, so it is safe to 576 // references to it, so it is safe to create a shared reference. 556 unsafe { &self.inner.as_ref().data } 577 unsafe { &self.inner.as_ref().data } 557 } 578 } 558 } 579 } 559 580 560 /// A refcounted object that is known to have 581 /// A refcounted object that is known to have a refcount of 1. 561 /// 582 /// 562 /// It is mutable and can be converted to an [ 583 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 563 /// 584 /// 564 /// # Invariants 585 /// # Invariants 565 /// 586 /// 566 /// `inner` always has a reference count of 1. 587 /// `inner` always has a reference count of 1. 567 /// 588 /// 568 /// # Examples 589 /// # Examples 569 /// 590 /// 570 /// In the following example, we make changes 591 /// In the following example, we make changes to the inner object before turning it into an 571 /// `Arc<Test>` object (after which point, it 592 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 572 /// cannot fail. 593 /// cannot fail. 573 /// 594 /// 574 /// ``` 595 /// ``` 575 /// use kernel::sync::{Arc, UniqueArc}; 596 /// use kernel::sync::{Arc, UniqueArc}; 576 /// 597 /// 577 /// struct Example { 598 /// struct Example { 578 /// a: u32, 599 /// a: u32, 579 /// b: u32, 600 /// b: u32, 580 /// } 601 /// } 581 /// 602 /// 582 /// fn test() -> Result<Arc<Example>> { 603 /// fn test() -> Result<Arc<Example>> { 583 /// let mut x = UniqueArc::new(Example { a 604 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 584 /// x.a += 1; 605 /// x.a += 1; 585 /// x.b += 1; 606 /// x.b += 1; 586 /// Ok(x.into()) 607 /// Ok(x.into()) 587 /// } 608 /// } 588 /// 609 /// 589 /// # test().unwrap(); 610 /// # test().unwrap(); 590 /// ``` 611 /// ``` 591 /// 612 /// 592 /// In the following example we first allocate 613 /// In the following example we first allocate memory for a refcounted `Example` but we don't 593 /// initialise it on allocation. We do initial 614 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 594 /// followed by a conversion to `Arc<Example>` 615 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 595 /// in one context (e.g., sleepable) and initi 616 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 596 /// 617 /// 597 /// ``` 618 /// ``` 598 /// use kernel::sync::{Arc, UniqueArc}; 619 /// use kernel::sync::{Arc, UniqueArc}; 599 /// 620 /// 600 /// struct Example { 621 /// struct Example { 601 /// a: u32, 622 /// a: u32, 602 /// b: u32, 623 /// b: u32, 603 /// } 624 /// } 604 /// 625 /// 605 /// fn test() -> Result<Arc<Example>> { 626 /// fn test() -> Result<Arc<Example>> { 606 /// let x = UniqueArc::new_uninit(GFP_KERN 627 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 607 /// Ok(x.write(Example { a: 10, b: 20 }).i 628 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 608 /// } 629 /// } 609 /// 630 /// 610 /// # test().unwrap(); 631 /// # test().unwrap(); 611 /// ``` 632 /// ``` 612 /// 633 /// 613 /// In the last example below, the caller gets 634 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 614 /// `Arc<Example>`; this is useful in scenario 635 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 615 /// initialisation, for example, when initiali 636 /// initialisation, for example, when initialising fields that are wrapped in locks. 616 /// 637 /// 617 /// ``` 638 /// ``` 618 /// use kernel::sync::{Arc, UniqueArc}; 639 /// use kernel::sync::{Arc, UniqueArc}; 619 /// 640 /// 620 /// struct Example { 641 /// struct Example { 621 /// a: u32, 642 /// a: u32, 622 /// b: u32, 643 /// b: u32, 623 /// } 644 /// } 624 /// 645 /// 625 /// fn test() -> Result<Arc<Example>> { 646 /// fn test() -> Result<Arc<Example>> { 626 /// let mut pinned = Pin::from(UniqueArc:: 647 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 627 /// // We can modify `pinned` because it i 648 /// // We can modify `pinned` because it is `Unpin`. 628 /// pinned.as_mut().a += 1; 649 /// pinned.as_mut().a += 1; 629 /// Ok(pinned.into()) 650 /// Ok(pinned.into()) 630 /// } 651 /// } 631 /// 652 /// 632 /// # test().unwrap(); 653 /// # test().unwrap(); 633 /// ``` 654 /// ``` 634 pub struct UniqueArc<T: ?Sized> { 655 pub struct UniqueArc<T: ?Sized> { 635 inner: Arc<T>, 656 inner: Arc<T>, 636 } 657 } 637 658 638 impl<T> UniqueArc<T> { 659 impl<T> UniqueArc<T> { 639 /// Tries to allocate a new [`UniqueArc`] 660 /// Tries to allocate a new [`UniqueArc`] instance. 640 pub fn new(value: T, flags: Flags) -> Resu 661 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 641 Ok(Self { 662 Ok(Self { 642 // INVARIANT: The newly-created ob 663 // INVARIANT: The newly-created object has a refcount of 1. 643 inner: Arc::new(value, flags)?, 664 inner: Arc::new(value, flags)?, 644 }) 665 }) 645 } 666 } 646 667 647 /// Tries to allocate a new [`UniqueArc`] 668 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 648 pub fn new_uninit(flags: Flags) -> Result< 669 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 649 // INVARIANT: The refcount is initiali 670 // INVARIANT: The refcount is initialised to a non-zero value. 650 let inner = Box::try_init::<AllocError 671 let inner = Box::try_init::<AllocError>( 651 try_init!(ArcInner { 672 try_init!(ArcInner { 652 // SAFETY: There are no safety 673 // SAFETY: There are no safety requirements for this FFI call. 653 refcount: Opaque::new(unsafe { 674 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 654 data <- init::uninit::<T, Allo 675 data <- init::uninit::<T, AllocError>(), 655 }? AllocError), 676 }? AllocError), 656 flags, 677 flags, 657 )?; 678 )?; 658 Ok(UniqueArc { 679 Ok(UniqueArc { 659 // INVARIANT: The newly-created ob 680 // INVARIANT: The newly-created object has a refcount of 1. 660 // SAFETY: The pointer from the `B 681 // SAFETY: The pointer from the `Box` is valid. 661 inner: unsafe { Arc::from_inner(Bo 682 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 662 }) 683 }) 663 } 684 } 664 } 685 } 665 686 666 impl<T> UniqueArc<MaybeUninit<T>> { 687 impl<T> UniqueArc<MaybeUninit<T>> { 667 /// Converts a `UniqueArc<MaybeUninit<T>>` 688 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 668 pub fn write(mut self, value: T) -> Unique 689 pub fn write(mut self, value: T) -> UniqueArc<T> { 669 self.deref_mut().write(value); 690 self.deref_mut().write(value); 670 // SAFETY: We just wrote the value to 691 // SAFETY: We just wrote the value to be initialized. 671 unsafe { self.assume_init() } 692 unsafe { self.assume_init() } 672 } 693 } 673 694 674 /// Unsafely assume that `self` is initial 695 /// Unsafely assume that `self` is initialized. 675 /// 696 /// 676 /// # Safety 697 /// # Safety 677 /// 698 /// 678 /// The caller guarantees that the value b 699 /// The caller guarantees that the value behind this pointer has been initialized. It is 679 /// *immediate* UB to call this when the v 700 /// *immediate* UB to call this when the value is not initialized. 680 pub unsafe fn assume_init(self) -> UniqueA 701 pub unsafe fn assume_init(self) -> UniqueArc<T> { 681 let inner = ManuallyDrop::new(self).in 702 let inner = ManuallyDrop::new(self).inner.ptr; 682 UniqueArc { 703 UniqueArc { 683 // SAFETY: The new `Arc` is taking 704 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 684 // dropped). The types are compati 705 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 685 inner: unsafe { Arc::from_inner(in 706 inner: unsafe { Arc::from_inner(inner.cast()) }, 686 } 707 } 687 } 708 } 688 709 689 /// Initialize `self` using the given init 710 /// Initialize `self` using the given initializer. 690 pub fn init_with<E>(mut self, init: impl I 711 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 691 // SAFETY: The supplied pointer is val 712 // SAFETY: The supplied pointer is valid for initialization. 692 match unsafe { init.__init(self.as_mut 713 match unsafe { init.__init(self.as_mut_ptr()) } { 693 // SAFETY: Initialization complete 714 // SAFETY: Initialization completed successfully. 694 Ok(()) => Ok(unsafe { self.assume_ 715 Ok(()) => Ok(unsafe { self.assume_init() }), 695 Err(err) => Err(err), 716 Err(err) => Err(err), 696 } 717 } 697 } 718 } 698 719 699 /// Pin-initialize `self` using the given 720 /// Pin-initialize `self` using the given pin-initializer. 700 pub fn pin_init_with<E>( 721 pub fn pin_init_with<E>( 701 mut self, 722 mut self, 702 init: impl PinInit<T, E>, 723 init: impl PinInit<T, E>, 703 ) -> core::result::Result<Pin<UniqueArc<T> 724 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 704 // SAFETY: The supplied pointer is val 725 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 705 // to ensure it does not move. 726 // to ensure it does not move. 706 match unsafe { init.__pinned_init(self 727 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 707 // SAFETY: Initialization complete 728 // SAFETY: Initialization completed successfully. 708 Ok(()) => Ok(unsafe { self.assume_ 729 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 709 Err(err) => Err(err), 730 Err(err) => Err(err), 710 } 731 } 711 } 732 } 712 } 733 } 713 734 714 impl<T: ?Sized> From<UniqueArc<T>> for Pin<Uni 735 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 715 fn from(obj: UniqueArc<T>) -> Self { 736 fn from(obj: UniqueArc<T>) -> Self { 716 // SAFETY: It is not possible to move/ 737 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 717 // is `Unpin`), so it is ok to convert 738 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 718 unsafe { Pin::new_unchecked(obj) } 739 unsafe { Pin::new_unchecked(obj) } 719 } 740 } 720 } 741 } 721 742 722 impl<T: ?Sized> Deref for UniqueArc<T> { 743 impl<T: ?Sized> Deref for UniqueArc<T> { 723 type Target = T; 744 type Target = T; 724 745 725 fn deref(&self) -> &Self::Target { 746 fn deref(&self) -> &Self::Target { 726 self.inner.deref() 747 self.inner.deref() 727 } 748 } 728 } 749 } 729 750 730 impl<T: ?Sized> DerefMut for UniqueArc<T> { 751 impl<T: ?Sized> DerefMut for UniqueArc<T> { 731 fn deref_mut(&mut self) -> &mut Self::Targ 752 fn deref_mut(&mut self) -> &mut Self::Target { 732 // SAFETY: By the `Arc` type invariant 753 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 733 // it is safe to dereference it. Addit 754 // it is safe to dereference it. Additionally, we know there is only one reference when 734 // it's inside a `UniqueArc`, so it is 755 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 735 unsafe { &mut self.inner.ptr.as_mut(). 756 unsafe { &mut self.inner.ptr.as_mut().data } 736 } 757 } 737 } 758 } 738 759 739 impl<T: fmt::Display + ?Sized> fmt::Display fo 760 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 740 fn fmt(&self, f: &mut fmt::Formatter<'_>) 761 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 741 fmt::Display::fmt(self.deref(), f) 762 fmt::Display::fmt(self.deref(), f) 742 } 763 } 743 } 764 } 744 765 745 impl<T: fmt::Display + ?Sized> fmt::Display fo 766 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 746 fn fmt(&self, f: &mut fmt::Formatter<'_>) 767 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 747 fmt::Display::fmt(self.deref(), f) 768 fmt::Display::fmt(self.deref(), f) 748 } 769 } 749 } 770 } 750 771 751 impl<T: fmt::Debug + ?Sized> fmt::Debug for Un 772 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 752 fn fmt(&self, f: &mut fmt::Formatter<'_>) 773 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 753 fmt::Debug::fmt(self.deref(), f) 774 fmt::Debug::fmt(self.deref(), f) 754 } 775 } 755 } 776 } 756 777 757 impl<T: fmt::Debug + ?Sized> fmt::Debug for Ar 778 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 758 fn fmt(&self, f: &mut fmt::Formatter<'_>) 779 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 759 fmt::Debug::fmt(self.deref(), f) 780 fmt::Debug::fmt(self.deref(), f) 760 } 781 } 761 } 782 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.