1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 2 3 //! A reference-counted pointer. 3 //! A reference-counted pointer. 4 //! 4 //! 5 //! This module implements a way for users to 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increme 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 8 //! threads. 9 //! 9 //! 10 //! It is different from the standard library' 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_ 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, wh 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instea 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implici 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/syn 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 18 19 use crate::{ 19 use crate::{ 20 alloc::{box_ext::BoxExt, AllocError, Flags 20 alloc::{box_ext::BoxExt, AllocError, Flags}, 21 bindings, 21 bindings, 22 init::{self, InPlaceInit, Init, PinInit}, 22 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 24 types::{ForeignOwnable, Opaque}, 25 }; 25 }; 26 use alloc::boxed::Box; 26 use alloc::boxed::Box; 27 use core::{ 27 use core::{ 28 alloc::Layout, 28 alloc::Layout, 29 fmt, 29 fmt, 30 marker::{PhantomData, Unsize}, 30 marker::{PhantomData, Unsize}, 31 mem::{ManuallyDrop, MaybeUninit}, 31 mem::{ManuallyDrop, MaybeUninit}, 32 ops::{Deref, DerefMut}, 32 ops::{Deref, DerefMut}, 33 pin::Pin, 33 pin::Pin, 34 ptr::NonNull, 34 ptr::NonNull, 35 }; 35 }; 36 use macros::pin_data; 36 use macros::pin_data; 37 37 38 mod std_vendor; 38 mod std_vendor; 39 39 40 /// A reference-counted pointer to an instance 40 /// A reference-counted pointer to an instance of `T`. 41 /// 41 /// 42 /// The reference count is incremented when ne 42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 43 /// when they are dropped. When the count reac 43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 44 /// 44 /// 45 /// # Invariants 45 /// # Invariants 46 /// 46 /// 47 /// The reference count on an instance of [`Ar 47 /// The reference count on an instance of [`Arc`] is always non-zero. 48 /// The object pointed to by [`Arc`] is always 48 /// The object pointed to by [`Arc`] is always pinned. 49 /// 49 /// 50 /// # Examples 50 /// # Examples 51 /// 51 /// 52 /// ``` 52 /// ``` 53 /// use kernel::sync::Arc; 53 /// use kernel::sync::Arc; 54 /// 54 /// 55 /// struct Example { 55 /// struct Example { 56 /// a: u32, 56 /// a: u32, 57 /// b: u32, 57 /// b: u32, 58 /// } 58 /// } 59 /// 59 /// 60 /// // Create a refcounted instance of `Exampl 60 /// // Create a refcounted instance of `Example`. 61 /// let obj = Arc::new(Example { a: 10, b: 20 61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 62 /// 62 /// 63 /// // Get a new pointer to `obj` and incremen 63 /// // Get a new pointer to `obj` and increment the refcount. 64 /// let cloned = obj.clone(); 64 /// let cloned = obj.clone(); 65 /// 65 /// 66 /// // Assert that both `obj` and `cloned` poi 66 /// // Assert that both `obj` and `cloned` point to the same underlying object. 67 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// assert!(core::ptr::eq(&*obj, &*cloned)); 68 /// 68 /// 69 /// // Destroy `obj` and decrement its refcoun 69 /// // Destroy `obj` and decrement its refcount. 70 /// drop(obj); 70 /// drop(obj); 71 /// 71 /// 72 /// // Check that the values are still accessi 72 /// // Check that the values are still accessible through `cloned`. 73 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.a, 10); 74 /// assert_eq!(cloned.b, 20); 74 /// assert_eq!(cloned.b, 20); 75 /// 75 /// 76 /// // The refcount drops to zero when `cloned 76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 77 /// # Ok::<(), Error>(()) 77 /// # Ok::<(), Error>(()) 78 /// ``` 78 /// ``` 79 /// 79 /// 80 /// Using `Arc<T>` as the type of `self`: 80 /// Using `Arc<T>` as the type of `self`: 81 /// 81 /// 82 /// ``` 82 /// ``` 83 /// use kernel::sync::Arc; 83 /// use kernel::sync::Arc; 84 /// 84 /// 85 /// struct Example { 85 /// struct Example { 86 /// a: u32, 86 /// a: u32, 87 /// b: u32, 87 /// b: u32, 88 /// } 88 /// } 89 /// 89 /// 90 /// impl Example { 90 /// impl Example { 91 /// fn take_over(self: Arc<Self>) { 91 /// fn take_over(self: Arc<Self>) { 92 /// // ... 92 /// // ... 93 /// } 93 /// } 94 /// 94 /// 95 /// fn use_reference(self: &Arc<Self>) { 95 /// fn use_reference(self: &Arc<Self>) { 96 /// // ... 96 /// // ... 97 /// } 97 /// } 98 /// } 98 /// } 99 /// 99 /// 100 /// let obj = Arc::new(Example { a: 10, b: 20 100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 101 /// obj.use_reference(); 101 /// obj.use_reference(); 102 /// obj.take_over(); 102 /// obj.take_over(); 103 /// # Ok::<(), Error>(()) 103 /// # Ok::<(), Error>(()) 104 /// ``` 104 /// ``` 105 /// 105 /// 106 /// Coercion from `Arc<Example>` to `Arc<dyn M 106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 107 /// 107 /// 108 /// ``` 108 /// ``` 109 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// use kernel::sync::{Arc, ArcBorrow}; 110 /// 110 /// 111 /// trait MyTrait { 111 /// trait MyTrait { 112 /// // Trait has a function whose `self` t 112 /// // Trait has a function whose `self` type is `Arc<Self>`. 113 /// fn example1(self: Arc<Self>) {} 113 /// fn example1(self: Arc<Self>) {} 114 /// 114 /// 115 /// // Trait has a function whose `self` t 115 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 116 /// fn example2(self: ArcBorrow<'_, Self>) 116 /// fn example2(self: ArcBorrow<'_, Self>) {} 117 /// } 117 /// } 118 /// 118 /// 119 /// struct Example; 119 /// struct Example; 120 /// impl MyTrait for Example {} 120 /// impl MyTrait for Example {} 121 /// 121 /// 122 /// // `obj` has type `Arc<Example>`. 122 /// // `obj` has type `Arc<Example>`. 123 /// let obj: Arc<Example> = Arc::new(Example, 123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 124 /// 124 /// 125 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// // `coerced` has type `Arc<dyn MyTrait>`. 126 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// let coerced: Arc<dyn MyTrait> = obj; 127 /// # Ok::<(), Error>(()) 127 /// # Ok::<(), Error>(()) 128 /// ``` 128 /// ``` 129 pub struct Arc<T: ?Sized> { 129 pub struct Arc<T: ?Sized> { 130 ptr: NonNull<ArcInner<T>>, 130 ptr: NonNull<ArcInner<T>>, 131 _p: PhantomData<ArcInner<T>>, 131 _p: PhantomData<ArcInner<T>>, 132 } 132 } 133 133 134 #[pin_data] 134 #[pin_data] 135 #[repr(C)] 135 #[repr(C)] 136 struct ArcInner<T: ?Sized> { 136 struct ArcInner<T: ?Sized> { 137 refcount: Opaque<bindings::refcount_t>, 137 refcount: Opaque<bindings::refcount_t>, 138 data: T, 138 data: T, 139 } 139 } 140 140 141 impl<T: ?Sized> ArcInner<T> { 141 impl<T: ?Sized> ArcInner<T> { 142 /// Converts a pointer to the contents of 142 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 143 /// 143 /// 144 /// # Safety 144 /// # Safety 145 /// 145 /// 146 /// `ptr` must have been returned by a pre 146 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 147 /// not yet have been destroyed. 147 /// not yet have been destroyed. 148 unsafe fn container_of(ptr: *const T) -> N 148 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 149 let refcount_layout = Layout::new::<bi 149 let refcount_layout = Layout::new::<bindings::refcount_t>(); 150 // SAFETY: The caller guarantees that 150 // SAFETY: The caller guarantees that the pointer is valid. 151 let val_layout = Layout::for_value(uns 151 let val_layout = Layout::for_value(unsafe { &*ptr }); 152 // SAFETY: We're computing the layout 152 // SAFETY: We're computing the layout of a real struct that existed when compiling this 153 // binary, so its layout is not so lar 153 // binary, so its layout is not so large that it can trigger arithmetic overflow. 154 let val_offset = unsafe { refcount_lay 154 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 155 155 156 // Pointer casts leave the metadata un 156 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 157 // `ArcInner<T>` is the same since `Ar 157 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 158 // 158 // 159 // This is documented at: 159 // This is documented at: 160 // <https://doc.rust-lang.org/std/ptr/ 160 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 161 let ptr = ptr as *const ArcInner<T>; 161 let ptr = ptr as *const ArcInner<T>; 162 162 163 // SAFETY: The pointer is in-bounds of 163 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 164 // pointer, since it originates from a 164 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 165 // still valid. 165 // still valid. 166 let ptr = unsafe { ptr.byte_sub(val_of 166 let ptr = unsafe { ptr.byte_sub(val_offset) }; 167 167 168 // SAFETY: The pointer can't be null s 168 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 169 // address. 169 // address. 170 unsafe { NonNull::new_unchecked(ptr.ca 170 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 171 } 171 } 172 } 172 } 173 173 174 // This is to allow [`Arc`] (and variants) to 174 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 175 impl<T: ?Sized> core::ops::Receiver for Arc<T> 175 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 176 176 177 // This is to allow coercion from `Arc<T>` to 177 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 178 // dynamically-sized type (DST) `U`. 178 // dynamically-sized type (DST) `U`. 179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::o 179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 180 180 181 // This is to allow `Arc<U>` to be dispatched 181 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 182 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::o 182 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 183 183 184 // SAFETY: It is safe to send `Arc<T>` to anot 184 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 185 // it effectively means sharing `&T` (which is 185 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 186 // `T` to be `Send` because any thread that ha 186 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 187 // mutable reference when the reference count 187 // mutable reference when the reference count reaches zero and `T` is dropped. 188 unsafe impl<T: ?Sized + Sync + Send> Send for 188 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 189 189 190 // SAFETY: It is safe to send `&Arc<T>` to ano 190 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 191 // because it effectively means sharing `&T` ( 191 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 192 // it needs `T` to be `Send` because any threa 192 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 193 // `Arc<T>` on that thread, so the thread may 193 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 194 // the reference count reaches zero and `T` is 194 // the reference count reaches zero and `T` is dropped. 195 unsafe impl<T: ?Sized + Sync + Send> Sync for 195 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 196 196 197 impl<T> Arc<T> { 197 impl<T> Arc<T> { 198 /// Constructs a new reference counted ins 198 /// Constructs a new reference counted instance of `T`. 199 pub fn new(contents: T, flags: Flags) -> R 199 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 200 // INVARIANT: The refcount is initiali 200 // INVARIANT: The refcount is initialised to a non-zero value. 201 let value = ArcInner { 201 let value = ArcInner { 202 // SAFETY: There are no safety req 202 // SAFETY: There are no safety requirements for this FFI call. 203 refcount: Opaque::new(unsafe { bin 203 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 204 data: contents, 204 data: contents, 205 }; 205 }; 206 206 207 let inner = <Box<_> as BoxExt<_>>::new 207 let inner = <Box<_> as BoxExt<_>>::new(value, flags)?; 208 208 209 // SAFETY: We just created `inner` wit 209 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 210 // `Arc` object. 210 // `Arc` object. 211 Ok(unsafe { Self::from_inner(Box::leak 211 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 212 } 212 } 213 } 213 } 214 214 215 impl<T: ?Sized> Arc<T> { 215 impl<T: ?Sized> Arc<T> { 216 /// Constructs a new [`Arc`] from an exist 216 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 217 /// 217 /// 218 /// # Safety 218 /// # Safety 219 /// 219 /// 220 /// The caller must ensure that `inner` po 220 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 221 /// count, one of which will be owned by t 221 /// count, one of which will be owned by the new [`Arc`] instance. 222 unsafe fn from_inner(inner: NonNull<ArcInn 222 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 223 // INVARIANT: By the safety requiremen 223 // INVARIANT: By the safety requirements, the invariants hold. 224 Arc { 224 Arc { 225 ptr: inner, 225 ptr: inner, 226 _p: PhantomData, 226 _p: PhantomData, 227 } 227 } 228 } 228 } 229 229 230 /// Convert the [`Arc`] into a raw pointer 230 /// Convert the [`Arc`] into a raw pointer. 231 /// 231 /// 232 /// The raw pointer has ownership of the r 232 /// The raw pointer has ownership of the refcount that this Arc object owned. 233 pub fn into_raw(self) -> *const T { 233 pub fn into_raw(self) -> *const T { 234 let ptr = self.ptr.as_ptr(); 234 let ptr = self.ptr.as_ptr(); 235 core::mem::forget(self); 235 core::mem::forget(self); 236 // SAFETY: The pointer is valid. 236 // SAFETY: The pointer is valid. 237 unsafe { core::ptr::addr_of!((*ptr).da 237 unsafe { core::ptr::addr_of!((*ptr).data) } 238 } 238 } 239 239 240 /// Recreates an [`Arc`] instance previous 240 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 241 /// 241 /// 242 /// # Safety 242 /// # Safety 243 /// 243 /// 244 /// `ptr` must have been returned by a pre 244 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 245 /// must not be called more than once for 245 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 246 pub unsafe fn from_raw(ptr: *const T) -> S 246 pub unsafe fn from_raw(ptr: *const T) -> Self { 247 // SAFETY: The caller promises that th 247 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 248 // `Arc` that is still valid. 248 // `Arc` that is still valid. 249 let ptr = unsafe { ArcInner::container 249 let ptr = unsafe { ArcInner::container_of(ptr) }; 250 250 251 // SAFETY: By the safety requirements 251 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 252 // reference count held then will be o 252 // reference count held then will be owned by the new `Arc` object. 253 unsafe { Self::from_inner(ptr) } 253 unsafe { Self::from_inner(ptr) } 254 } 254 } 255 255 256 /// Returns an [`ArcBorrow`] from the give 256 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 257 /// 257 /// 258 /// This is useful when the argument of a 258 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 259 /// receiver), but we have an [`Arc`] inst 259 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 260 #[inline] 260 #[inline] 261 pub fn as_arc_borrow(&self) -> ArcBorrow<' 261 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 262 // SAFETY: The constraint that the lif 262 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 263 // the returned `ArcBorrow` ensures th 263 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 264 // reference can be created. 264 // reference can be created. 265 unsafe { ArcBorrow::new(self.ptr) } 265 unsafe { ArcBorrow::new(self.ptr) } 266 } 266 } 267 267 268 /// Compare whether two [`Arc`] pointers r 268 /// Compare whether two [`Arc`] pointers reference the same underlying object. 269 pub fn ptr_eq(this: &Self, other: &Self) - 269 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 270 core::ptr::eq(this.ptr.as_ptr(), other 270 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 271 } 271 } 272 272 273 /// Converts this [`Arc`] into a [`UniqueA 273 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 274 /// 274 /// 275 /// When this destroys the `Arc`, it does 275 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 276 /// this method will never call the destru 276 /// this method will never call the destructor of the value. 277 /// 277 /// 278 /// # Examples 278 /// # Examples 279 /// 279 /// 280 /// ``` 280 /// ``` 281 /// use kernel::sync::{Arc, UniqueArc}; 281 /// use kernel::sync::{Arc, UniqueArc}; 282 /// 282 /// 283 /// let arc = Arc::new(42, GFP_KERNEL)?; 283 /// let arc = Arc::new(42, GFP_KERNEL)?; 284 /// let unique_arc = arc.into_unique_or_dr 284 /// let unique_arc = arc.into_unique_or_drop(); 285 /// 285 /// 286 /// // The above conversion should succeed 286 /// // The above conversion should succeed since refcount of `arc` is 1. 287 /// assert!(unique_arc.is_some()); 287 /// assert!(unique_arc.is_some()); 288 /// 288 /// 289 /// assert_eq!(*(unique_arc.unwrap()), 42) 289 /// assert_eq!(*(unique_arc.unwrap()), 42); 290 /// 290 /// 291 /// # Ok::<(), Error>(()) 291 /// # Ok::<(), Error>(()) 292 /// ``` 292 /// ``` 293 /// 293 /// 294 /// ``` 294 /// ``` 295 /// use kernel::sync::{Arc, UniqueArc}; 295 /// use kernel::sync::{Arc, UniqueArc}; 296 /// 296 /// 297 /// let arc = Arc::new(42, GFP_KERNEL)?; 297 /// let arc = Arc::new(42, GFP_KERNEL)?; 298 /// let another = arc.clone(); 298 /// let another = arc.clone(); 299 /// 299 /// 300 /// let unique_arc = arc.into_unique_or_dr 300 /// let unique_arc = arc.into_unique_or_drop(); 301 /// 301 /// 302 /// // The above conversion should fail si 302 /// // The above conversion should fail since refcount of `arc` is >1. 303 /// assert!(unique_arc.is_none()); 303 /// assert!(unique_arc.is_none()); 304 /// 304 /// 305 /// # Ok::<(), Error>(()) 305 /// # Ok::<(), Error>(()) 306 /// ``` 306 /// ``` 307 pub fn into_unique_or_drop(self) -> Option 307 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 308 // We will manually manage the refcoun 308 // We will manually manage the refcount in this method, so we disable the destructor. 309 let me = ManuallyDrop::new(self); 309 let me = ManuallyDrop::new(self); 310 // SAFETY: We own a refcount, so the p 310 // SAFETY: We own a refcount, so the pointer is still valid. 311 let refcount = unsafe { me.ptr.as_ref( 311 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 312 312 313 // If the refcount reaches a non-zero 313 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 314 // return without further touching the 314 // return without further touching the `Arc`. If the refcount reaches zero, then there are 315 // no other arcs, and we can create a 315 // no other arcs, and we can create a `UniqueArc`. 316 // 316 // 317 // SAFETY: We own a refcount, so the p 317 // SAFETY: We own a refcount, so the pointer is not dangling. 318 let is_zero = unsafe { bindings::refco 318 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 319 if is_zero { 319 if is_zero { 320 // SAFETY: We have exclusive acces 320 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 321 // accesses to the refcount. 321 // accesses to the refcount. 322 unsafe { core::ptr::write(refcount 322 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 323 323 324 // INVARIANT: We own the only refc 324 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 325 // must pin the `UniqueArc` becaus 325 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 326 // their values. 326 // their values. 327 Some(Pin::from(UniqueArc { 327 Some(Pin::from(UniqueArc { 328 inner: ManuallyDrop::into_inne 328 inner: ManuallyDrop::into_inner(me), 329 })) 329 })) 330 } else { 330 } else { 331 None 331 None 332 } 332 } 333 } 333 } 334 } 334 } 335 335 336 impl<T: 'static> ForeignOwnable for Arc<T> { 336 impl<T: 'static> ForeignOwnable for Arc<T> { 337 type Borrowed<'a> = ArcBorrow<'a, T>; 337 type Borrowed<'a> = ArcBorrow<'a, T>; 338 338 339 fn into_foreign(self) -> *const core::ffi: 339 fn into_foreign(self) -> *const core::ffi::c_void { 340 ManuallyDrop::new(self).ptr.as_ptr() a 340 ManuallyDrop::new(self).ptr.as_ptr() as _ 341 } 341 } 342 342 343 unsafe fn borrow<'a>(ptr: *const core::ffi 343 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 344 // SAFETY: By the safety requirement o 344 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 345 // a previous call to `Arc::into_forei 345 // a previous call to `Arc::into_foreign`. 346 let inner = NonNull::new(ptr as *mut A 346 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 347 347 348 // SAFETY: The safety requirements of 348 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 349 // for the lifetime of the returned va 349 // for the lifetime of the returned value. 350 unsafe { ArcBorrow::new(inner) } 350 unsafe { ArcBorrow::new(inner) } 351 } 351 } 352 352 353 unsafe fn from_foreign(ptr: *const core::f 353 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 354 // SAFETY: By the safety requirement o 354 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 355 // a previous call to `Arc::into_forei 355 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 356 // holds a reference count increment t 356 // holds a reference count increment that is transferrable to us. 357 unsafe { Self::from_inner(NonNull::new 357 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 358 } 358 } 359 } 359 } 360 360 361 impl<T: ?Sized> Deref for Arc<T> { 361 impl<T: ?Sized> Deref for Arc<T> { 362 type Target = T; 362 type Target = T; 363 363 364 fn deref(&self) -> &Self::Target { 364 fn deref(&self) -> &Self::Target { 365 // SAFETY: By the type invariant, ther 365 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 366 // safe to dereference it. 366 // safe to dereference it. 367 unsafe { &self.ptr.as_ref().data } 367 unsafe { &self.ptr.as_ref().data } 368 } 368 } 369 } 369 } 370 370 371 impl<T: ?Sized> AsRef<T> for Arc<T> { 371 impl<T: ?Sized> AsRef<T> for Arc<T> { 372 fn as_ref(&self) -> &T { 372 fn as_ref(&self) -> &T { 373 self.deref() 373 self.deref() 374 } 374 } 375 } 375 } 376 376 377 impl<T: ?Sized> Clone for Arc<T> { 377 impl<T: ?Sized> Clone for Arc<T> { 378 fn clone(&self) -> Self { 378 fn clone(&self) -> Self { 379 // INVARIANT: C `refcount_inc` saturat 379 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 380 // SAFETY: By the type invariant, ther 380 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 381 // safe to increment the refcount. 381 // safe to increment the refcount. 382 unsafe { bindings::refcount_inc(self.p 382 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 383 383 384 // SAFETY: We just incremented the ref 384 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 385 unsafe { Self::from_inner(self.ptr) } 385 unsafe { Self::from_inner(self.ptr) } 386 } 386 } 387 } 387 } 388 388 389 impl<T: ?Sized> Drop for Arc<T> { 389 impl<T: ?Sized> Drop for Arc<T> { 390 fn drop(&mut self) { 390 fn drop(&mut self) { 391 // SAFETY: By the type invariant, ther 391 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 392 // touch `refcount` after it's decreme 392 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 393 // may concurrently decrement it to ze 393 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 394 // freed/invalid memory as long as it 394 // freed/invalid memory as long as it is never dereferenced. 395 let refcount = unsafe { self.ptr.as_re 395 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 396 396 397 // INVARIANT: If the refcount reaches 397 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 398 // this instance is being dropped, so 398 // this instance is being dropped, so the broken invariant is not observable. 399 // SAFETY: Also by the type invariant, 399 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 400 let is_zero = unsafe { bindings::refco 400 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 401 if is_zero { 401 if is_zero { 402 // The count reached zero, we must 402 // The count reached zero, we must free the memory. 403 // 403 // 404 // SAFETY: The pointer was initial 404 // SAFETY: The pointer was initialised from the result of `Box::leak`. 405 unsafe { drop(Box::from_raw(self.p 405 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 406 } 406 } 407 } 407 } 408 } 408 } 409 409 410 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> 410 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 411 fn from(item: UniqueArc<T>) -> Self { 411 fn from(item: UniqueArc<T>) -> Self { 412 item.inner 412 item.inner 413 } 413 } 414 } 414 } 415 415 416 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Ar 416 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 417 fn from(item: Pin<UniqueArc<T>>) -> Self { 417 fn from(item: Pin<UniqueArc<T>>) -> Self { 418 // SAFETY: The type invariants of `Arc 418 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 419 unsafe { Pin::into_inner_unchecked(ite 419 unsafe { Pin::into_inner_unchecked(item).inner } 420 } 420 } 421 } 421 } 422 422 423 /// A borrowed reference to an [`Arc`] instanc 423 /// A borrowed reference to an [`Arc`] instance. 424 /// 424 /// 425 /// For cases when one doesn't ever need to in 425 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 426 /// to use just `&T`, which we can trivially g 426 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 427 /// 427 /// 428 /// However, when one may need to increment th 428 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 429 /// over `&Arc<T>` because the latter results 429 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 430 /// to a pointer ([`Arc<T>`]) to the object (` 430 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 431 /// indirection while still allowing one to in 431 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 432 /// needed. 432 /// needed. 433 /// 433 /// 434 /// # Invariants 434 /// # Invariants 435 /// 435 /// 436 /// There are no mutable references to the und 436 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 437 /// lifetime of the [`ArcBorrow`] instance. 437 /// lifetime of the [`ArcBorrow`] instance. 438 /// 438 /// 439 /// # Example 439 /// # Example 440 /// 440 /// 441 /// ``` 441 /// ``` 442 /// use kernel::sync::{Arc, ArcBorrow}; 442 /// use kernel::sync::{Arc, ArcBorrow}; 443 /// 443 /// 444 /// struct Example; 444 /// struct Example; 445 /// 445 /// 446 /// fn do_something(e: ArcBorrow<'_, Example>) 446 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 447 /// e.into() 447 /// e.into() 448 /// } 448 /// } 449 /// 449 /// 450 /// let obj = Arc::new(Example, GFP_KERNEL)?; 450 /// let obj = Arc::new(Example, GFP_KERNEL)?; 451 /// let cloned = do_something(obj.as_arc_borro 451 /// let cloned = do_something(obj.as_arc_borrow()); 452 /// 452 /// 453 /// // Assert that both `obj` and `cloned` poi 453 /// // Assert that both `obj` and `cloned` point to the same underlying object. 454 /// assert!(core::ptr::eq(&*obj, &*cloned)); 454 /// assert!(core::ptr::eq(&*obj, &*cloned)); 455 /// # Ok::<(), Error>(()) 455 /// # Ok::<(), Error>(()) 456 /// ``` 456 /// ``` 457 /// 457 /// 458 /// Using `ArcBorrow<T>` as the type of `self` 458 /// Using `ArcBorrow<T>` as the type of `self`: 459 /// 459 /// 460 /// ``` 460 /// ``` 461 /// use kernel::sync::{Arc, ArcBorrow}; 461 /// use kernel::sync::{Arc, ArcBorrow}; 462 /// 462 /// 463 /// struct Example { 463 /// struct Example { 464 /// a: u32, 464 /// a: u32, 465 /// b: u32, 465 /// b: u32, 466 /// } 466 /// } 467 /// 467 /// 468 /// impl Example { 468 /// impl Example { 469 /// fn use_reference(self: ArcBorrow<'_, S 469 /// fn use_reference(self: ArcBorrow<'_, Self>) { 470 /// // ... 470 /// // ... 471 /// } 471 /// } 472 /// } 472 /// } 473 /// 473 /// 474 /// let obj = Arc::new(Example { a: 10, b: 20 474 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 475 /// obj.as_arc_borrow().use_reference(); 475 /// obj.as_arc_borrow().use_reference(); 476 /// # Ok::<(), Error>(()) 476 /// # Ok::<(), Error>(()) 477 /// ``` 477 /// ``` 478 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 478 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 479 inner: NonNull<ArcInner<T>>, 479 inner: NonNull<ArcInner<T>>, 480 _p: PhantomData<&'a ()>, 480 _p: PhantomData<&'a ()>, 481 } 481 } 482 482 483 // This is to allow [`ArcBorrow`] (and variant 483 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 484 impl<T: ?Sized> core::ops::Receiver for ArcBor 484 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 485 485 486 // This is to allow `ArcBorrow<U>` to be dispa 486 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 487 // `ArcBorrow<U>`. 487 // `ArcBorrow<U>`. 488 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::o 488 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 489 for ArcBorrow<'_, T> 489 for ArcBorrow<'_, T> 490 { 490 { 491 } 491 } 492 492 493 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 493 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 494 fn clone(&self) -> Self { 494 fn clone(&self) -> Self { 495 *self 495 *self 496 } 496 } 497 } 497 } 498 498 499 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 499 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 500 500 501 impl<T: ?Sized> ArcBorrow<'_, T> { 501 impl<T: ?Sized> ArcBorrow<'_, T> { 502 /// Creates a new [`ArcBorrow`] instance. 502 /// Creates a new [`ArcBorrow`] instance. 503 /// 503 /// 504 /// # Safety 504 /// # Safety 505 /// 505 /// 506 /// Callers must ensure the following for 506 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 507 /// 1. That `inner` remains valid; 507 /// 1. That `inner` remains valid; 508 /// 2. That no mutable references to `inne 508 /// 2. That no mutable references to `inner` are created. 509 unsafe fn new(inner: NonNull<ArcInner<T>>) 509 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 510 // INVARIANT: The safety requirements 510 // INVARIANT: The safety requirements guarantee the invariants. 511 Self { 511 Self { 512 inner, 512 inner, 513 _p: PhantomData, 513 _p: PhantomData, 514 } 514 } 515 } 515 } 516 516 517 /// Creates an [`ArcBorrow`] to an [`Arc`] 517 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 518 /// [`Arc::into_raw`]. 518 /// [`Arc::into_raw`]. 519 /// 519 /// 520 /// # Safety 520 /// # Safety 521 /// 521 /// 522 /// * The provided pointer must originate 522 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 523 /// * For the duration of the lifetime ann 523 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 524 /// not hit zero. 524 /// not hit zero. 525 /// * For the duration of the lifetime ann 525 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 526 /// [`UniqueArc`] reference to this valu 526 /// [`UniqueArc`] reference to this value. 527 pub unsafe fn from_raw(ptr: *const T) -> S 527 pub unsafe fn from_raw(ptr: *const T) -> Self { 528 // SAFETY: The caller promises that th 528 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 529 // `Arc` that is still valid. 529 // `Arc` that is still valid. 530 let ptr = unsafe { ArcInner::container 530 let ptr = unsafe { ArcInner::container_of(ptr) }; 531 531 532 // SAFETY: The caller promises that th 532 // SAFETY: The caller promises that the value remains valid since the reference count must 533 // not hit zero, and no mutable refere 533 // not hit zero, and no mutable reference will be created since that would involve a 534 // `UniqueArc`. 534 // `UniqueArc`. 535 unsafe { Self::new(ptr) } 535 unsafe { Self::new(ptr) } 536 } 536 } 537 } 537 } 538 538 539 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc 539 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 540 fn from(b: ArcBorrow<'_, T>) -> Self { 540 fn from(b: ArcBorrow<'_, T>) -> Self { 541 // SAFETY: The existence of `b` guaran 541 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 542 // guarantees that `drop` isn't called 542 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 543 // increment. 543 // increment. 544 ManuallyDrop::new(unsafe { Arc::from_i 544 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 545 .deref() 545 .deref() 546 .clone() 546 .clone() 547 } 547 } 548 } 548 } 549 549 550 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 550 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 551 type Target = T; 551 type Target = T; 552 552 553 fn deref(&self) -> &Self::Target { 553 fn deref(&self) -> &Self::Target { 554 // SAFETY: By the type invariant, the 554 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 555 // references to it, so it is safe to 555 // references to it, so it is safe to create a shared reference. 556 unsafe { &self.inner.as_ref().data } 556 unsafe { &self.inner.as_ref().data } 557 } 557 } 558 } 558 } 559 559 560 /// A refcounted object that is known to have 560 /// A refcounted object that is known to have a refcount of 1. 561 /// 561 /// 562 /// It is mutable and can be converted to an [ 562 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 563 /// 563 /// 564 /// # Invariants 564 /// # Invariants 565 /// 565 /// 566 /// `inner` always has a reference count of 1. 566 /// `inner` always has a reference count of 1. 567 /// 567 /// 568 /// # Examples 568 /// # Examples 569 /// 569 /// 570 /// In the following example, we make changes 570 /// In the following example, we make changes to the inner object before turning it into an 571 /// `Arc<Test>` object (after which point, it 571 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 572 /// cannot fail. 572 /// cannot fail. 573 /// 573 /// 574 /// ``` 574 /// ``` 575 /// use kernel::sync::{Arc, UniqueArc}; 575 /// use kernel::sync::{Arc, UniqueArc}; 576 /// 576 /// 577 /// struct Example { 577 /// struct Example { 578 /// a: u32, 578 /// a: u32, 579 /// b: u32, 579 /// b: u32, 580 /// } 580 /// } 581 /// 581 /// 582 /// fn test() -> Result<Arc<Example>> { 582 /// fn test() -> Result<Arc<Example>> { 583 /// let mut x = UniqueArc::new(Example { a 583 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 584 /// x.a += 1; 584 /// x.a += 1; 585 /// x.b += 1; 585 /// x.b += 1; 586 /// Ok(x.into()) 586 /// Ok(x.into()) 587 /// } 587 /// } 588 /// 588 /// 589 /// # test().unwrap(); 589 /// # test().unwrap(); 590 /// ``` 590 /// ``` 591 /// 591 /// 592 /// In the following example we first allocate 592 /// In the following example we first allocate memory for a refcounted `Example` but we don't 593 /// initialise it on allocation. We do initial 593 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 594 /// followed by a conversion to `Arc<Example>` 594 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 595 /// in one context (e.g., sleepable) and initi 595 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 596 /// 596 /// 597 /// ``` 597 /// ``` 598 /// use kernel::sync::{Arc, UniqueArc}; 598 /// use kernel::sync::{Arc, UniqueArc}; 599 /// 599 /// 600 /// struct Example { 600 /// struct Example { 601 /// a: u32, 601 /// a: u32, 602 /// b: u32, 602 /// b: u32, 603 /// } 603 /// } 604 /// 604 /// 605 /// fn test() -> Result<Arc<Example>> { 605 /// fn test() -> Result<Arc<Example>> { 606 /// let x = UniqueArc::new_uninit(GFP_KERN 606 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 607 /// Ok(x.write(Example { a: 10, b: 20 }).i 607 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 608 /// } 608 /// } 609 /// 609 /// 610 /// # test().unwrap(); 610 /// # test().unwrap(); 611 /// ``` 611 /// ``` 612 /// 612 /// 613 /// In the last example below, the caller gets 613 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 614 /// `Arc<Example>`; this is useful in scenario 614 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 615 /// initialisation, for example, when initiali 615 /// initialisation, for example, when initialising fields that are wrapped in locks. 616 /// 616 /// 617 /// ``` 617 /// ``` 618 /// use kernel::sync::{Arc, UniqueArc}; 618 /// use kernel::sync::{Arc, UniqueArc}; 619 /// 619 /// 620 /// struct Example { 620 /// struct Example { 621 /// a: u32, 621 /// a: u32, 622 /// b: u32, 622 /// b: u32, 623 /// } 623 /// } 624 /// 624 /// 625 /// fn test() -> Result<Arc<Example>> { 625 /// fn test() -> Result<Arc<Example>> { 626 /// let mut pinned = Pin::from(UniqueArc:: 626 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 627 /// // We can modify `pinned` because it i 627 /// // We can modify `pinned` because it is `Unpin`. 628 /// pinned.as_mut().a += 1; 628 /// pinned.as_mut().a += 1; 629 /// Ok(pinned.into()) 629 /// Ok(pinned.into()) 630 /// } 630 /// } 631 /// 631 /// 632 /// # test().unwrap(); 632 /// # test().unwrap(); 633 /// ``` 633 /// ``` 634 pub struct UniqueArc<T: ?Sized> { 634 pub struct UniqueArc<T: ?Sized> { 635 inner: Arc<T>, 635 inner: Arc<T>, 636 } 636 } 637 637 638 impl<T> UniqueArc<T> { 638 impl<T> UniqueArc<T> { 639 /// Tries to allocate a new [`UniqueArc`] 639 /// Tries to allocate a new [`UniqueArc`] instance. 640 pub fn new(value: T, flags: Flags) -> Resu 640 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 641 Ok(Self { 641 Ok(Self { 642 // INVARIANT: The newly-created ob 642 // INVARIANT: The newly-created object has a refcount of 1. 643 inner: Arc::new(value, flags)?, 643 inner: Arc::new(value, flags)?, 644 }) 644 }) 645 } 645 } 646 646 647 /// Tries to allocate a new [`UniqueArc`] 647 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 648 pub fn new_uninit(flags: Flags) -> Result< 648 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 649 // INVARIANT: The refcount is initiali 649 // INVARIANT: The refcount is initialised to a non-zero value. 650 let inner = Box::try_init::<AllocError 650 let inner = Box::try_init::<AllocError>( 651 try_init!(ArcInner { 651 try_init!(ArcInner { 652 // SAFETY: There are no safety 652 // SAFETY: There are no safety requirements for this FFI call. 653 refcount: Opaque::new(unsafe { 653 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 654 data <- init::uninit::<T, Allo 654 data <- init::uninit::<T, AllocError>(), 655 }? AllocError), 655 }? AllocError), 656 flags, 656 flags, 657 )?; 657 )?; 658 Ok(UniqueArc { 658 Ok(UniqueArc { 659 // INVARIANT: The newly-created ob 659 // INVARIANT: The newly-created object has a refcount of 1. 660 // SAFETY: The pointer from the `B 660 // SAFETY: The pointer from the `Box` is valid. 661 inner: unsafe { Arc::from_inner(Bo 661 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 662 }) 662 }) 663 } 663 } 664 } 664 } 665 665 666 impl<T> UniqueArc<MaybeUninit<T>> { 666 impl<T> UniqueArc<MaybeUninit<T>> { 667 /// Converts a `UniqueArc<MaybeUninit<T>>` 667 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 668 pub fn write(mut self, value: T) -> Unique 668 pub fn write(mut self, value: T) -> UniqueArc<T> { 669 self.deref_mut().write(value); 669 self.deref_mut().write(value); 670 // SAFETY: We just wrote the value to 670 // SAFETY: We just wrote the value to be initialized. 671 unsafe { self.assume_init() } 671 unsafe { self.assume_init() } 672 } 672 } 673 673 674 /// Unsafely assume that `self` is initial 674 /// Unsafely assume that `self` is initialized. 675 /// 675 /// 676 /// # Safety 676 /// # Safety 677 /// 677 /// 678 /// The caller guarantees that the value b 678 /// The caller guarantees that the value behind this pointer has been initialized. It is 679 /// *immediate* UB to call this when the v 679 /// *immediate* UB to call this when the value is not initialized. 680 pub unsafe fn assume_init(self) -> UniqueA 680 pub unsafe fn assume_init(self) -> UniqueArc<T> { 681 let inner = ManuallyDrop::new(self).in 681 let inner = ManuallyDrop::new(self).inner.ptr; 682 UniqueArc { 682 UniqueArc { 683 // SAFETY: The new `Arc` is taking 683 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 684 // dropped). The types are compati 684 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 685 inner: unsafe { Arc::from_inner(in 685 inner: unsafe { Arc::from_inner(inner.cast()) }, 686 } 686 } 687 } 687 } 688 688 689 /// Initialize `self` using the given init 689 /// Initialize `self` using the given initializer. 690 pub fn init_with<E>(mut self, init: impl I 690 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 691 // SAFETY: The supplied pointer is val 691 // SAFETY: The supplied pointer is valid for initialization. 692 match unsafe { init.__init(self.as_mut 692 match unsafe { init.__init(self.as_mut_ptr()) } { 693 // SAFETY: Initialization complete 693 // SAFETY: Initialization completed successfully. 694 Ok(()) => Ok(unsafe { self.assume_ 694 Ok(()) => Ok(unsafe { self.assume_init() }), 695 Err(err) => Err(err), 695 Err(err) => Err(err), 696 } 696 } 697 } 697 } 698 698 699 /// Pin-initialize `self` using the given 699 /// Pin-initialize `self` using the given pin-initializer. 700 pub fn pin_init_with<E>( 700 pub fn pin_init_with<E>( 701 mut self, 701 mut self, 702 init: impl PinInit<T, E>, 702 init: impl PinInit<T, E>, 703 ) -> core::result::Result<Pin<UniqueArc<T> 703 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 704 // SAFETY: The supplied pointer is val 704 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 705 // to ensure it does not move. 705 // to ensure it does not move. 706 match unsafe { init.__pinned_init(self 706 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 707 // SAFETY: Initialization complete 707 // SAFETY: Initialization completed successfully. 708 Ok(()) => Ok(unsafe { self.assume_ 708 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 709 Err(err) => Err(err), 709 Err(err) => Err(err), 710 } 710 } 711 } 711 } 712 } 712 } 713 713 714 impl<T: ?Sized> From<UniqueArc<T>> for Pin<Uni 714 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 715 fn from(obj: UniqueArc<T>) -> Self { 715 fn from(obj: UniqueArc<T>) -> Self { 716 // SAFETY: It is not possible to move/ 716 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 717 // is `Unpin`), so it is ok to convert 717 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 718 unsafe { Pin::new_unchecked(obj) } 718 unsafe { Pin::new_unchecked(obj) } 719 } 719 } 720 } 720 } 721 721 722 impl<T: ?Sized> Deref for UniqueArc<T> { 722 impl<T: ?Sized> Deref for UniqueArc<T> { 723 type Target = T; 723 type Target = T; 724 724 725 fn deref(&self) -> &Self::Target { 725 fn deref(&self) -> &Self::Target { 726 self.inner.deref() 726 self.inner.deref() 727 } 727 } 728 } 728 } 729 729 730 impl<T: ?Sized> DerefMut for UniqueArc<T> { 730 impl<T: ?Sized> DerefMut for UniqueArc<T> { 731 fn deref_mut(&mut self) -> &mut Self::Targ 731 fn deref_mut(&mut self) -> &mut Self::Target { 732 // SAFETY: By the `Arc` type invariant 732 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 733 // it is safe to dereference it. Addit 733 // it is safe to dereference it. Additionally, we know there is only one reference when 734 // it's inside a `UniqueArc`, so it is 734 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 735 unsafe { &mut self.inner.ptr.as_mut(). 735 unsafe { &mut self.inner.ptr.as_mut().data } 736 } 736 } 737 } 737 } 738 738 739 impl<T: fmt::Display + ?Sized> fmt::Display fo 739 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 740 fn fmt(&self, f: &mut fmt::Formatter<'_>) 740 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 741 fmt::Display::fmt(self.deref(), f) 741 fmt::Display::fmt(self.deref(), f) 742 } 742 } 743 } 743 } 744 744 745 impl<T: fmt::Display + ?Sized> fmt::Display fo 745 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 746 fn fmt(&self, f: &mut fmt::Formatter<'_>) 746 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 747 fmt::Display::fmt(self.deref(), f) 747 fmt::Display::fmt(self.deref(), f) 748 } 748 } 749 } 749 } 750 750 751 impl<T: fmt::Debug + ?Sized> fmt::Debug for Un 751 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 752 fn fmt(&self, f: &mut fmt::Formatter<'_>) 752 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 753 fmt::Debug::fmt(self.deref(), f) 753 fmt::Debug::fmt(self.deref(), f) 754 } 754 } 755 } 755 } 756 756 757 impl<T: fmt::Debug + ?Sized> fmt::Debug for Ar 757 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 758 fn fmt(&self, f: &mut fmt::Formatter<'_>) 758 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 759 fmt::Debug::fmt(self.deref(), f) 759 fmt::Debug::fmt(self.deref(), f) 760 } 760 } 761 } 761 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.