1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic kernel lock and guard. 4 //! 5 //! It contains a generic Rust lock and guard 6 //! spinlocks, raw spinlocks) to be provided w 7 8 use super::LockClassKey; 9 use crate::{init::PinInit, pin_init, str::CStr 10 use core::{cell::UnsafeCell, marker::PhantomDa 11 use macros::pin_data; 12 13 pub mod mutex; 14 pub mod spinlock; 15 16 /// The "backend" of a lock. 17 /// 18 /// It is the actual implementation of the loc 19 /// locks. 20 /// 21 /// # Safety 22 /// 23 /// - Implementers must ensure that only one t 24 /// is owned, that is, between calls to [`lo 25 /// - Implementers must also ensure that [`rel 26 /// lock operation. 27 /// 28 /// [`lock`]: Backend::lock 29 /// [`unlock`]: Backend::unlock 30 /// [`relock`]: Backend::relock 31 pub unsafe trait Backend { 32 /// The state required by the lock. 33 type State; 34 35 /// The state required to be kept between 36 /// 37 /// [`lock`]: Backend::lock 38 /// [`unlock`]: Backend::unlock 39 type GuardState; 40 41 /// Initialises the lock. 42 /// 43 /// # Safety 44 /// 45 /// `ptr` must be valid for write for the 46 /// remain valid for read indefinitely. 47 unsafe fn init( 48 ptr: *mut Self::State, 49 name: *const core::ffi::c_char, 50 key: *mut bindings::lock_class_key, 51 ); 52 53 /// Acquires the lock, making the caller i 54 /// 55 /// # Safety 56 /// 57 /// Callers must ensure that [`Backend::in 58 #[must_use] 59 unsafe fn lock(ptr: *mut Self::State) -> S 60 61 /// Releases the lock, giving up its owner 62 /// 63 /// # Safety 64 /// 65 /// It must only be called by the current 66 unsafe fn unlock(ptr: *mut Self::State, gu 67 68 /// Reacquires the lock, making the caller 69 /// 70 /// # Safety 71 /// 72 /// Callers must ensure that `guard_state` 73 /// variant) that has been unlocked with [ 74 unsafe fn relock(ptr: *mut Self::State, gu 75 // SAFETY: The safety requirements ens 76 *guard_state = unsafe { Self::lock(ptr 77 } 78 } 79 80 /// A mutual exclusion primitive. 81 /// 82 /// Exposes one of the kernel locking primitiv 83 /// [`Backend`] specified as the generic param 84 #[pin_data] 85 pub struct Lock<T: ?Sized, B: Backend> { 86 /// The kernel lock object. 87 #[pin] 88 state: Opaque<B::State>, 89 90 /// Some locks are known to be self-refere 91 /// or config defined (e.g., spinlocks). S 92 /// some architecture uses self-references 93 #[pin] 94 _pin: PhantomPinned, 95 96 /// The data protected by the lock. 97 pub(crate) data: UnsafeCell<T>, 98 } 99 100 // SAFETY: `Lock` can be transferred across th 101 unsafe impl<T: ?Sized + Send, B: Backend> Send 102 103 // SAFETY: `Lock` serialises the interior muta 104 // data it protects is `Send`. 105 unsafe impl<T: ?Sized + Send, B: Backend> Sync 106 107 impl<T, B: Backend> Lock<T, B> { 108 /// Constructs a new lock initialiser. 109 pub fn new(t: T, name: &'static CStr, key: 110 pin_init!(Self { 111 data: UnsafeCell::new(t), 112 _pin: PhantomPinned, 113 // SAFETY: `slot` is valid while t 114 // static lifetimes so they live i 115 state <- Opaque::ffi_init(|slot| u 116 B::init(slot, name.as_char_ptr 117 }), 118 }) 119 } 120 } 121 122 impl<T: ?Sized, B: Backend> Lock<T, B> { 123 /// Acquires the lock and gives the caller 124 pub fn lock(&self) -> Guard<'_, T, B> { 125 // SAFETY: The constructor of the type 126 // that `init` was called. 127 let state = unsafe { B::lock(self.stat 128 // SAFETY: The lock was just acquired. 129 unsafe { Guard::new(self, state) } 130 } 131 } 132 133 /// A lock guard. 134 /// 135 /// Allows mutual exclusion primitives that im 136 /// when a guard goes out of scope. It also pr 137 /// protected by the lock. 138 #[must_use = "the lock unlocks immediately whe 139 pub struct Guard<'a, T: ?Sized, B: Backend> { 140 pub(crate) lock: &'a Lock<T, B>, 141 pub(crate) state: B::GuardState, 142 _not_send: PhantomData<*mut ()>, 143 } 144 145 // SAFETY: `Guard` is sync when the data prote 146 unsafe impl<T: Sync + ?Sized, B: Backend> Sync 147 148 impl<T: ?Sized, B: Backend> Guard<'_, T, B> { 149 pub(crate) fn do_unlocked<U>(&mut self, cb 150 // SAFETY: The caller owns the lock, s 151 unsafe { B::unlock(self.lock.state.get 152 153 // SAFETY: The lock was just unlocked 154 let _relock = 155 ScopeGuard::new(|| unsafe { B::rel 156 157 cb() 158 } 159 } 160 161 impl<T: ?Sized, B: Backend> core::ops::Deref f 162 type Target = T; 163 164 fn deref(&self) -> &Self::Target { 165 // SAFETY: The caller owns the lock, s 166 unsafe { &*self.lock.data.get() } 167 } 168 } 169 170 impl<T: ?Sized, B: Backend> core::ops::DerefMu 171 fn deref_mut(&mut self) -> &mut Self::Targ 172 // SAFETY: The caller owns the lock, s 173 unsafe { &mut *self.lock.data.get() } 174 } 175 } 176 177 impl<T: ?Sized, B: Backend> Drop for Guard<'_, 178 fn drop(&mut self) { 179 // SAFETY: The caller owns the lock, s 180 unsafe { B::unlock(self.lock.state.get 181 } 182 } 183 184 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B 185 /// Constructs a new immutable lock guard. 186 /// 187 /// # Safety 188 /// 189 /// The caller must ensure that it owns th 190 pub(crate) unsafe fn new(lock: &'a Lock<T, 191 Self { 192 lock, 193 state, 194 _not_send: PhantomData, 195 } 196 } 197 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.