1 #!/usr/bin/gawk -f 1 #!/usr/bin/gawk -f 2 # SPDX-License-Identifier: GPL-2.0 2 # SPDX-License-Identifier: GPL-2.0 3 # generate_builtin_ranges.awk: Generate addres 3 # generate_builtin_ranges.awk: Generate address range data for builtin modules 4 # Written by Kris Van Hees <kris.van.hees@oracl 4 # Written by Kris Van Hees <kris.van.hees@oracle.com> 5 # 5 # 6 # Usage: generate_builtin_ranges.awk modules.b 6 # Usage: generate_builtin_ranges.awk modules.builtin vmlinux.map \ 7 # vmlinux.o.map > modules.builti 7 # vmlinux.o.map > modules.builtin.ranges 8 # 8 # 9 9 10 # Return the module name(s) (if any) associate 10 # Return the module name(s) (if any) associated with the given object. 11 # 11 # 12 # If we have seen this object before, return i 12 # If we have seen this object before, return information from the cache. 13 # Otherwise, retrieve it from the correspondin 13 # Otherwise, retrieve it from the corresponding .cmd file. 14 # 14 # 15 function get_module_info(fn, mod, obj, s) { 15 function get_module_info(fn, mod, obj, s) { 16 if (fn in omod) 16 if (fn in omod) 17 return omod[fn]; 17 return omod[fn]; 18 18 19 if (match(fn, /\/[^/]+$/) == 0) 19 if (match(fn, /\/[^/]+$/) == 0) 20 return ""; 20 return ""; 21 21 22 obj = fn; 22 obj = fn; 23 mod = ""; 23 mod = ""; 24 fn = substr(fn, 1, RSTART) "." substr( 24 fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd"; 25 if (getline s <fn == 1) { 25 if (getline s <fn == 1) { 26 if (match(s, /DKBUILD_MODFILE= 26 if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) { 27 mod = substr(s, RSTART 27 mod = substr(s, RSTART + 16, RLENGTH - 16); 28 gsub(/['"]/, "", mod); 28 gsub(/['"]/, "", mod); 29 } else if (match(s, /RUST_MODF 29 } else if (match(s, /RUST_MODFILE=[^ ]+/) > 0) 30 mod = substr(s, RSTART 30 mod = substr(s, RSTART + 13, RLENGTH - 13); 31 } 31 } 32 close(fn); 32 close(fn); 33 33 34 # A single module (common case) also r 34 # A single module (common case) also reflects objects that are not part 35 # of a module. Some of those objects 35 # of a module. Some of those objects have names that are also a module 36 # name (e.g. core). We check the asso 36 # name (e.g. core). We check the associated module file name, and if 37 # they do not match, the object is not 37 # they do not match, the object is not part of a module. 38 if (mod !~ / /) { 38 if (mod !~ / /) { 39 if (!(mod in mods)) 39 if (!(mod in mods)) 40 mod = ""; 40 mod = ""; 41 } 41 } 42 42 43 gsub(/([^/ ]*\/)+/, "", mod); 43 gsub(/([^/ ]*\/)+/, "", mod); 44 gsub(/-/, "_", mod); 44 gsub(/-/, "_", mod); 45 45 46 # At this point, mod is a single (vali 46 # At this point, mod is a single (valid) module name, or a list of 47 # module names (that do not need valid 47 # module names (that do not need validation). 48 omod[obj] = mod; 48 omod[obj] = mod; 49 49 50 return mod; 50 return mod; 51 } 51 } 52 52 53 # Update the ranges entry for the given module 53 # Update the ranges entry for the given module 'mod' in section 'osect'. 54 # 54 # 55 # We use a modified absolute start address (so 55 # We use a modified absolute start address (soff + base) as index because we 56 # may need to insert an anchor record later th 56 # may need to insert an anchor record later that must be at the start of the 57 # section data, and the first module may very 57 # section data, and the first module may very well start at the same address. 58 # So, we use (addr << 1) + 1 to allow a possib 58 # So, we use (addr << 1) + 1 to allow a possible anchor record to be placed at 59 # (addr << 1). This is safe because the index 59 # (addr << 1). This is safe because the index is only used to sort the entries 60 # before writing them out. 60 # before writing them out. 61 # 61 # 62 function update_entry(osect, mod, soff, eoff, 62 function update_entry(osect, mod, soff, eoff, sect, idx) { 63 sect = sect_in[osect]; 63 sect = sect_in[osect]; 64 idx = sprintf("%016x", (soff + sect_ba 64 idx = sprintf("%016x", (soff + sect_base[osect]) * 2 + 1); 65 entries[idx] = sprintf("%s %08x-%08x % 65 entries[idx] = sprintf("%s %08x-%08x %s", sect, soff, eoff, mod); 66 count[sect]++; 66 count[sect]++; 67 } 67 } 68 68 69 # (1) Build a lookup map of built-in module na 69 # (1) Build a lookup map of built-in module names. 70 # 70 # 71 # The first file argument is used as input (mo 71 # The first file argument is used as input (modules.builtin). 72 # 72 # 73 # Lines will be like: 73 # Lines will be like: 74 # kernel/crypto/lzo-rle.ko 74 # kernel/crypto/lzo-rle.ko 75 # and we record the object name "crypto/lzo-rl 75 # and we record the object name "crypto/lzo-rle". 76 # 76 # 77 ARGIND == 1 { 77 ARGIND == 1 { 78 sub(/kernel\//, ""); 78 sub(/kernel\//, ""); # strip off "kernel/" prefix 79 sub(/\.ko$/, ""); 79 sub(/\.ko$/, ""); # strip off .ko suffix 80 80 81 mods[$1] = 1; 81 mods[$1] = 1; 82 next; 82 next; 83 } 83 } 84 84 85 # (2) Collect address information for each sec 85 # (2) Collect address information for each section. 86 # 86 # 87 # The second file argument is used as input (v 87 # The second file argument is used as input (vmlinux.map). 88 # 88 # 89 # We collect the base address of the section i 89 # We collect the base address of the section in order to convert all addresses 90 # in the section into offset values. 90 # in the section into offset values. 91 # 91 # 92 # We collect the address of the anchor (or fir 92 # We collect the address of the anchor (or first symbol in the section if there 93 # is no explicit anchor) to allow users of the 93 # is no explicit anchor) to allow users of the range data to calculate address 94 # ranges based on the actual load address of t 94 # ranges based on the actual load address of the section in the running kernel. 95 # 95 # 96 # We collect the start address of any sub-sect 96 # We collect the start address of any sub-section (section included in the top 97 # level section being processed). This is nee 97 # level section being processed). This is needed when the final linking was 98 # done using vmlinux.a because then the list o 98 # done using vmlinux.a because then the list of objects contained in each 99 # section is to be obtained from vmlinux.o.map 99 # section is to be obtained from vmlinux.o.map. The offset of the sub-section 100 # is recorded here, to be used as an addend wh 100 # is recorded here, to be used as an addend when processing vmlinux.o.map 101 # later. 101 # later. 102 # 102 # 103 103 104 # Both GNU ld and LLVM lld linker map format a 104 # Both GNU ld and LLVM lld linker map format are supported by converting LLVM 105 # lld linker map records into equivalent GNU l 105 # lld linker map records into equivalent GNU ld linker map records. 106 # 106 # 107 # The first record of the vmlinux.map file pro 107 # The first record of the vmlinux.map file provides enough information to know 108 # which format we are dealing with. 108 # which format we are dealing with. 109 # 109 # 110 ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "V 110 ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" { 111 map_is_lld = 1; 111 map_is_lld = 1; 112 if (dbg) 112 if (dbg) 113 printf "NOTE: %s uses LLVM lld 113 printf "NOTE: %s uses LLVM lld linker map format\n", FILENAME >"/dev/stderr"; 114 next; 114 next; 115 } 115 } 116 116 117 # (LLD) Convert a section record fronm lld for 117 # (LLD) Convert a section record fronm lld format to ld format. 118 # 118 # 119 # lld: ffffffff82c00000 2c00000 249 119 # lld: ffffffff82c00000 2c00000 2493c0 8192 .data 120 # -> 120 # -> 121 # ld: .data 0xffffffff82c00000 0x 121 # ld: .data 0xffffffff82c00000 0x2493c0 load address 0x0000000002c00000 122 # 122 # 123 ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] 123 ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ { 124 $0 = $5 " 0x"$1 " 0x"$3 " load address 124 $0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2; 125 } 125 } 126 126 127 # (LLD) Convert an anchor record from lld form 127 # (LLD) Convert an anchor record from lld format to ld format. 128 # 128 # 129 # lld: ffffffff81000000 1000000 129 # lld: ffffffff81000000 1000000 0 1 _text = . 130 # -> 130 # -> 131 # ld: 0xffffffff81000000 131 # ld: 0xffffffff81000000 _text = . 132 # 132 # 133 ARGIND == 2 && map_is_lld && !anchor && NF == 133 ARGIND == 2 && map_is_lld && !anchor && NF == 7 && raw_addr == "0x"$1 && $6 == "=" && $7 == "." { 134 $0 = " 0x"$1 " " $5 " = ."; 134 $0 = " 0x"$1 " " $5 " = ."; 135 } 135 } 136 136 137 # (LLD) Convert an object record from lld form 137 # (LLD) Convert an object record from lld format to ld format. 138 # 138 # 139 # lld: 11480 11480 1 139 # lld: 11480 11480 1f07 16 vmlinux.a(arch/x86/events/amd/uncore.o):(.text) 140 # -> 140 # -> 141 # ld: .text 0x0000000000011480 141 # ld: .text 0x0000000000011480 0x1f07 arch/x86/events/amd/uncore.o 142 # 142 # 143 ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ / 143 ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ /:\(/ { 144 gsub(/\)/, ""); 144 gsub(/\)/, ""); 145 sub(/ vmlinux\.a\(/, " "); 145 sub(/ vmlinux\.a\(/, " "); 146 sub(/:\(/, " "); 146 sub(/:\(/, " "); 147 $0 = " "$6 " 0x"$1 " 0x"$3 " " $5; 147 $0 = " "$6 " 0x"$1 " 0x"$3 " " $5; 148 } 148 } 149 149 150 # (LLD) Convert a symbol record from lld forma 150 # (LLD) Convert a symbol record from lld format to ld format. 151 # 151 # 152 # We only care about these while processing a 152 # We only care about these while processing a section for which no anchor has 153 # been determined yet. 153 # been determined yet. 154 # 154 # 155 # lld: ffffffff82a859a4 2a859a4 155 # lld: ffffffff82a859a4 2a859a4 0 1 btf_ksym_iter_id 156 # -> 156 # -> 157 # ld: 0xffffffff82a859a4 157 # ld: 0xffffffff82a859a4 btf_ksym_iter_id 158 # 158 # 159 ARGIND == 2 && map_is_lld && sect && !anchor & 159 ARGIND == 2 && map_is_lld && sect && !anchor && NF == 5 && $5 ~ /^[_A-Za-z][_A-Za-z0-9]*$/ { 160 $0 = " 0x"$1 " " $5; 160 $0 = " 0x"$1 " " $5; 161 } 161 } 162 162 163 # (LLD) We do not need any other ldd linker ma 163 # (LLD) We do not need any other ldd linker map records. 164 # 164 # 165 ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / 165 ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / { 166 next; 166 next; 167 } 167 } 168 168 169 # (LD) Section records with just the section n 169 # (LD) Section records with just the section name at the start of the line 170 # need to have the next line pulled in to 170 # need to have the next line pulled in to determine whether it is a 171 # loadable section. If it is, the next l 171 # loadable section. If it is, the next line will contains a hex value 172 # as first and second items. 172 # as first and second items. 173 # 173 # 174 ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ 174 ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ ]/ { 175 s = $0; 175 s = $0; 176 getline; 176 getline; 177 if ($1 !~ /^0x/ || $2 !~ /^0x/) 177 if ($1 !~ /^0x/ || $2 !~ /^0x/) 178 next; 178 next; 179 179 180 $0 = s " " $0; 180 $0 = s " " $0; 181 } 181 } 182 182 183 # (LD) Object records with just the section na 183 # (LD) Object records with just the section name denote records with a long 184 # section name for which the remainder of 184 # section name for which the remainder of the record can be found on the 185 # next line. 185 # next line. 186 # 186 # 187 # (This is also needed for vmlinux.o.map, when 187 # (This is also needed for vmlinux.o.map, when used.) 188 # 188 # 189 ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ 189 ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ \*]/ { 190 s = $0; 190 s = $0; 191 getline; 191 getline; 192 $0 = s " " $0; 192 $0 = s " " $0; 193 } 193 } 194 194 195 # Beginning a new section - done with the prev 195 # Beginning a new section - done with the previous one (if any). 196 # 196 # 197 ARGIND == 2 && /^[^ ]/ { 197 ARGIND == 2 && /^[^ ]/ { 198 sect = 0; 198 sect = 0; 199 } 199 } 200 200 201 # Process a loadable section (we only care abo 201 # Process a loadable section (we only care about .-sections). 202 # 202 # 203 # Record the section name and its base address 203 # Record the section name and its base address. 204 # We also record the raw (non-stripped) addres 204 # We also record the raw (non-stripped) address of the section because it can 205 # be used to identify an anchor record. 205 # be used to identify an anchor record. 206 # 206 # 207 # Note: 207 # Note: 208 # Since some AWK implementations cannot handle 208 # Since some AWK implementations cannot handle large integers, we strip off the 209 # first 4 hex digits from the address. This i 209 # first 4 hex digits from the address. This is safe because the kernel space 210 # is not large enough for addresses to extend 210 # is not large enough for addresses to extend into those digits. The portion 211 # to strip off is stored in addr_prefix as a r 211 # to strip off is stored in addr_prefix as a regexp, so further clauses can 212 # perform a simple substitution to do the addr 212 # perform a simple substitution to do the address stripping. 213 # 213 # 214 ARGIND == 2 && /^\./ { 214 ARGIND == 2 && /^\./ { 215 # Explicitly ignore a few sections tha 215 # Explicitly ignore a few sections that are not relevant here. 216 if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ | 216 if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/) 217 next; 217 next; 218 218 219 # Sections with a 0-address can be ign 219 # Sections with a 0-address can be ignored as well. 220 if ($2 ~ /^0x0+$/) 220 if ($2 ~ /^0x0+$/) 221 next; 221 next; 222 222 223 raw_addr = $2; 223 raw_addr = $2; 224 addr_prefix = "^" substr($2, 1, 6); 224 addr_prefix = "^" substr($2, 1, 6); 225 base = $2; 225 base = $2; 226 sub(addr_prefix, "0x", base); 226 sub(addr_prefix, "0x", base); 227 base = strtonum(base); 227 base = strtonum(base); 228 sect = $1; 228 sect = $1; 229 anchor = 0; 229 anchor = 0; 230 sect_base[sect] = base; 230 sect_base[sect] = base; 231 sect_size[sect] = strtonum($3); 231 sect_size[sect] = strtonum($3); 232 232 233 if (dbg) 233 if (dbg) 234 printf "[%s] BASE %016x\n", 234 printf "[%s] BASE %016x\n", sect, base >"/dev/stderr"; 235 235 236 next; 236 next; 237 } 237 } 238 238 239 # If we are not in a section we care about, we 239 # If we are not in a section we care about, we ignore the record. 240 # 240 # 241 ARGIND == 2 && !sect { 241 ARGIND == 2 && !sect { 242 next; 242 next; 243 } 243 } 244 244 245 # Record the first anchor symbol for the curre 245 # Record the first anchor symbol for the current section. 246 # 246 # 247 # An anchor record for the section bears the s 247 # An anchor record for the section bears the same raw address as the section 248 # record. 248 # record. 249 # 249 # 250 ARGIND == 2 && !anchor && NF == 4 && raw_addr 250 ARGIND == 2 && !anchor && NF == 4 && raw_addr == $1 && $3 == "=" && $4 == "." { 251 anchor = sprintf("%s %08x-%08x = %s", 251 anchor = sprintf("%s %08x-%08x = %s", sect, 0, 0, $2); 252 sect_anchor[sect] = anchor; 252 sect_anchor[sect] = anchor; 253 253 254 if (dbg) 254 if (dbg) 255 printf "[%s] ANCHOR %016x = %s 255 printf "[%s] ANCHOR %016x = %s (.)\n", sect, 0, $2 >"/dev/stderr"; 256 256 257 next; 257 next; 258 } 258 } 259 259 260 # If no anchor record was found for the curren 260 # If no anchor record was found for the current section, use the first symbol 261 # in the section as anchor. 261 # in the section as anchor. 262 # 262 # 263 ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x 263 ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x/ && $2 !~ /^0x/ { 264 addr = $1; 264 addr = $1; 265 sub(addr_prefix, "0x", addr); 265 sub(addr_prefix, "0x", addr); 266 addr = strtonum(addr) - base; 266 addr = strtonum(addr) - base; 267 anchor = sprintf("%s %08x-%08x = %s", 267 anchor = sprintf("%s %08x-%08x = %s", sect, addr, addr, $2); 268 sect_anchor[sect] = anchor; 268 sect_anchor[sect] = anchor; 269 269 270 if (dbg) 270 if (dbg) 271 printf "[%s] ANCHOR %016x = %s 271 printf "[%s] ANCHOR %016x = %s\n", sect, addr, $2 >"/dev/stderr"; 272 272 273 next; 273 next; 274 } 274 } 275 275 276 # The first occurrence of a section name in an 276 # The first occurrence of a section name in an object record establishes the 277 # addend (often 0) for that section. This inf 277 # addend (often 0) for that section. This information is needed to handle 278 # sections that get combined in the final link 278 # sections that get combined in the final linking of vmlinux (e.g. .head.text 279 # getting included at the start of .text). 279 # getting included at the start of .text). 280 # 280 # 281 # If the section does not have a base yet, use 281 # If the section does not have a base yet, use the base of the encapsulating 282 # section. 282 # section. 283 # 283 # 284 ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ & 284 ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ && !($1 in sect_addend) { 285 if (!($1 in sect_base)) { 285 if (!($1 in sect_base)) { 286 sect_base[$1] = base; 286 sect_base[$1] = base; 287 287 288 if (dbg) 288 if (dbg) 289 printf "[%s] BASE %0 289 printf "[%s] BASE %016x\n", $1, base >"/dev/stderr"; 290 } 290 } 291 291 292 addr = $2; 292 addr = $2; 293 sub(addr_prefix, "0x", addr); 293 sub(addr_prefix, "0x", addr); 294 addr = strtonum(addr); 294 addr = strtonum(addr); 295 sect_addend[$1] = addr - sect_base[$1] 295 sect_addend[$1] = addr - sect_base[$1]; 296 sect_in[$1] = sect; 296 sect_in[$1] = sect; 297 297 298 if (dbg) 298 if (dbg) 299 printf "[%s] ADDEND %016x - %0 299 printf "[%s] ADDEND %016x - %016x = %016x\n", $1, addr, base, sect_addend[$1] >"/dev/stderr"; 300 300 301 # If the object is vmlinux.o then we w 301 # If the object is vmlinux.o then we will need vmlinux.o.map to get the 302 # actual offsets of objects. 302 # actual offsets of objects. 303 if ($4 == "vmlinux.o") 303 if ($4 == "vmlinux.o") 304 need_o_map = 1; 304 need_o_map = 1; 305 } 305 } 306 306 307 # (3) Collect offset ranges (relative to the s 307 # (3) Collect offset ranges (relative to the section base address) for built-in 308 # modules. 308 # modules. 309 # 309 # 310 # If the final link was done using the actual 310 # If the final link was done using the actual objects, vmlinux.map contains all 311 # the information we need (see section (3a)). 311 # the information we need (see section (3a)). 312 # If linking was done using vmlinux.a as inter 312 # If linking was done using vmlinux.a as intermediary, we will need to process 313 # vmlinux.o.map (see section (3b)). 313 # vmlinux.o.map (see section (3b)). 314 314 315 # (3a) Determine offset range info using vmlin 315 # (3a) Determine offset range info using vmlinux.map. 316 # 316 # 317 # Since we are already processing vmlinux.map, 317 # Since we are already processing vmlinux.map, the top level section that is 318 # being processed is already known. If we do 318 # being processed is already known. If we do not have a base address for it, 319 # we do not need to process records for it. 319 # we do not need to process records for it. 320 # 320 # 321 # Given the object name, we determine the modu 321 # Given the object name, we determine the module(s) (if any) that the current 322 # object is associated with. 322 # object is associated with. 323 # 323 # 324 # If we were already processing objects for a 324 # If we were already processing objects for a (list of) module(s): 325 # - If the current object belongs to the same 325 # - If the current object belongs to the same module(s), update the range data 326 # to include the current object. 326 # to include the current object. 327 # - Otherwise, ensure that the end offset of 327 # - Otherwise, ensure that the end offset of the range is valid. 328 # 328 # 329 # If the current object does not belong to a b 329 # If the current object does not belong to a built-in module, ignore it. 330 # 330 # 331 # If it does, we add a new built-in module off 331 # If it does, we add a new built-in module offset range record. 332 # 332 # 333 ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF = 333 ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF == 4 && $3 != "0x0" { 334 if (!(sect in sect_base)) 334 if (!(sect in sect_base)) 335 next; 335 next; 336 336 337 # Turn the address into an offset from 337 # Turn the address into an offset from the section base. 338 soff = $2; 338 soff = $2; 339 sub(addr_prefix, "0x", soff); 339 sub(addr_prefix, "0x", soff); 340 soff = strtonum(soff) - sect_base[sect 340 soff = strtonum(soff) - sect_base[sect]; 341 eoff = soff + strtonum($3); 341 eoff = soff + strtonum($3); 342 342 343 # Determine which (if any) built-in mo 343 # Determine which (if any) built-in modules the object belongs to. 344 mod = get_module_info($4); 344 mod = get_module_info($4); 345 345 346 # If we are processing a built-in modu 346 # If we are processing a built-in module: 347 # - If the current object is within 347 # - If the current object is within the same module, we update its 348 # entry by extending the range and 348 # entry by extending the range and move on 349 # - Otherwise: 349 # - Otherwise: 350 # + If we are still processing w 350 # + If we are still processing within the same main section, we 351 # validate the end offset agai 351 # validate the end offset against the start offset of the 352 # current object (e.g. .rodata 352 # current object (e.g. .rodata.str1.[18] objects are often 353 # listed with an incorrect siz 353 # listed with an incorrect size in the linker map) 354 # + Otherwise, we validate the e 354 # + Otherwise, we validate the end offset against the section 355 # size 355 # size 356 if (mod_name) { 356 if (mod_name) { 357 if (mod == mod_name) { 357 if (mod == mod_name) { 358 mod_eoff = eoff; 358 mod_eoff = eoff; 359 update_entry(mod_sect, 359 update_entry(mod_sect, mod_name, mod_soff, eoff); 360 360 361 next; 361 next; 362 } else if (sect == sect_in[mod 362 } else if (sect == sect_in[mod_sect]) { 363 if (mod_eoff > soff) 363 if (mod_eoff > soff) 364 update_entry(m 364 update_entry(mod_sect, mod_name, mod_soff, soff); 365 } else { 365 } else { 366 v = sect_size[sect_in[ 366 v = sect_size[sect_in[mod_sect]]; 367 if (mod_eoff > v) 367 if (mod_eoff > v) 368 update_entry(m 368 update_entry(mod_sect, mod_name, mod_soff, v); 369 } 369 } 370 } 370 } 371 371 372 mod_name = mod; 372 mod_name = mod; 373 373 374 # If we encountered an object that is 374 # If we encountered an object that is not part of a built-in module, we 375 # do not need to record any data. 375 # do not need to record any data. 376 if (!mod) 376 if (!mod) 377 next; 377 next; 378 378 379 # At this point, we encountered the st 379 # At this point, we encountered the start of a new built-in module. 380 mod_name = mod; 380 mod_name = mod; 381 mod_soff = soff; 381 mod_soff = soff; 382 mod_eoff = eoff; 382 mod_eoff = eoff; 383 mod_sect = $1; 383 mod_sect = $1; 384 update_entry($1, mod, soff, mod_eoff); 384 update_entry($1, mod, soff, mod_eoff); 385 385 386 next; 386 next; 387 } 387 } 388 388 389 # If we do not need to parse the vmlinux.o.map 389 # If we do not need to parse the vmlinux.o.map file, we are done. 390 # 390 # 391 ARGIND == 3 && !need_o_map { 391 ARGIND == 3 && !need_o_map { 392 if (dbg) 392 if (dbg) 393 printf "Note: %s is not needed 393 printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr"; 394 exit; 394 exit; 395 } 395 } 396 396 397 # (3) Collect offset ranges (relative to the s 397 # (3) Collect offset ranges (relative to the section base address) for built-in 398 # modules. 398 # modules. 399 # 399 # 400 400 401 # (LLD) Convert an object record from lld form 401 # (LLD) Convert an object record from lld format to ld format. 402 # 402 # 403 ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ / 403 ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ /:\(/ { 404 gsub(/\)/, ""); 404 gsub(/\)/, ""); 405 sub(/:\(/, " "); 405 sub(/:\(/, " "); 406 406 407 sect = $6; 407 sect = $6; 408 if (!(sect in sect_addend)) 408 if (!(sect in sect_addend)) 409 next; 409 next; 410 410 411 sub(/ vmlinux\.a\(/, " "); 411 sub(/ vmlinux\.a\(/, " "); 412 $0 = " "sect " 0x"$1 " 0x"$3 " " $5; 412 $0 = " "sect " 0x"$1 " 0x"$3 " " $5; 413 } 413 } 414 414 415 # (3b) Determine offset range info using vmlin 415 # (3b) Determine offset range info using vmlinux.o.map. 416 # 416 # 417 # If we do not know an addend for the object's 417 # If we do not know an addend for the object's section, we are interested in 418 # anything within that section. 418 # anything within that section. 419 # 419 # 420 # Determine the top-level section that the obj 420 # Determine the top-level section that the object's section was included in 421 # during the final link. This is the section 421 # during the final link. This is the section name offset range data will be 422 # associated with for this object. 422 # associated with for this object. 423 # 423 # 424 # The remainder of the processing of the curre 424 # The remainder of the processing of the current object record follows the 425 # procedure outlined in (3a). 425 # procedure outlined in (3a). 426 # 426 # 427 ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0 427 ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0x0" { 428 osect = $1; 428 osect = $1; 429 if (!(osect in sect_addend)) 429 if (!(osect in sect_addend)) 430 next; 430 next; 431 431 432 # We need to work with the main sectio 432 # We need to work with the main section. 433 sect = sect_in[osect]; 433 sect = sect_in[osect]; 434 434 435 # Turn the address into an offset from 435 # Turn the address into an offset from the section base. 436 soff = $2; 436 soff = $2; 437 sub(addr_prefix, "0x", soff); 437 sub(addr_prefix, "0x", soff); 438 soff = strtonum(soff) + sect_addend[os 438 soff = strtonum(soff) + sect_addend[osect]; 439 eoff = soff + strtonum($3); 439 eoff = soff + strtonum($3); 440 440 441 # Determine which (if any) built-in mo 441 # Determine which (if any) built-in modules the object belongs to. 442 mod = get_module_info($4); 442 mod = get_module_info($4); 443 443 444 # If we are processing a built-in modu 444 # If we are processing a built-in module: 445 # - If the current object is within 445 # - If the current object is within the same module, we update its 446 # entry by extending the range and 446 # entry by extending the range and move on 447 # - Otherwise: 447 # - Otherwise: 448 # + If we are still processing w 448 # + If we are still processing within the same main section, we 449 # validate the end offset agai 449 # validate the end offset against the start offset of the 450 # current object (e.g. .rodata 450 # current object (e.g. .rodata.str1.[18] objects are often 451 # listed with an incorrect siz 451 # listed with an incorrect size in the linker map) 452 # + Otherwise, we validate the e 452 # + Otherwise, we validate the end offset against the section 453 # size 453 # size 454 if (mod_name) { 454 if (mod_name) { 455 if (mod == mod_name) { 455 if (mod == mod_name) { 456 mod_eoff = eoff; 456 mod_eoff = eoff; 457 update_entry(mod_sect, 457 update_entry(mod_sect, mod_name, mod_soff, eoff); 458 458 459 next; 459 next; 460 } else if (sect == sect_in[mod 460 } else if (sect == sect_in[mod_sect]) { 461 if (mod_eoff > soff) 461 if (mod_eoff > soff) 462 update_entry(m 462 update_entry(mod_sect, mod_name, mod_soff, soff); 463 } else { 463 } else { 464 v = sect_size[sect_in[ 464 v = sect_size[sect_in[mod_sect]]; 465 if (mod_eoff > v) 465 if (mod_eoff > v) 466 update_entry(m 466 update_entry(mod_sect, mod_name, mod_soff, v); 467 } 467 } 468 } 468 } 469 469 470 mod_name = mod; 470 mod_name = mod; 471 471 472 # If we encountered an object that is 472 # If we encountered an object that is not part of a built-in module, we 473 # do not need to record any data. 473 # do not need to record any data. 474 if (!mod) 474 if (!mod) 475 next; 475 next; 476 476 477 # At this point, we encountered the st 477 # At this point, we encountered the start of a new built-in module. 478 mod_name = mod; 478 mod_name = mod; 479 mod_soff = soff; 479 mod_soff = soff; 480 mod_eoff = eoff; 480 mod_eoff = eoff; 481 mod_sect = osect; 481 mod_sect = osect; 482 update_entry(osect, mod, soff, mod_eof 482 update_entry(osect, mod, soff, mod_eoff); 483 483 484 next; 484 next; 485 } 485 } 486 486 487 # (4) Generate the output. 487 # (4) Generate the output. 488 # 488 # 489 # Anchor records are added for each section th 489 # Anchor records are added for each section that contains offset range data 490 # records. They are added at an adjusted sect 490 # records. They are added at an adjusted section base address (base << 1) to 491 # ensure they come first in the second records 491 # ensure they come first in the second records (see update_entry() above for 492 # more information). 492 # more information). 493 # 493 # 494 # All entries are sorted by (adjusted) address 494 # All entries are sorted by (adjusted) address to ensure that the output can be 495 # parsed in strict ascending address order. 495 # parsed in strict ascending address order. 496 # 496 # 497 END { 497 END { 498 for (sect in count) { 498 for (sect in count) { 499 if (sect in sect_anchor) { 499 if (sect in sect_anchor) { 500 idx = sprintf("%016x", 500 idx = sprintf("%016x", sect_base[sect] * 2); 501 entries[idx] = sect_an 501 entries[idx] = sect_anchor[sect]; 502 } 502 } 503 } 503 } 504 504 505 n = asorti(entries, indices); 505 n = asorti(entries, indices); 506 for (i = 1; i <= n; i++) 506 for (i = 1; i <= n; i++) 507 print entries[indices[i]]; 507 print entries[indices[i]]; 508 } 508 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.