~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/pci/vx222/vx222_ops.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /sound/pci/vx222/vx222_ops.c (Architecture sparc64) and /sound/pci/vx222/vx222_ops.c (Architecture mips)


  1 // SPDX-License-Identifier: GPL-2.0-or-later        1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*                                                  2 /*
  3  * Driver for Digigram VX222 V2/Mic soundcards      3  * Driver for Digigram VX222 V2/Mic soundcards
  4  *                                                  4  *
  5  * VX222-specific low-level routines                5  * VX222-specific low-level routines
  6  *                                                  6  *
  7  * Copyright (c) 2002 by Takashi Iwai <tiwai@s      7  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
  8  */                                                 8  */
  9                                                     9 
 10 #include <linux/delay.h>                           10 #include <linux/delay.h>
 11 #include <linux/device.h>                          11 #include <linux/device.h>
 12 #include <linux/firmware.h>                        12 #include <linux/firmware.h>
 13 #include <linux/mutex.h>                           13 #include <linux/mutex.h>
 14 #include <linux/io.h>                              14 #include <linux/io.h>
 15                                                    15 
 16 #include <sound/core.h>                            16 #include <sound/core.h>
 17 #include <sound/control.h>                         17 #include <sound/control.h>
 18 #include <sound/tlv.h>                             18 #include <sound/tlv.h>
 19 #include "vx222.h"                                 19 #include "vx222.h"
 20                                                    20 
 21                                                    21 
 22 static const int vx2_reg_offset[VX_REG_MAX] =      22 static const int vx2_reg_offset[VX_REG_MAX] = {
 23         [VX_ICR]    = 0x00,                        23         [VX_ICR]    = 0x00,
 24         [VX_CVR]    = 0x04,                        24         [VX_CVR]    = 0x04,
 25         [VX_ISR]    = 0x08,                        25         [VX_ISR]    = 0x08,
 26         [VX_IVR]    = 0x0c,                        26         [VX_IVR]    = 0x0c,
 27         [VX_RXH]    = 0x14,                        27         [VX_RXH]    = 0x14,
 28         [VX_RXM]    = 0x18,                        28         [VX_RXM]    = 0x18,
 29         [VX_RXL]    = 0x1c,                        29         [VX_RXL]    = 0x1c,
 30         [VX_DMA]    = 0x10,                        30         [VX_DMA]    = 0x10,
 31         [VX_CDSP]   = 0x20,                        31         [VX_CDSP]   = 0x20,
 32         [VX_CFG]    = 0x24,                        32         [VX_CFG]    = 0x24,
 33         [VX_RUER]   = 0x28,                        33         [VX_RUER]   = 0x28,
 34         [VX_DATA]   = 0x2c,                        34         [VX_DATA]   = 0x2c,
 35         [VX_STATUS] = 0x30,                        35         [VX_STATUS] = 0x30,
 36         [VX_LOFREQ] = 0x34,                        36         [VX_LOFREQ] = 0x34,
 37         [VX_HIFREQ] = 0x38,                        37         [VX_HIFREQ] = 0x38,
 38         [VX_CSUER]  = 0x3c,                        38         [VX_CSUER]  = 0x3c,
 39         [VX_SELMIC] = 0x40,                        39         [VX_SELMIC] = 0x40,
 40         [VX_COMPOT] = 0x44, // Write: POTENTIO     40         [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
 41         [VX_SCOMPR] = 0x48, // Read: COMPRESSI     41         [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
 42         [VX_GLIMIT] = 0x4c, // Read: LEVEL LIM     42         [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
 43         [VX_INTCSR] = 0x4c, // VX_INTCSR_REGIS     43         [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
 44         [VX_CNTRL]  = 0x50,             // VX_     44         [VX_CNTRL]  = 0x50,             // VX_CNTRL_REGISTER_OFFSET
 45         [VX_GPIOC]  = 0x54,             // VX_     45         [VX_GPIOC]  = 0x54,             // VX_GPIOC (new with PLX9030)
 46 };                                                 46 };
 47                                                    47 
 48 static const int vx2_reg_index[VX_REG_MAX] = {     48 static const int vx2_reg_index[VX_REG_MAX] = {
 49         [VX_ICR]        = 1,                       49         [VX_ICR]        = 1,
 50         [VX_CVR]        = 1,                       50         [VX_CVR]        = 1,
 51         [VX_ISR]        = 1,                       51         [VX_ISR]        = 1,
 52         [VX_IVR]        = 1,                       52         [VX_IVR]        = 1,
 53         [VX_RXH]        = 1,                       53         [VX_RXH]        = 1,
 54         [VX_RXM]        = 1,                       54         [VX_RXM]        = 1,
 55         [VX_RXL]        = 1,                       55         [VX_RXL]        = 1,
 56         [VX_DMA]        = 1,                       56         [VX_DMA]        = 1,
 57         [VX_CDSP]       = 1,                       57         [VX_CDSP]       = 1,
 58         [VX_CFG]        = 1,                       58         [VX_CFG]        = 1,
 59         [VX_RUER]       = 1,                       59         [VX_RUER]       = 1,
 60         [VX_DATA]       = 1,                       60         [VX_DATA]       = 1,
 61         [VX_STATUS]     = 1,                       61         [VX_STATUS]     = 1,
 62         [VX_LOFREQ]     = 1,                       62         [VX_LOFREQ]     = 1,
 63         [VX_HIFREQ]     = 1,                       63         [VX_HIFREQ]     = 1,
 64         [VX_CSUER]      = 1,                       64         [VX_CSUER]      = 1,
 65         [VX_SELMIC]     = 1,                       65         [VX_SELMIC]     = 1,
 66         [VX_COMPOT]     = 1,                       66         [VX_COMPOT]     = 1,
 67         [VX_SCOMPR]     = 1,                       67         [VX_SCOMPR]     = 1,
 68         [VX_GLIMIT]     = 1,                       68         [VX_GLIMIT]     = 1,
 69         [VX_INTCSR]     = 0,    /* on the PLX      69         [VX_INTCSR]     = 0,    /* on the PLX */
 70         [VX_CNTRL]      = 0,    /* on the PLX      70         [VX_CNTRL]      = 0,    /* on the PLX */
 71         [VX_GPIOC]      = 0,    /* on the PLX      71         [VX_GPIOC]      = 0,    /* on the PLX */
 72 };                                                 72 };
 73                                                    73 
 74 static inline unsigned long vx2_reg_addr(struc     74 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
 75 {                                                  75 {
 76         struct snd_vx222 *chip = to_vx222(_chi     76         struct snd_vx222 *chip = to_vx222(_chip);
 77         return chip->port[vx2_reg_index[reg]]      77         return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
 78 }                                                  78 }
 79                                                    79 
 80 /**                                                80 /**
 81  * vx2_inb - read a byte from the register         81  * vx2_inb - read a byte from the register
 82  * @chip: VX core instance                         82  * @chip: VX core instance
 83  * @offset: register enum                          83  * @offset: register enum
 84  */                                                84  */
 85 static unsigned char vx2_inb(struct vx_core *c     85 static unsigned char vx2_inb(struct vx_core *chip, int offset)
 86 {                                                  86 {
 87         return inb(vx2_reg_addr(chip, offset))     87         return inb(vx2_reg_addr(chip, offset));
 88 }                                                  88 }
 89                                                    89 
 90 /**                                                90 /**
 91  * vx2_outb - write a byte on the register         91  * vx2_outb - write a byte on the register
 92  * @chip: VX core instance                         92  * @chip: VX core instance
 93  * @offset: the register offset                    93  * @offset: the register offset
 94  * @val: the value to write                        94  * @val: the value to write
 95  */                                                95  */
 96 static void vx2_outb(struct vx_core *chip, int     96 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
 97 {                                                  97 {
 98         outb(val, vx2_reg_addr(chip, offset));     98         outb(val, vx2_reg_addr(chip, offset));
 99         /*                                         99         /*
100         dev_dbg(chip->card->dev, "outb: %x ->     100         dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
101         */                                        101         */
102 }                                                 102 }
103                                                   103 
104 /**                                               104 /**
105  * vx2_inl - read a 32bit word from the regist    105  * vx2_inl - read a 32bit word from the register
106  * @chip: VX core instance                        106  * @chip: VX core instance
107  * @offset: register enum                         107  * @offset: register enum
108  */                                               108  */
109 static unsigned int vx2_inl(struct vx_core *ch    109 static unsigned int vx2_inl(struct vx_core *chip, int offset)
110 {                                                 110 {
111         return inl(vx2_reg_addr(chip, offset))    111         return inl(vx2_reg_addr(chip, offset));
112 }                                                 112 }
113                                                   113 
114 /**                                               114 /**
115  * vx2_outl - write a 32bit word on the regist    115  * vx2_outl - write a 32bit word on the register
116  * @chip: VX core instance                        116  * @chip: VX core instance
117  * @offset: the register enum                     117  * @offset: the register enum
118  * @val: the value to write                       118  * @val: the value to write
119  */                                               119  */
120 static void vx2_outl(struct vx_core *chip, int    120 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
121 {                                                 121 {
122         /*                                        122         /*
123         dev_dbg(chip->card->dev, "outl: %x ->     123         dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
124         */                                        124         */
125         outl(val, vx2_reg_addr(chip, offset));    125         outl(val, vx2_reg_addr(chip, offset));
126 }                                                 126 }
127                                                   127 
128 /*                                                128 /*
129  * redefine macros to call directly               129  * redefine macros to call directly
130  */                                               130  */
131 #undef vx_inb                                     131 #undef vx_inb
132 #define vx_inb(chip,reg)        vx2_inb((struc    132 #define vx_inb(chip,reg)        vx2_inb((struct vx_core*)(chip), VX_##reg)
133 #undef vx_outb                                    133 #undef vx_outb
134 #define vx_outb(chip,reg,val)   vx2_outb((stru    134 #define vx_outb(chip,reg,val)   vx2_outb((struct vx_core*)(chip), VX_##reg, val)
135 #undef vx_inl                                     135 #undef vx_inl
136 #define vx_inl(chip,reg)        vx2_inl((struc    136 #define vx_inl(chip,reg)        vx2_inl((struct vx_core*)(chip), VX_##reg)
137 #undef vx_outl                                    137 #undef vx_outl
138 #define vx_outl(chip,reg,val)   vx2_outl((stru    138 #define vx_outl(chip,reg,val)   vx2_outl((struct vx_core*)(chip), VX_##reg, val)
139                                                   139 
140                                                   140 
141 /*                                                141 /*
142  * vx_reset_dsp - reset the DSP                   142  * vx_reset_dsp - reset the DSP
143  */                                               143  */
144                                                   144 
145 #define XX_DSP_RESET_WAIT_TIME          2         145 #define XX_DSP_RESET_WAIT_TIME          2       /* ms */
146                                                   146 
147 static void vx2_reset_dsp(struct vx_core *_chi    147 static void vx2_reset_dsp(struct vx_core *_chip)
148 {                                                 148 {
149         struct snd_vx222 *chip = to_vx222(_chi    149         struct snd_vx222 *chip = to_vx222(_chip);
150                                                   150 
151         /* set the reset dsp bit to 0 */          151         /* set the reset dsp bit to 0 */
152         vx_outl(chip, CDSP, chip->regCDSP & ~V    152         vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
153                                                   153 
154         mdelay(XX_DSP_RESET_WAIT_TIME);           154         mdelay(XX_DSP_RESET_WAIT_TIME);
155                                                   155 
156         chip->regCDSP |= VX_CDSP_DSP_RESET_MAS    156         chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
157         /* set the reset dsp bit to 1 */          157         /* set the reset dsp bit to 1 */
158         vx_outl(chip, CDSP, chip->regCDSP);       158         vx_outl(chip, CDSP, chip->regCDSP);
159 }                                                 159 }
160                                                   160 
161                                                   161 
162 static int vx2_test_xilinx(struct vx_core *_ch    162 static int vx2_test_xilinx(struct vx_core *_chip)
163 {                                                 163 {
164         struct snd_vx222 *chip = to_vx222(_chi    164         struct snd_vx222 *chip = to_vx222(_chip);
165         unsigned int data;                        165         unsigned int data;
166                                                   166 
167         dev_dbg(_chip->card->dev, "testing xil    167         dev_dbg(_chip->card->dev, "testing xilinx...\n");
168         /* This test uses several write/read s    168         /* This test uses several write/read sequences on TEST0 and TEST1 bits
169          * to figure out whever or not the xil    169          * to figure out whever or not the xilinx was correctly loaded
170          */                                       170          */
171                                                   171 
172         /* We write 1 on CDSP.TEST0. We should    172         /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
173         vx_outl(chip, CDSP, chip->regCDSP | VX    173         vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
174         vx_inl(chip, ISR);                        174         vx_inl(chip, ISR);
175         data = vx_inl(chip, STATUS);              175         data = vx_inl(chip, STATUS);
176         if ((data & VX_STATUS_VAL_TEST0_MASK)     176         if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
177                 dev_dbg(_chip->card->dev, "bad    177                 dev_dbg(_chip->card->dev, "bad!\n");
178                 return -ENODEV;                   178                 return -ENODEV;
179         }                                         179         }
180                                                   180 
181         /* We write 0 on CDSP.TEST0. We should    181         /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
182         vx_outl(chip, CDSP, chip->regCDSP & ~V    182         vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
183         vx_inl(chip, ISR);                        183         vx_inl(chip, ISR);
184         data = vx_inl(chip, STATUS);              184         data = vx_inl(chip, STATUS);
185         if (! (data & VX_STATUS_VAL_TEST0_MASK    185         if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
186                 dev_dbg(_chip->card->dev, "bad    186                 dev_dbg(_chip->card->dev, "bad! #2\n");
187                 return -ENODEV;                   187                 return -ENODEV;
188         }                                         188         }
189                                                   189 
190         if (_chip->type == VX_TYPE_BOARD) {       190         if (_chip->type == VX_TYPE_BOARD) {
191                 /* not implemented on VX_2_BOA    191                 /* not implemented on VX_2_BOARDS */
192                 /* We write 1 on CDSP.TEST1. W    192                 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
193                 vx_outl(chip, CDSP, chip->regC    193                 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
194                 vx_inl(chip, ISR);                194                 vx_inl(chip, ISR);
195                 data = vx_inl(chip, STATUS);      195                 data = vx_inl(chip, STATUS);
196                 if ((data & VX_STATUS_VAL_TEST    196                 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
197                         dev_dbg(_chip->card->d    197                         dev_dbg(_chip->card->dev, "bad! #3\n");
198                         return -ENODEV;           198                         return -ENODEV;
199                 }                                 199                 }
200                                                   200 
201                 /* We write 0 on CDSP.TEST1. W    201                 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
202                 vx_outl(chip, CDSP, chip->regC    202                 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
203                 vx_inl(chip, ISR);                203                 vx_inl(chip, ISR);
204                 data = vx_inl(chip, STATUS);      204                 data = vx_inl(chip, STATUS);
205                 if (! (data & VX_STATUS_VAL_TE    205                 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
206                         dev_dbg(_chip->card->d    206                         dev_dbg(_chip->card->dev, "bad! #4\n");
207                         return -ENODEV;           207                         return -ENODEV;
208                 }                                 208                 }
209         }                                         209         }
210         dev_dbg(_chip->card->dev, "ok, xilinx     210         dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
211         return 0;                                 211         return 0;
212 }                                                 212 }
213                                                   213 
214                                                   214 
215 /**                                               215 /**
216  * vx2_setup_pseudo_dma - set up the pseudo dm    216  * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode.
217  * @chip: VX core instance                        217  * @chip: VX core instance
218  * @do_write: 0 = read, 1 = set up for DMA wri    218  * @do_write: 0 = read, 1 = set up for DMA write
219  */                                               219  */
220 static void vx2_setup_pseudo_dma(struct vx_cor    220 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
221 {                                                 221 {
222         /* Interrupt mode and HREQ pin enabled    222         /* Interrupt mode and HREQ pin enabled for host transmit data transfers
223          * (in case of the use of the pseudo-d    223          * (in case of the use of the pseudo-dma facility).
224          */                                       224          */
225         vx_outl(chip, ICR, do_write ? ICR_TREQ    225         vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
226                                                   226 
227         /* Reset the pseudo-dma register (in c    227         /* Reset the pseudo-dma register (in case of the use of the
228          * pseudo-dma facility).                  228          * pseudo-dma facility).
229          */                                       229          */
230         vx_outl(chip, RESET_DMA, 0);              230         vx_outl(chip, RESET_DMA, 0);
231 }                                                 231 }
232                                                   232 
233 /*                                                233 /*
234  * vx_release_pseudo_dma - disable the pseudo-    234  * vx_release_pseudo_dma - disable the pseudo-DMA mode
235  */                                               235  */
236 static inline void vx2_release_pseudo_dma(stru    236 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
237 {                                                 237 {
238         /* HREQ pin disabled. */                  238         /* HREQ pin disabled. */
239         vx_outl(chip, ICR, 0);                    239         vx_outl(chip, ICR, 0);
240 }                                                 240 }
241                                                   241 
242                                                   242 
243                                                   243 
244 /* pseudo-dma write */                            244 /* pseudo-dma write */
245 static void vx2_dma_write(struct vx_core *chip    245 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
246                           struct vx_pipe *pipe    246                           struct vx_pipe *pipe, int count)
247 {                                                 247 {
248         unsigned long port = vx2_reg_addr(chip    248         unsigned long port = vx2_reg_addr(chip, VX_DMA);
249         int offset = pipe->hw_ptr;                249         int offset = pipe->hw_ptr;
250         u32 *addr = (u32 *)(runtime->dma_area     250         u32 *addr = (u32 *)(runtime->dma_area + offset);
251                                                   251 
252         if (snd_BUG_ON(count % 4))                252         if (snd_BUG_ON(count % 4))
253                 return;                           253                 return;
254                                                   254 
255         vx2_setup_pseudo_dma(chip, 1);            255         vx2_setup_pseudo_dma(chip, 1);
256                                                   256 
257         /* Transfer using pseudo-dma.             257         /* Transfer using pseudo-dma.
258          */                                       258          */
259         if (offset + count >= pipe->buffer_byt    259         if (offset + count >= pipe->buffer_bytes) {
260                 int length = pipe->buffer_byte    260                 int length = pipe->buffer_bytes - offset;
261                 count -= length;                  261                 count -= length;
262                 length >>= 2; /* in 32bit word    262                 length >>= 2; /* in 32bit words */
263                 /* Transfer using pseudo-dma.     263                 /* Transfer using pseudo-dma. */
264                 for (; length > 0; length--) {    264                 for (; length > 0; length--) {
265                         outl(*addr, port);        265                         outl(*addr, port);
266                         addr++;                   266                         addr++;
267                 }                                 267                 }
268                 addr = (u32 *)runtime->dma_are    268                 addr = (u32 *)runtime->dma_area;
269                 pipe->hw_ptr = 0;                 269                 pipe->hw_ptr = 0;
270         }                                         270         }
271         pipe->hw_ptr += count;                    271         pipe->hw_ptr += count;
272         count >>= 2; /* in 32bit words */         272         count >>= 2; /* in 32bit words */
273         /* Transfer using pseudo-dma. */          273         /* Transfer using pseudo-dma. */
274         for (; count > 0; count--) {              274         for (; count > 0; count--) {
275                 outl(*addr, port);                275                 outl(*addr, port);
276                 addr++;                           276                 addr++;
277         }                                         277         }
278                                                   278 
279         vx2_release_pseudo_dma(chip);             279         vx2_release_pseudo_dma(chip);
280 }                                                 280 }
281                                                   281 
282                                                   282 
283 /* pseudo dma read */                             283 /* pseudo dma read */
284 static void vx2_dma_read(struct vx_core *chip,    284 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
285                          struct vx_pipe *pipe,    285                          struct vx_pipe *pipe, int count)
286 {                                                 286 {
287         int offset = pipe->hw_ptr;                287         int offset = pipe->hw_ptr;
288         u32 *addr = (u32 *)(runtime->dma_area     288         u32 *addr = (u32 *)(runtime->dma_area + offset);
289         unsigned long port = vx2_reg_addr(chip    289         unsigned long port = vx2_reg_addr(chip, VX_DMA);
290                                                   290 
291         if (snd_BUG_ON(count % 4))                291         if (snd_BUG_ON(count % 4))
292                 return;                           292                 return;
293                                                   293 
294         vx2_setup_pseudo_dma(chip, 0);            294         vx2_setup_pseudo_dma(chip, 0);
295         /* Transfer using pseudo-dma.             295         /* Transfer using pseudo-dma.
296          */                                       296          */
297         if (offset + count >= pipe->buffer_byt    297         if (offset + count >= pipe->buffer_bytes) {
298                 int length = pipe->buffer_byte    298                 int length = pipe->buffer_bytes - offset;
299                 count -= length;                  299                 count -= length;
300                 length >>= 2; /* in 32bit word    300                 length >>= 2; /* in 32bit words */
301                 /* Transfer using pseudo-dma.     301                 /* Transfer using pseudo-dma. */
302                 for (; length > 0; length--)      302                 for (; length > 0; length--)
303                         *addr++ = inl(port);      303                         *addr++ = inl(port);
304                 addr = (u32 *)runtime->dma_are    304                 addr = (u32 *)runtime->dma_area;
305                 pipe->hw_ptr = 0;                 305                 pipe->hw_ptr = 0;
306         }                                         306         }
307         pipe->hw_ptr += count;                    307         pipe->hw_ptr += count;
308         count >>= 2; /* in 32bit words */         308         count >>= 2; /* in 32bit words */
309         /* Transfer using pseudo-dma. */          309         /* Transfer using pseudo-dma. */
310         for (; count > 0; count--)                310         for (; count > 0; count--)
311                 *addr++ = inl(port);              311                 *addr++ = inl(port);
312                                                   312 
313         vx2_release_pseudo_dma(chip);             313         vx2_release_pseudo_dma(chip);
314 }                                                 314 }
315                                                   315 
316 #define VX_XILINX_RESET_MASK        0x40000000    316 #define VX_XILINX_RESET_MASK        0x40000000
317 #define VX_USERBIT0_MASK            0x00000004    317 #define VX_USERBIT0_MASK            0x00000004
318 #define VX_USERBIT1_MASK            0x00000020    318 #define VX_USERBIT1_MASK            0x00000020
319 #define VX_CNTRL_REGISTER_VALUE     0x00172012    319 #define VX_CNTRL_REGISTER_VALUE     0x00172012
320                                                   320 
321 /*                                                321 /*
322  * transfer counts bits to PLX                    322  * transfer counts bits to PLX
323  */                                               323  */
324 static int put_xilinx_data(struct vx_core *chi    324 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
325 {                                                 325 {
326         unsigned int i;                           326         unsigned int i;
327                                                   327 
328         for (i = 0; i < counts; i++) {            328         for (i = 0; i < counts; i++) {
329                 unsigned int val;                 329                 unsigned int val;
330                                                   330 
331                 /* set the clock bit to 0. */     331                 /* set the clock bit to 0. */
332                 val = VX_CNTRL_REGISTER_VALUE     332                 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333                 vx2_outl(chip, port, val);        333                 vx2_outl(chip, port, val);
334                 vx2_inl(chip, port);              334                 vx2_inl(chip, port);
335                 udelay(1);                        335                 udelay(1);
336                                                   336 
337                 if (data & (1 << i))              337                 if (data & (1 << i))
338                         val |= VX_USERBIT1_MAS    338                         val |= VX_USERBIT1_MASK;
339                 else                              339                 else
340                         val &= ~VX_USERBIT1_MA    340                         val &= ~VX_USERBIT1_MASK;
341                 vx2_outl(chip, port, val);        341                 vx2_outl(chip, port, val);
342                 vx2_inl(chip, port);              342                 vx2_inl(chip, port);
343                                                   343 
344                 /* set the clock bit to 1. */     344                 /* set the clock bit to 1. */
345                 val |= VX_USERBIT0_MASK;          345                 val |= VX_USERBIT0_MASK;
346                 vx2_outl(chip, port, val);        346                 vx2_outl(chip, port, val);
347                 vx2_inl(chip, port);              347                 vx2_inl(chip, port);
348                 udelay(1);                        348                 udelay(1);
349         }                                         349         }
350         return 0;                                 350         return 0;
351 }                                                 351 }
352                                                   352 
353 /*                                                353 /*
354  * load the xilinx image                          354  * load the xilinx image
355  */                                               355  */
356 static int vx2_load_xilinx_binary(struct vx_co    356 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
357 {                                                 357 {
358         unsigned int i;                           358         unsigned int i;
359         unsigned int port;                        359         unsigned int port;
360         const unsigned char *image;               360         const unsigned char *image;
361                                                   361 
362         /* XILINX reset (wait at least 1 milli    362         /* XILINX reset (wait at least 1 millisecond between reset on and off). */
363         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER    363         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364         vx_inl(chip, CNTRL);                      364         vx_inl(chip, CNTRL);
365         msleep(10);                               365         msleep(10);
366         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER    366         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367         vx_inl(chip, CNTRL);                      367         vx_inl(chip, CNTRL);
368         msleep(10);                               368         msleep(10);
369                                                   369 
370         if (chip->type == VX_TYPE_BOARD)          370         if (chip->type == VX_TYPE_BOARD)
371                 port = VX_CNTRL;                  371                 port = VX_CNTRL;
372         else                                      372         else
373                 port = VX_GPIOC; /* VX222 V2 a    373                 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
374                                                   374 
375         image = xilinx->data;                     375         image = xilinx->data;
376         for (i = 0; i < xilinx->size; i++, ima    376         for (i = 0; i < xilinx->size; i++, image++) {
377                 if (put_xilinx_data(chip, port    377                 if (put_xilinx_data(chip, port, 8, *image) < 0)
378                         return -EINVAL;           378                         return -EINVAL;
379                 /* don't take too much time in    379                 /* don't take too much time in this loop... */
380                 cond_resched();                   380                 cond_resched();
381         }                                         381         }
382         put_xilinx_data(chip, port, 4, 0xff);     382         put_xilinx_data(chip, port, 4, 0xff); /* end signature */
383                                                   383 
384         msleep(200);                              384         msleep(200);
385                                                   385 
386         /* test after loading (is buggy with V    386         /* test after loading (is buggy with VX222) */
387         if (chip->type != VX_TYPE_BOARD) {        387         if (chip->type != VX_TYPE_BOARD) {
388                 /* Test if load successful: te    388                 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389                 i = vx_inl(chip, GPIOC);          389                 i = vx_inl(chip, GPIOC);
390                 if (i & 0x0100)                   390                 if (i & 0x0100)
391                         return 0;                 391                         return 0;
392                 dev_err(chip->card->dev,          392                 dev_err(chip->card->dev,
393                         "xilinx test failed af    393                         "xilinx test failed after load, GPIOC=0x%x\n", i);
394                 return -EINVAL;                   394                 return -EINVAL;
395         }                                         395         }
396                                                   396 
397         return 0;                                 397         return 0;
398 }                                                 398 }
399                                                   399 
400                                                   400         
401 /*                                                401 /*
402  * load the boot/dsp images                       402  * load the boot/dsp images
403  */                                               403  */
404 static int vx2_load_dsp(struct vx_core *vx, in    404 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
405 {                                                 405 {
406         int err;                                  406         int err;
407                                                   407 
408         switch (index) {                          408         switch (index) {
409         case 1:                                   409         case 1:
410                 /* xilinx image */                410                 /* xilinx image */
411                 err = vx2_load_xilinx_binary(v    411                 err = vx2_load_xilinx_binary(vx, dsp);
412                 if (err < 0)                      412                 if (err < 0)
413                         return err;               413                         return err;
414                 err = vx2_test_xilinx(vx);        414                 err = vx2_test_xilinx(vx);
415                 if (err < 0)                      415                 if (err < 0)
416                         return err;               416                         return err;
417                 return 0;                         417                 return 0;
418         case 2:                                   418         case 2:
419                 /* DSP boot */                    419                 /* DSP boot */
420                 return snd_vx_dsp_boot(vx, dsp    420                 return snd_vx_dsp_boot(vx, dsp);
421         case 3:                                   421         case 3:
422                 /* DSP image */                   422                 /* DSP image */
423                 return snd_vx_dsp_load(vx, dsp    423                 return snd_vx_dsp_load(vx, dsp);
424         default:                                  424         default:
425                 snd_BUG();                        425                 snd_BUG();
426                 return -EINVAL;                   426                 return -EINVAL;
427         }                                         427         }
428 }                                                 428 }
429                                                   429 
430                                                   430 
431 /*                                                431 /*
432  * vx_test_and_ack - test and acknowledge inte    432  * vx_test_and_ack - test and acknowledge interrupt
433  *                                                433  *
434  * called from irq hander, too                    434  * called from irq hander, too
435  *                                                435  *
436  * spinlock held!                                 436  * spinlock held!
437  */                                               437  */
438 static int vx2_test_and_ack(struct vx_core *ch    438 static int vx2_test_and_ack(struct vx_core *chip)
439 {                                                 439 {
440         /* not booted yet? */                     440         /* not booted yet? */
441         if (! (chip->chip_status & VX_STAT_XIL    441         if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
442                 return -ENXIO;                    442                 return -ENXIO;
443                                                   443 
444         if (! (vx_inl(chip, STATUS) & VX_STATU    444         if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
445                 return -EIO;                      445                 return -EIO;
446                                                   446         
447         /* ok, interrupts generated, now ack i    447         /* ok, interrupts generated, now ack it */
448         /* set ACQUIT bit up and down */          448         /* set ACQUIT bit up and down */
449         vx_outl(chip, STATUS, 0);                 449         vx_outl(chip, STATUS, 0);
450         /* useless read just to spend some tim    450         /* useless read just to spend some time and maintain
451          * the ACQUIT signal up for a while (     451          * the ACQUIT signal up for a while ( a bus cycle )
452          */                                       452          */
453         vx_inl(chip, STATUS);                     453         vx_inl(chip, STATUS);
454         /* ack */                                 454         /* ack */
455         vx_outl(chip, STATUS, VX_STATUS_MEMIRQ    455         vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
456         /* useless read just to spend some tim    456         /* useless read just to spend some time and maintain
457          * the ACQUIT signal up for a while (     457          * the ACQUIT signal up for a while ( a bus cycle ) */
458         vx_inl(chip, STATUS);                     458         vx_inl(chip, STATUS);
459         /* clear */                               459         /* clear */
460         vx_outl(chip, STATUS, 0);                 460         vx_outl(chip, STATUS, 0);
461                                                   461 
462         return 0;                                 462         return 0;
463 }                                                 463 }
464                                                   464 
465                                                   465 
466 /*                                                466 /*
467  * vx_validate_irq - enable/disable IRQ           467  * vx_validate_irq - enable/disable IRQ
468  */                                               468  */
469 static void vx2_validate_irq(struct vx_core *_    469 static void vx2_validate_irq(struct vx_core *_chip, int enable)
470 {                                                 470 {
471         struct snd_vx222 *chip = to_vx222(_chi    471         struct snd_vx222 *chip = to_vx222(_chip);
472                                                   472 
473         /* Set the interrupt enable bit to 1 i    473         /* Set the interrupt enable bit to 1 in CDSP register */
474         if (enable) {                             474         if (enable) {
475                 /* Set the PCI interrupt enabl    475                 /* Set the PCI interrupt enable bit to 1.*/
476                 vx_outl(chip, INTCSR, VX_INTCS    476                 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
477                 chip->regCDSP |= VX_CDSP_VALID    477                 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
478         } else {                                  478         } else {
479                 /* Set the PCI interrupt enabl    479                 /* Set the PCI interrupt enable bit to 0. */
480                 vx_outl(chip, INTCSR, VX_INTCS    480                 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
481                 chip->regCDSP &= ~VX_CDSP_VALI    481                 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
482         }                                         482         }
483         vx_outl(chip, CDSP, chip->regCDSP);       483         vx_outl(chip, CDSP, chip->regCDSP);
484 }                                                 484 }
485                                                   485 
486                                                   486 
487 /*                                                487 /*
488  * write an AKM codec data (24bit)                488  * write an AKM codec data (24bit)
489  */                                               489  */
490 static void vx2_write_codec_reg(struct vx_core    490 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
491 {                                                 491 {
492         unsigned int i;                           492         unsigned int i;
493                                                   493 
494         vx_inl(chip, HIFREQ);                     494         vx_inl(chip, HIFREQ);
495                                                   495 
496         /* We have to send 24 bits (3 x 8 bits    496         /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
497         for (i = 0; i < 24; i++, data <<= 1)      497         for (i = 0; i < 24; i++, data <<= 1)
498                 vx_outl(chip, DATA, ((data & 0    498                 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
499         /* Terminate access to codec registers    499         /* Terminate access to codec registers */
500         vx_inl(chip, RUER);                       500         vx_inl(chip, RUER);
501 }                                                 501 }
502                                                   502 
503                                                   503 
504 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007        504 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
505 #define AKM_CODEC_RESET_ON_CMD      0xA100        505 #define AKM_CODEC_RESET_ON_CMD      0xA100
506 #define AKM_CODEC_RESET_OFF_CMD     0xA103        506 #define AKM_CODEC_RESET_OFF_CMD     0xA103
507 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240        507 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
508 #define AKM_CODEC_MUTE_CMD          0xA38D        508 #define AKM_CODEC_MUTE_CMD          0xA38D
509 #define AKM_CODEC_UNMUTE_CMD        0xA30D        509 #define AKM_CODEC_UNMUTE_CMD        0xA30D
510 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400        510 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
511 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500        511 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
512                                                   512 
513 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVE    513 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
514     0x7f,       // [000] =  +0.000 dB  ->  AKM    514     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
515     0x7d,       // [001] =  -0.500 dB  ->  AKM    515     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
516     0x7c,       // [002] =  -1.000 dB  ->  AKM    516     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
517     0x7a,       // [003] =  -1.500 dB  ->  AKM    517     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
518     0x79,       // [004] =  -2.000 dB  ->  AKM    518     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
519     0x77,       // [005] =  -2.500 dB  ->  AKM    519     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
520     0x76,       // [006] =  -3.000 dB  ->  AKM    520     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
521     0x75,       // [007] =  -3.500 dB  ->  AKM    521     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
522     0x73,       // [008] =  -4.000 dB  ->  AKM    522     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
523     0x72,       // [009] =  -4.500 dB  ->  AKM    523     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
524     0x71,       // [010] =  -5.000 dB  ->  AKM    524     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
525     0x70,       // [011] =  -5.500 dB  ->  AKM    525     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
526     0x6f,       // [012] =  -6.000 dB  ->  AKM    526     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
527     0x6d,       // [013] =  -6.500 dB  ->  AKM    527     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
528     0x6c,       // [014] =  -7.000 dB  ->  AKM    528     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
529     0x6a,       // [015] =  -7.500 dB  ->  AKM    529     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
530     0x69,       // [016] =  -8.000 dB  ->  AKM    530     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
531     0x67,       // [017] =  -8.500 dB  ->  AKM    531     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
532     0x66,       // [018] =  -9.000 dB  ->  AKM    532     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
533     0x65,       // [019] =  -9.500 dB  ->  AKM    533     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
534     0x64,       // [020] = -10.000 dB  ->  AKM    534     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
535     0x62,       // [021] = -10.500 dB  ->  AKM    535     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
536     0x61,       // [022] = -11.000 dB  ->  AKM    536     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
537     0x60,       // [023] = -11.500 dB  ->  AKM    537     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
538     0x5f,       // [024] = -12.000 dB  ->  AKM    538     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
539     0x5e,       // [025] = -12.500 dB  ->  AKM    539     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
540     0x5c,       // [026] = -13.000 dB  ->  AKM    540     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
541     0x5b,       // [027] = -13.500 dB  ->  AKM    541     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
542     0x59,       // [028] = -14.000 dB  ->  AKM    542     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
543     0x58,       // [029] = -14.500 dB  ->  AKM    543     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
544     0x56,       // [030] = -15.000 dB  ->  AKM    544     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
545     0x55,       // [031] = -15.500 dB  ->  AKM    545     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
546     0x54,       // [032] = -16.000 dB  ->  AKM    546     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
547     0x53,       // [033] = -16.500 dB  ->  AKM    547     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
548     0x52,       // [034] = -17.000 dB  ->  AKM    548     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
549     0x51,       // [035] = -17.500 dB  ->  AKM    549     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
550     0x50,       // [036] = -18.000 dB  ->  AKM    550     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
551     0x4e,       // [037] = -18.500 dB  ->  AKM    551     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
552     0x4d,       // [038] = -19.000 dB  ->  AKM    552     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
553     0x4b,       // [039] = -19.500 dB  ->  AKM    553     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
554     0x4a,       // [040] = -20.000 dB  ->  AKM    554     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
555     0x48,       // [041] = -20.500 dB  ->  AKM    555     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
556     0x47,       // [042] = -21.000 dB  ->  AKM    556     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
557     0x46,       // [043] = -21.500 dB  ->  AKM    557     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
558     0x44,       // [044] = -22.000 dB  ->  AKM    558     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
559     0x43,       // [045] = -22.500 dB  ->  AKM    559     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
560     0x42,       // [046] = -23.000 dB  ->  AKM    560     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
561     0x41,       // [047] = -23.500 dB  ->  AKM    561     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
562     0x40,       // [048] = -24.000 dB  ->  AKM    562     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
563     0x3f,       // [049] = -24.500 dB  ->  AKM    563     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
564     0x3e,       // [050] = -25.000 dB  ->  AKM    564     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
565     0x3c,       // [051] = -25.500 dB  ->  AKM    565     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
566     0x3b,       // [052] = -26.000 dB  ->  AKM    566     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
567     0x39,       // [053] = -26.500 dB  ->  AKM    567     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
568     0x38,       // [054] = -27.000 dB  ->  AKM    568     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
569     0x37,       // [055] = -27.500 dB  ->  AKM    569     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
570     0x36,       // [056] = -28.000 dB  ->  AKM    570     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
571     0x34,       // [057] = -28.500 dB  ->  AKM    571     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
572     0x33,       // [058] = -29.000 dB  ->  AKM    572     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
573     0x32,       // [059] = -29.500 dB  ->  AKM    573     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
574     0x31,       // [060] = -30.000 dB  ->  AKM    574     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
575     0x31,       // [061] = -30.500 dB  ->  AKM    575     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
576     0x30,       // [062] = -31.000 dB  ->  AKM    576     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
577     0x2e,       // [063] = -31.500 dB  ->  AKM    577     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
578     0x2d,       // [064] = -32.000 dB  ->  AKM    578     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
579     0x2b,       // [065] = -32.500 dB  ->  AKM    579     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
580     0x2a,       // [066] = -33.000 dB  ->  AKM    580     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
581     0x29,       // [067] = -33.500 dB  ->  AKM    581     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
582     0x28,       // [068] = -34.000 dB  ->  AKM    582     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
583     0x27,       // [069] = -34.500 dB  ->  AKM    583     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
584     0x25,       // [070] = -35.000 dB  ->  AKM    584     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
585     0x24,       // [071] = -35.500 dB  ->  AKM    585     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
586     0x24,       // [072] = -36.000 dB  ->  AKM    586     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
587     0x23,       // [073] = -36.500 dB  ->  AKM    587     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
588     0x22,       // [074] = -37.000 dB  ->  AKM    588     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
589     0x21,       // [075] = -37.500 dB  ->  AKM    589     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
590     0x20,       // [076] = -38.000 dB  ->  AKM    590     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
591     0x1f,       // [077] = -38.500 dB  ->  AKM    591     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
592     0x1e,       // [078] = -39.000 dB  ->  AKM    592     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
593     0x1d,       // [079] = -39.500 dB  ->  AKM    593     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
594     0x1c,       // [080] = -40.000 dB  ->  AKM    594     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
595     0x1b,       // [081] = -40.500 dB  ->  AKM    595     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
596     0x1a,       // [082] = -41.000 dB  ->  AKM    596     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
597     0x19,       // [083] = -41.500 dB  ->  AKM    597     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
598     0x18,       // [084] = -42.000 dB  ->  AKM    598     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
599     0x17,       // [085] = -42.500 dB  ->  AKM    599     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
600     0x16,       // [086] = -43.000 dB  ->  AKM    600     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
601     0x15,       // [087] = -43.500 dB  ->  AKM    601     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
602     0x14,       // [088] = -44.000 dB  ->  AKM    602     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
603     0x14,       // [089] = -44.500 dB  ->  AKM    603     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
604     0x13,       // [090] = -45.000 dB  ->  AKM    604     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
605     0x12,       // [091] = -45.500 dB  ->  AKM    605     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
606     0x12,       // [092] = -46.000 dB  ->  AKM    606     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
607     0x11,       // [093] = -46.500 dB  ->  AKM    607     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
608     0x11,       // [094] = -47.000 dB  ->  AKM    608     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
609     0x10,       // [095] = -47.500 dB  ->  AKM    609     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
610     0x10,       // [096] = -48.000 dB  ->  AKM    610     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
611     0x0f,       // [097] = -48.500 dB  ->  AKM    611     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
612     0x0e,       // [098] = -49.000 dB  ->  AKM    612     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
613     0x0d,       // [099] = -49.500 dB  ->  AKM    613     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
614     0x0d,       // [100] = -50.000 dB  ->  AKM    614     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
615     0x0c,       // [101] = -50.500 dB  ->  AKM    615     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
616     0x0b,       // [102] = -51.000 dB  ->  AKM    616     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
617     0x0b,       // [103] = -51.500 dB  ->  AKM    617     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
618     0x0a,       // [104] = -52.000 dB  ->  AKM    618     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
619     0x0a,       // [105] = -52.500 dB  ->  AKM    619     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
620     0x09,       // [106] = -53.000 dB  ->  AKM    620     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
621     0x09,       // [107] = -53.500 dB  ->  AKM    621     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
622     0x08,       // [108] = -54.000 dB  ->  AKM    622     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
623     0x08,       // [109] = -54.500 dB  ->  AKM    623     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
624     0x07,       // [110] = -55.000 dB  ->  AKM    624     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
625     0x07,       // [111] = -55.500 dB  ->  AKM    625     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
626     0x06,       // [112] = -56.000 dB  ->  AKM    626     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
627     0x06,       // [113] = -56.500 dB  ->  AKM    627     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
628     0x06,       // [114] = -57.000 dB  ->  AKM    628     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
629     0x05,       // [115] = -57.500 dB  ->  AKM    629     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
630     0x05,       // [116] = -58.000 dB  ->  AKM    630     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
631     0x05,       // [117] = -58.500 dB  ->  AKM    631     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
632     0x05,       // [118] = -59.000 dB  ->  AKM    632     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
633     0x04,       // [119] = -59.500 dB  ->  AKM    633     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
634     0x04,       // [120] = -60.000 dB  ->  AKM    634     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
635     0x04,       // [121] = -60.500 dB  ->  AKM    635     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
636     0x04,       // [122] = -61.000 dB  ->  AKM    636     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
637     0x03,       // [123] = -61.500 dB  ->  AKM    637     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
638     0x03,       // [124] = -62.000 dB  ->  AKM    638     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
639     0x03,       // [125] = -62.500 dB  ->  AKM    639     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
640     0x03,       // [126] = -63.000 dB  ->  AKM    640     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
641     0x03,       // [127] = -63.500 dB  ->  AKM    641     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
642     0x03,       // [128] = -64.000 dB  ->  AKM    642     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
643     0x02,       // [129] = -64.500 dB  ->  AKM    643     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
644     0x02,       // [130] = -65.000 dB  ->  AKM    644     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
645     0x02,       // [131] = -65.500 dB  ->  AKM    645     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
646     0x02,       // [132] = -66.000 dB  ->  AKM    646     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
647     0x02,       // [133] = -66.500 dB  ->  AKM    647     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
648     0x02,       // [134] = -67.000 dB  ->  AKM    648     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
649     0x02,       // [135] = -67.500 dB  ->  AKM    649     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
650     0x02,       // [136] = -68.000 dB  ->  AKM    650     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
651     0x02,       // [137] = -68.500 dB  ->  AKM    651     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
652     0x02,       // [138] = -69.000 dB  ->  AKM    652     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
653     0x01,       // [139] = -69.500 dB  ->  AKM    653     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
654     0x01,       // [140] = -70.000 dB  ->  AKM    654     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
655     0x01,       // [141] = -70.500 dB  ->  AKM    655     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
656     0x01,       // [142] = -71.000 dB  ->  AKM    656     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
657     0x01,       // [143] = -71.500 dB  ->  AKM    657     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
658     0x01,       // [144] = -72.000 dB  ->  AKM    658     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
659     0x01,       // [145] = -72.500 dB  ->  AKM    659     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
660     0x01,       // [146] = -73.000 dB  ->  AKM    660     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
661     0x00};      // [147] = -73.500 dB  ->  AKM    661     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
662                                                   662 
663 /*                                                663 /*
664  * pseudo-codec write entry                       664  * pseudo-codec write entry
665  */                                               665  */
666 static void vx2_write_akm(struct vx_core *chip    666 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
667 {                                                 667 {
668         unsigned int val;                         668         unsigned int val;
669                                                   669 
670         if (reg == XX_CODEC_DAC_CONTROL_REGIST    670         if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
671                 vx2_write_codec_reg(chip, data    671                 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
672                 return;                           672                 return;
673         }                                         673         }
674                                                   674 
675         /* `data' is a value between 0x0 and V    675         /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
676            a look up table, as there is no lin    676            a look up table, as there is no linear matching between the driver codec values
677            and the real dBu value                 677            and the real dBu value
678         */                                        678         */
679         if (snd_BUG_ON(data >= sizeof(vx2_akm_    679         if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
680                 return;                           680                 return;
681                                                   681 
682         switch (reg) {                            682         switch (reg) {
683         case XX_CODEC_LEVEL_LEFT_REGISTER:        683         case XX_CODEC_LEVEL_LEFT_REGISTER:
684                 val = AKM_CODEC_LEFT_LEVEL_CMD    684                 val = AKM_CODEC_LEFT_LEVEL_CMD;
685                 break;                            685                 break;
686         case XX_CODEC_LEVEL_RIGHT_REGISTER:       686         case XX_CODEC_LEVEL_RIGHT_REGISTER:
687                 val = AKM_CODEC_RIGHT_LEVEL_CM    687                 val = AKM_CODEC_RIGHT_LEVEL_CMD;
688                 break;                            688                 break;
689         default:                                  689         default:
690                 snd_BUG();                        690                 snd_BUG();
691                 return;                           691                 return;
692         }                                         692         }
693         val |= vx2_akm_gains_lut[data];           693         val |= vx2_akm_gains_lut[data];
694                                                   694 
695         vx2_write_codec_reg(chip, val);           695         vx2_write_codec_reg(chip, val);
696 }                                                 696 }
697                                                   697 
698                                                   698 
699 /*                                                699 /*
700  * write codec bit for old VX222 board            700  * write codec bit for old VX222 board
701  */                                               701  */
702 static void vx2_old_write_codec_bit(struct vx_    702 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
703 {                                                 703 {
704         int i;                                    704         int i;
705                                                   705 
706         /* activate access to codec registers     706         /* activate access to codec registers */
707         vx_inl(chip, HIFREQ);                     707         vx_inl(chip, HIFREQ);
708                                                   708 
709         for (i = 0; i < 24; i++, data <<= 1)      709         for (i = 0; i < 24; i++, data <<= 1)
710                 vx_outl(chip, DATA, ((data & 0    710                 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
711                                                   711 
712         /* Terminate access to codec registers    712         /* Terminate access to codec registers */
713         vx_inl(chip, RUER);                       713         vx_inl(chip, RUER);
714 }                                                 714 }
715                                                   715 
716                                                   716 
717 /*                                                717 /*
718  * reset codec bit                                718  * reset codec bit
719  */                                               719  */
720 static void vx2_reset_codec(struct vx_core *_c    720 static void vx2_reset_codec(struct vx_core *_chip)
721 {                                                 721 {
722         struct snd_vx222 *chip = to_vx222(_chi    722         struct snd_vx222 *chip = to_vx222(_chip);
723                                                   723 
724         /* Set the reset CODEC bit to 0. */       724         /* Set the reset CODEC bit to 0. */
725         vx_outl(chip, CDSP, chip->regCDSP &~ V    725         vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
726         vx_inl(chip, CDSP);                       726         vx_inl(chip, CDSP);
727         msleep(10);                               727         msleep(10);
728         /* Set the reset CODEC bit to 1. */       728         /* Set the reset CODEC bit to 1. */
729         chip->regCDSP |= VX_CDSP_CODEC_RESET_M    729         chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
730         vx_outl(chip, CDSP, chip->regCDSP);       730         vx_outl(chip, CDSP, chip->regCDSP);
731         vx_inl(chip, CDSP);                       731         vx_inl(chip, CDSP);
732         if (_chip->type == VX_TYPE_BOARD) {       732         if (_chip->type == VX_TYPE_BOARD) {
733                 msleep(1);                        733                 msleep(1);
734                 return;                           734                 return;
735         }                                         735         }
736                                                   736 
737         msleep(5);  /* additionnel wait time f    737         msleep(5);  /* additionnel wait time for AKM's */
738                                                   738 
739         vx2_write_codec_reg(_chip, AKM_CODEC_P    739         vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
740                                                   740         
741         vx2_write_codec_reg(_chip, AKM_CODEC_C    741         vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
742         vx2_write_codec_reg(_chip, AKM_CODEC_M    742         vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
743         vx2_write_codec_reg(_chip, AKM_CODEC_R    743         vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
744                                                   744 
745         if (_chip->type == VX_TYPE_MIC) {         745         if (_chip->type == VX_TYPE_MIC) {
746                 /* set up the micro input sele    746                 /* set up the micro input selector */
747                 chip->regSELMIC =  MICRO_SELEC    747                 chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
748                         MICRO_SELECT_PREAMPLI_    748                         MICRO_SELECT_PREAMPLI_G_0 |
749                         MICRO_SELECT_NOISE_T_5    749                         MICRO_SELECT_NOISE_T_52DB;
750                                                   750 
751                 /* reset phantom power supply     751                 /* reset phantom power supply */
752                 chip->regSELMIC &= ~MICRO_SELE    752                 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
753                                                   753 
754                 vx_outl(_chip, SELMIC, chip->r    754                 vx_outl(_chip, SELMIC, chip->regSELMIC);
755         }                                         755         }
756 }                                                 756 }
757                                                   757 
758                                                   758 
759 /*                                                759 /*
760  * change the audio source                        760  * change the audio source
761  */                                               761  */
762 static void vx2_change_audio_source(struct vx_    762 static void vx2_change_audio_source(struct vx_core *_chip, int src)
763 {                                                 763 {
764         struct snd_vx222 *chip = to_vx222(_chi    764         struct snd_vx222 *chip = to_vx222(_chip);
765                                                   765 
766         switch (src) {                            766         switch (src) {
767         case VX_AUDIO_SRC_DIGITAL:                767         case VX_AUDIO_SRC_DIGITAL:
768                 chip->regCFG |= VX_CFG_DATAIN_    768                 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
769                 break;                            769                 break;
770         default:                                  770         default:
771                 chip->regCFG &= ~VX_CFG_DATAIN    771                 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
772                 break;                            772                 break;
773         }                                         773         }
774         vx_outl(chip, CFG, chip->regCFG);         774         vx_outl(chip, CFG, chip->regCFG);
775 }                                                 775 }
776                                                   776 
777                                                   777 
778 /*                                                778 /*
779  * set the clock source                           779  * set the clock source
780  */                                               780  */
781 static void vx2_set_clock_source(struct vx_cor    781 static void vx2_set_clock_source(struct vx_core *_chip, int source)
782 {                                                 782 {
783         struct snd_vx222 *chip = to_vx222(_chi    783         struct snd_vx222 *chip = to_vx222(_chip);
784                                                   784 
785         if (source == INTERNAL_QUARTZ)            785         if (source == INTERNAL_QUARTZ)
786                 chip->regCFG &= ~VX_CFG_CLOCKI    786                 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
787         else                                      787         else
788                 chip->regCFG |= VX_CFG_CLOCKIN    788                 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
789         vx_outl(chip, CFG, chip->regCFG);         789         vx_outl(chip, CFG, chip->regCFG);
790 }                                                 790 }
791                                                   791 
792 /*                                                792 /*
793  * reset the board                                793  * reset the board
794  */                                               794  */
795 static void vx2_reset_board(struct vx_core *_c    795 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
796 {                                                 796 {
797         struct snd_vx222 *chip = to_vx222(_chi    797         struct snd_vx222 *chip = to_vx222(_chip);
798                                                   798 
799         /* initialize the register values */      799         /* initialize the register values */
800         chip->regCDSP = VX_CDSP_CODEC_RESET_MA    800         chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
801         chip->regCFG = 0;                         801         chip->regCFG = 0;
802 }                                                 802 }
803                                                   803 
804                                                   804 
805                                                   805 
806 /*                                                806 /*
807  * input level controls for VX222 Mic             807  * input level controls for VX222 Mic
808  */                                               808  */
809                                                   809 
810 /* Micro level is specified to be adjustable f    810 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
811  * 318 = 210 + 36 + 36 + 36   (210 = +9dB vari    811  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
812  * as we will mute if less than -110dB, so let    812  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
813  */                                               813  */
814 #define V2_MICRO_LEVEL_RANGE        (318 - 255    814 #define V2_MICRO_LEVEL_RANGE        (318 - 255)
815                                                   815 
816 static void vx2_set_input_level(struct snd_vx2    816 static void vx2_set_input_level(struct snd_vx222 *chip)
817 {                                                 817 {
818         int i, miclevel, preamp;                  818         int i, miclevel, preamp;
819         unsigned int data;                        819         unsigned int data;
820                                                   820 
821         miclevel = chip->mic_level;               821         miclevel = chip->mic_level;
822         miclevel += V2_MICRO_LEVEL_RANGE; /* a    822         miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
823         preamp = 0;                               823         preamp = 0;
824         while (miclevel > 210) { /* limitation    824         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
825                 preamp++;       /* raise pre a    825                 preamp++;       /* raise pre ampli + 18dB */
826                 miclevel -= (18 * 2);   /* low    826                 miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
827         }                                         827         }
828         if (snd_BUG_ON(preamp >= 4))              828         if (snd_BUG_ON(preamp >= 4))
829                 return;                           829                 return;
830                                                   830 
831         /* set pre-amp level */                   831         /* set pre-amp level */
832         chip->regSELMIC &= ~MICRO_SELECT_PREAM    832         chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
833         chip->regSELMIC |= (preamp << MICRO_SE    833         chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
834         vx_outl(chip, SELMIC, chip->regSELMIC)    834         vx_outl(chip, SELMIC, chip->regSELMIC);
835                                                   835 
836         data = (unsigned int)miclevel << 16 |     836         data = (unsigned int)miclevel << 16 |
837                 (unsigned int)chip->input_leve    837                 (unsigned int)chip->input_level[1] << 8 |
838                 (unsigned int)chip->input_leve    838                 (unsigned int)chip->input_level[0];
839         vx_inl(chip, DATA); /* Activate input     839         vx_inl(chip, DATA); /* Activate input level programming */
840                                                   840 
841         /* We have to send 32 bits (4 x 8 bits    841         /* We have to send 32 bits (4 x 8 bits) */
842         for (i = 0; i < 32; i++, data <<= 1)      842         for (i = 0; i < 32; i++, data <<= 1)
843                 vx_outl(chip, DATA, ((data & 0    843                 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
844                                                   844 
845         vx_inl(chip, RUER); /* Terminate input    845         vx_inl(chip, RUER); /* Terminate input level programming */
846 }                                                 846 }
847                                                   847 
848                                                   848 
849 #define MIC_LEVEL_MAX   0xff                      849 #define MIC_LEVEL_MAX   0xff
850                                                   850 
851 static const DECLARE_TLV_DB_SCALE(db_scale_mic    851 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
852                                                   852 
853 /*                                                853 /*
854  * controls API for input levels                  854  * controls API for input levels
855  */                                               855  */
856                                                   856 
857 /* input levels */                                857 /* input levels */
858 static int vx_input_level_info(struct snd_kcon    858 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
859 {                                                 859 {
860         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTE    860         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
861         uinfo->count = 2;                         861         uinfo->count = 2;
862         uinfo->value.integer.min = 0;             862         uinfo->value.integer.min = 0;
863         uinfo->value.integer.max = MIC_LEVEL_M    863         uinfo->value.integer.max = MIC_LEVEL_MAX;
864         return 0;                                 864         return 0;
865 }                                                 865 }
866                                                   866 
867 static int vx_input_level_get(struct snd_kcont    867 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
868 {                                                 868 {
869         struct vx_core *_chip = snd_kcontrol_c    869         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
870         struct snd_vx222 *chip = to_vx222(_chi    870         struct snd_vx222 *chip = to_vx222(_chip);
871         mutex_lock(&_chip->mixer_mutex);          871         mutex_lock(&_chip->mixer_mutex);
872         ucontrol->value.integer.value[0] = chi    872         ucontrol->value.integer.value[0] = chip->input_level[0];
873         ucontrol->value.integer.value[1] = chi    873         ucontrol->value.integer.value[1] = chip->input_level[1];
874         mutex_unlock(&_chip->mixer_mutex);        874         mutex_unlock(&_chip->mixer_mutex);
875         return 0;                                 875         return 0;
876 }                                                 876 }
877                                                   877 
878 static int vx_input_level_put(struct snd_kcont    878 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 {                                                 879 {
880         struct vx_core *_chip = snd_kcontrol_c    880         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
881         struct snd_vx222 *chip = to_vx222(_chi    881         struct snd_vx222 *chip = to_vx222(_chip);
882         if (ucontrol->value.integer.value[0] <    882         if (ucontrol->value.integer.value[0] < 0 ||
883             ucontrol->value.integer.value[0] >    883             ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
884                 return -EINVAL;                   884                 return -EINVAL;
885         if (ucontrol->value.integer.value[1] <    885         if (ucontrol->value.integer.value[1] < 0 ||
886             ucontrol->value.integer.value[1] >    886             ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
887                 return -EINVAL;                   887                 return -EINVAL;
888         mutex_lock(&_chip->mixer_mutex);          888         mutex_lock(&_chip->mixer_mutex);
889         if (chip->input_level[0] != ucontrol->    889         if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
890             chip->input_level[1] != ucontrol->    890             chip->input_level[1] != ucontrol->value.integer.value[1]) {
891                 chip->input_level[0] = ucontro    891                 chip->input_level[0] = ucontrol->value.integer.value[0];
892                 chip->input_level[1] = ucontro    892                 chip->input_level[1] = ucontrol->value.integer.value[1];
893                 vx2_set_input_level(chip);        893                 vx2_set_input_level(chip);
894                 mutex_unlock(&_chip->mixer_mut    894                 mutex_unlock(&_chip->mixer_mutex);
895                 return 1;                         895                 return 1;
896         }                                         896         }
897         mutex_unlock(&_chip->mixer_mutex);        897         mutex_unlock(&_chip->mixer_mutex);
898         return 0;                                 898         return 0;
899 }                                                 899 }
900                                                   900 
901 /* mic level */                                   901 /* mic level */
902 static int vx_mic_level_info(struct snd_kcontr    902 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
903 {                                                 903 {
904         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTE    904         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
905         uinfo->count = 1;                         905         uinfo->count = 1;
906         uinfo->value.integer.min = 0;             906         uinfo->value.integer.min = 0;
907         uinfo->value.integer.max = MIC_LEVEL_M    907         uinfo->value.integer.max = MIC_LEVEL_MAX;
908         return 0;                                 908         return 0;
909 }                                                 909 }
910                                                   910 
911 static int vx_mic_level_get(struct snd_kcontro    911 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
912 {                                                 912 {
913         struct vx_core *_chip = snd_kcontrol_c    913         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
914         struct snd_vx222 *chip = to_vx222(_chi    914         struct snd_vx222 *chip = to_vx222(_chip);
915         ucontrol->value.integer.value[0] = chi    915         ucontrol->value.integer.value[0] = chip->mic_level;
916         return 0;                                 916         return 0;
917 }                                                 917 }
918                                                   918 
919 static int vx_mic_level_put(struct snd_kcontro    919 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
920 {                                                 920 {
921         struct vx_core *_chip = snd_kcontrol_c    921         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
922         struct snd_vx222 *chip = to_vx222(_chi    922         struct snd_vx222 *chip = to_vx222(_chip);
923         if (ucontrol->value.integer.value[0] <    923         if (ucontrol->value.integer.value[0] < 0 ||
924             ucontrol->value.integer.value[0] >    924             ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
925                 return -EINVAL;                   925                 return -EINVAL;
926         mutex_lock(&_chip->mixer_mutex);          926         mutex_lock(&_chip->mixer_mutex);
927         if (chip->mic_level != ucontrol->value    927         if (chip->mic_level != ucontrol->value.integer.value[0]) {
928                 chip->mic_level = ucontrol->va    928                 chip->mic_level = ucontrol->value.integer.value[0];
929                 vx2_set_input_level(chip);        929                 vx2_set_input_level(chip);
930                 mutex_unlock(&_chip->mixer_mut    930                 mutex_unlock(&_chip->mixer_mutex);
931                 return 1;                         931                 return 1;
932         }                                         932         }
933         mutex_unlock(&_chip->mixer_mutex);        933         mutex_unlock(&_chip->mixer_mutex);
934         return 0;                                 934         return 0;
935 }                                                 935 }
936                                                   936 
937 static const struct snd_kcontrol_new vx_contro    937 static const struct snd_kcontrol_new vx_control_input_level = {
938         .iface =        SNDRV_CTL_ELEM_IFACE_M    938         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
939         .access =       (SNDRV_CTL_ELEM_ACCESS    939         .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
940                          SNDRV_CTL_ELEM_ACCESS    940                          SNDRV_CTL_ELEM_ACCESS_TLV_READ),
941         .name =         "Capture Volume",         941         .name =         "Capture Volume",
942         .info =         vx_input_level_info,      942         .info =         vx_input_level_info,
943         .get =          vx_input_level_get,       943         .get =          vx_input_level_get,
944         .put =          vx_input_level_put,       944         .put =          vx_input_level_put,
945         .tlv = { .p = db_scale_mic },             945         .tlv = { .p = db_scale_mic },
946 };                                                946 };
947                                                   947 
948 static const struct snd_kcontrol_new vx_contro    948 static const struct snd_kcontrol_new vx_control_mic_level = {
949         .iface =        SNDRV_CTL_ELEM_IFACE_M    949         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
950         .access =       (SNDRV_CTL_ELEM_ACCESS    950         .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
951                          SNDRV_CTL_ELEM_ACCESS    951                          SNDRV_CTL_ELEM_ACCESS_TLV_READ),
952         .name =         "Mic Capture Volume",     952         .name =         "Mic Capture Volume",
953         .info =         vx_mic_level_info,        953         .info =         vx_mic_level_info,
954         .get =          vx_mic_level_get,         954         .get =          vx_mic_level_get,
955         .put =          vx_mic_level_put,         955         .put =          vx_mic_level_put,
956         .tlv = { .p = db_scale_mic },             956         .tlv = { .p = db_scale_mic },
957 };                                                957 };
958                                                   958 
959 /*                                                959 /*
960  * FIXME: compressor/limiter implementation is    960  * FIXME: compressor/limiter implementation is missing yet...
961  */                                               961  */
962                                                   962 
963 static int vx2_add_mic_controls(struct vx_core    963 static int vx2_add_mic_controls(struct vx_core *_chip)
964 {                                                 964 {
965         struct snd_vx222 *chip = to_vx222(_chi    965         struct snd_vx222 *chip = to_vx222(_chip);
966         int err;                                  966         int err;
967                                                   967 
968         if (_chip->type != VX_TYPE_MIC)           968         if (_chip->type != VX_TYPE_MIC)
969                 return 0;                         969                 return 0;
970                                                   970 
971         /* mute input levels */                   971         /* mute input levels */
972         chip->input_level[0] = chip->input_lev    972         chip->input_level[0] = chip->input_level[1] = 0;
973         chip->mic_level = 0;                      973         chip->mic_level = 0;
974         vx2_set_input_level(chip);                974         vx2_set_input_level(chip);
975                                                   975 
976         /* controls */                            976         /* controls */
977         err = snd_ctl_add(_chip->card, snd_ctl    977         err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip));
978         if (err < 0)                              978         if (err < 0)
979                 return err;                       979                 return err;
980         err = snd_ctl_add(_chip->card, snd_ctl    980         err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip));
981         if (err < 0)                              981         if (err < 0)
982                 return err;                       982                 return err;
983                                                   983 
984         return 0;                                 984         return 0;
985 }                                                 985 }
986                                                   986 
987                                                   987 
988 /*                                                988 /*
989  * callbacks                                      989  * callbacks
990  */                                               990  */
991 const struct snd_vx_ops vx222_ops = {             991 const struct snd_vx_ops vx222_ops = {
992         .in8 = vx2_inb,                           992         .in8 = vx2_inb,
993         .in32 = vx2_inl,                          993         .in32 = vx2_inl,
994         .out8 = vx2_outb,                         994         .out8 = vx2_outb,
995         .out32 = vx2_outl,                        995         .out32 = vx2_outl,
996         .test_and_ack = vx2_test_and_ack,         996         .test_and_ack = vx2_test_and_ack,
997         .validate_irq = vx2_validate_irq,         997         .validate_irq = vx2_validate_irq,
998         .akm_write = vx2_write_akm,               998         .akm_write = vx2_write_akm,
999         .reset_codec = vx2_reset_codec,           999         .reset_codec = vx2_reset_codec,
1000         .change_audio_source = vx2_change_aud    1000         .change_audio_source = vx2_change_audio_source,
1001         .set_clock_source = vx2_set_clock_sou    1001         .set_clock_source = vx2_set_clock_source,
1002         .load_dsp = vx2_load_dsp,                1002         .load_dsp = vx2_load_dsp,
1003         .reset_dsp = vx2_reset_dsp,              1003         .reset_dsp = vx2_reset_dsp,
1004         .reset_board = vx2_reset_board,          1004         .reset_board = vx2_reset_board,
1005         .dma_write = vx2_dma_write,              1005         .dma_write = vx2_dma_write,
1006         .dma_read = vx2_dma_read,                1006         .dma_read = vx2_dma_read,
1007         .add_controls = vx2_add_mic_controls,    1007         .add_controls = vx2_add_mic_controls,
1008 };                                               1008 };
1009                                                  1009 
1010 /* for old VX222 board */                        1010 /* for old VX222 board */
1011 const struct snd_vx_ops vx222_old_ops = {        1011 const struct snd_vx_ops vx222_old_ops = {
1012         .in8 = vx2_inb,                          1012         .in8 = vx2_inb,
1013         .in32 = vx2_inl,                         1013         .in32 = vx2_inl,
1014         .out8 = vx2_outb,                        1014         .out8 = vx2_outb,
1015         .out32 = vx2_outl,                       1015         .out32 = vx2_outl,
1016         .test_and_ack = vx2_test_and_ack,        1016         .test_and_ack = vx2_test_and_ack,
1017         .validate_irq = vx2_validate_irq,        1017         .validate_irq = vx2_validate_irq,
1018         .write_codec = vx2_old_write_codec_bi    1018         .write_codec = vx2_old_write_codec_bit,
1019         .reset_codec = vx2_reset_codec,          1019         .reset_codec = vx2_reset_codec,
1020         .change_audio_source = vx2_change_aud    1020         .change_audio_source = vx2_change_audio_source,
1021         .set_clock_source = vx2_set_clock_sou    1021         .set_clock_source = vx2_set_clock_source,
1022         .load_dsp = vx2_load_dsp,                1022         .load_dsp = vx2_load_dsp,
1023         .reset_dsp = vx2_reset_dsp,              1023         .reset_dsp = vx2_reset_dsp,
1024         .reset_board = vx2_reset_board,          1024         .reset_board = vx2_reset_board,
1025         .dma_write = vx2_dma_write,              1025         .dma_write = vx2_dma_write,
1026         .dma_read = vx2_dma_read,                1026         .dma_read = vx2_dma_read,
1027 };                                               1027 };
1028                                                  1028 
1029                                                  1029 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php