~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/memory-model/lock.cat

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /tools/memory-model/lock.cat (Architecture sparc) and /tools/memory-model/lock.cat (Architecture i386)


  1 // SPDX-License-Identifier: GPL-2.0+                1 // SPDX-License-Identifier: GPL-2.0+
  2 (*                                                  2 (*
  3  * Copyright (C) 2016 Luc Maranget <luc.marange      3  * Copyright (C) 2016 Luc Maranget <luc.maranget@inria.fr> for Inria
  4  * Copyright (C) 2017 Alan Stern <stern@rowland      4  * Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>
  5  *)                                                 5  *)
  6                                                     6 
  7 (*                                                  7 (*
  8  * Generate coherence orders and handle lock o      8  * Generate coherence orders and handle lock operations
  9  *)                                                 9  *)
 10                                                    10 
 11 include "cross.cat"                                11 include "cross.cat"
 12                                                    12 
 13 (*                                                 13 (*
 14  * The lock-related events generated by herd7      14  * The lock-related events generated by herd7 are as follows:
 15  *                                                 15  *
 16  * LKR          Lock-Read: the read part of a      16  * LKR          Lock-Read: the read part of a spin_lock() or successful
 17  *                      spin_trylock() read-mo     17  *                      spin_trylock() read-modify-write event pair
 18  * LKW          Lock-Write: the write part of      18  * LKW          Lock-Write: the write part of a spin_lock() or successful
 19  *                      spin_trylock() RMW eve     19  *                      spin_trylock() RMW event pair
 20  * UL           Unlock: a spin_unlock() event      20  * UL           Unlock: a spin_unlock() event
 21  * LF           Lock-Fail: a failed spin_trylo     21  * LF           Lock-Fail: a failed spin_trylock() event
 22  * RL           Read-Locked: a spin_is_locked(     22  * RL           Read-Locked: a spin_is_locked() event which returns True
 23  * RU           Read-Unlocked: a spin_is_locke     23  * RU           Read-Unlocked: a spin_is_locked() event which returns False
 24  *                                                 24  *
 25  * LKR and LKW events always come paired, like     25  * LKR and LKW events always come paired, like all RMW event sequences.
 26  *                                                 26  *
 27  * LKR, LF, RL, and RU are read events; LKR ha     27  * LKR, LF, RL, and RU are read events; LKR has Acquire ordering.
 28  * LKW and UL are write events; UL has Release     28  * LKW and UL are write events; UL has Release ordering.
 29  * LKW, LF, RL, and RU have no ordering proper     29  * LKW, LF, RL, and RU have no ordering properties.
 30  *)                                                30  *)
 31                                                    31 
 32 (* Backward compatibility *)                       32 (* Backward compatibility *)
 33 let RL = try RL with emptyset                      33 let RL = try RL with emptyset
 34 let RU = try RU with emptyset                      34 let RU = try RU with emptyset
 35                                                    35 
 36 (* Treat RL as a kind of LF: a read with no or     36 (* Treat RL as a kind of LF: a read with no ordering properties *)
 37 let LF = LF | RL                                   37 let LF = LF | RL
 38                                                    38 
 39 (* There should be no ordinary R or W accesses     39 (* There should be no ordinary R or W accesses to spinlocks or SRCU structs *)
 40 let ALL-LOCKS = LKR | LKW | UL | LF | RU | Src     40 let ALL-LOCKS = LKR | LKW | UL | LF | RU | Srcu-lock | Srcu-unlock | Sync-srcu
 41 flag ~empty [M \ IW \ ALL-LOCKS] ; loc ; [ALL-     41 flag ~empty [M \ IW \ ALL-LOCKS] ; loc ; [ALL-LOCKS] as mixed-lock-accesses
 42                                                    42 
 43 (* Link Lock-Reads to their RMW-partner Lock-W     43 (* Link Lock-Reads to their RMW-partner Lock-Writes *)
 44 let lk-rmw = ([LKR] ; po-loc ; [LKW]) \ (po ;      44 let lk-rmw = ([LKR] ; po-loc ; [LKW]) \ (po ; po)
 45 let rmw = rmw | lk-rmw                             45 let rmw = rmw | lk-rmw
 46                                                    46 
 47 (* The litmus test is invalid if an LKR/LKW ev     47 (* The litmus test is invalid if an LKR/LKW event is not part of an RMW pair *)
 48 flag ~empty LKW \ range(lk-rmw) as unpaired-LK     48 flag ~empty LKW \ range(lk-rmw) as unpaired-LKW
 49 flag ~empty LKR \ domain(lk-rmw) as unpaired-L     49 flag ~empty LKR \ domain(lk-rmw) as unpaired-LKR
 50                                                    50 
 51 (*                                                 51 (*
 52  * An LKR must always see an unlocked value; s     52  * An LKR must always see an unlocked value; spin_lock() calls nested
 53  * inside a critical section (for the same loc     53  * inside a critical section (for the same lock) always deadlock.
 54  *)                                                54  *)
 55 empty ([LKW] ; po-loc ; [LKR]) \ (po-loc ; [UL     55 empty ([LKW] ; po-loc ; [LKR]) \ (po-loc ; [UL] ; po-loc) as lock-nest
 56                                                    56 
 57 (*                                                 57 (*
 58  * In the same way, spin_is_locked() inside a      58  * In the same way, spin_is_locked() inside a critical section must always
 59  * return True (no RU events can be in a criti     59  * return True (no RU events can be in a critical section for the same lock).
 60  *)                                                60  *)
 61 empty ([LKW] ; po-loc ; [RU]) \ (po-loc ; [UL]     61 empty ([LKW] ; po-loc ; [RU]) \ (po-loc ; [UL] ; po-loc) as nested-is-locked
 62                                                    62 
 63 (* The final value of a spinlock should not be     63 (* The final value of a spinlock should not be tested *)
 64 flag ~empty [FW] ; loc ; [ALL-LOCKS] as lock-f     64 flag ~empty [FW] ; loc ; [ALL-LOCKS] as lock-final
 65                                                    65 
 66 (*                                                 66 (*
 67  * Put lock operations in their appropriate cl     67  * Put lock operations in their appropriate classes, but leave UL out of W
 68  * until after the co relation has been genera     68  * until after the co relation has been generated.
 69  *)                                                69  *)
 70 let R = R | LKR | LF | RU                          70 let R = R | LKR | LF | RU
 71 let W = W | LKW                                    71 let W = W | LKW
 72                                                    72 
 73 let Release = Release | UL                         73 let Release = Release | UL
 74 let Acquire = Acquire | LKR                        74 let Acquire = Acquire | LKR
 75                                                    75 
 76 (* Match LKW events to their corresponding UL      76 (* Match LKW events to their corresponding UL events *)
 77 let critical = ([LKW] ; po-loc ; [UL]) \ (po-l     77 let critical = ([LKW] ; po-loc ; [UL]) \ (po-loc ; [LKW | UL] ; po-loc)
 78                                                    78 
 79 flag ~empty UL \ range(critical) as unmatched-     79 flag ~empty UL \ range(critical) as unmatched-unlock
 80                                                    80 
 81 (* Allow up to one unmatched LKW per location;     81 (* Allow up to one unmatched LKW per location; more must deadlock *)
 82 let UNMATCHED-LKW = LKW \ domain(critical)         82 let UNMATCHED-LKW = LKW \ domain(critical)
 83 empty ([UNMATCHED-LKW] ; loc ; [UNMATCHED-LKW]     83 empty ([UNMATCHED-LKW] ; loc ; [UNMATCHED-LKW]) \ id as unmatched-locks
 84                                                    84 
 85 (* rfi for LF events: link each LKW to the LF      85 (* rfi for LF events: link each LKW to the LF events in its critical section *)
 86 let rfi-lf = ([LKW] ; po-loc ; [LF]) \ ([LKW]      86 let rfi-lf = ([LKW] ; po-loc ; [LF]) \ ([LKW] ; po-loc ; [UL] ; po-loc)
 87                                                    87 
 88 (* Utility macro to convert a single pair to a     88 (* Utility macro to convert a single pair to a single-edge relation *)
 89 let pair-to-relation p = p ++ 0                    89 let pair-to-relation p = p ++ 0
 90                                                    90 
 91 (*                                                 91 (*
 92  * If a given LF event e is outside a critical     92  * If a given LF event e is outside a critical section, it cannot read
 93  * internally but it may read from an LKW even     93  * internally but it may read from an LKW event in another thread.
 94  * Compute the relation containing these possi     94  * Compute the relation containing these possible edges.
 95  *)                                                95  *)
 96 let possible-rfe-noncrit-lf e = (LKW * {e}) &      96 let possible-rfe-noncrit-lf e = (LKW * {e}) & loc & ext
 97                                                    97 
 98 (* Compute set of sets of possible rfe edges f     98 (* Compute set of sets of possible rfe edges for LF events *)
 99 let all-possible-rfe-lf =                          99 let all-possible-rfe-lf =
100         (*                                        100         (*
101          * Convert the possible-rfe-noncrit-lf    101          * Convert the possible-rfe-noncrit-lf relation for e
102          * to a set of single edges               102          * to a set of single edges
103          *)                                       103          *)
104         let set-of-singleton-rfe-lf e =           104         let set-of-singleton-rfe-lf e =
105                         map pair-to-relation (    105                         map pair-to-relation (possible-rfe-noncrit-lf e)
106         (* Do this for each LF event e that is    106         (* Do this for each LF event e that isn't in rfi-lf *)
107         in map set-of-singleton-rfe-lf (LF \ r    107         in map set-of-singleton-rfe-lf (LF \ range(rfi-lf))
108                                                   108 
109 (* Generate all rf relations for LF events *)     109 (* Generate all rf relations for LF events *)
110 with rfe-lf from cross(all-possible-rfe-lf)       110 with rfe-lf from cross(all-possible-rfe-lf)
111 let rf-lf = rfe-lf | rfi-lf                       111 let rf-lf = rfe-lf | rfi-lf
112                                                   112 
113 (*                                                113 (*
114  * A given RU event e may read internally from    114  * A given RU event e may read internally from the last po-previous UL,
115  * or it may read from a UL event in another t    115  * or it may read from a UL event in another thread or the initial write.
116  * Compute the relation containing these possi    116  * Compute the relation containing these possible edges.
117  *)                                               117  *)
118 let possible-rf-ru e = (((UL * {e}) & po-loc)     118 let possible-rf-ru e = (((UL * {e}) & po-loc) \
119                         ([UL] ; po-loc ; [UL]     119                         ([UL] ; po-loc ; [UL] ; po-loc)) |
120                 (((UL | IW) * {e}) & loc & ext    120                 (((UL | IW) * {e}) & loc & ext)
121                                                   121 
122 (* Compute set of sets of possible rf edges fo    122 (* Compute set of sets of possible rf edges for RU events *)
123 let all-possible-rf-ru =                          123 let all-possible-rf-ru =
124         (* Convert the possible-rf-ru relation    124         (* Convert the possible-rf-ru relation for e to a set of single edges *)
125         let set-of-singleton-rf-ru e =            125         let set-of-singleton-rf-ru e =
126                 map pair-to-relation (possible    126                 map pair-to-relation (possible-rf-ru e)
127         (* Do this for each RU event e *)         127         (* Do this for each RU event e *)
128         in map set-of-singleton-rf-ru RU          128         in map set-of-singleton-rf-ru RU
129                                                   129 
130 (* Generate all rf relations for RU events *)     130 (* Generate all rf relations for RU events *)
131 with rf-ru from cross(all-possible-rf-ru)         131 with rf-ru from cross(all-possible-rf-ru)
132                                                   132 
133 (* Final rf relation *)                           133 (* Final rf relation *)
134 let rf = rf | rf-lf | rf-ru                       134 let rf = rf | rf-lf | rf-ru
135                                                   135 
136 (* Generate all co relations, including LKW ev    136 (* Generate all co relations, including LKW events but not UL *)
137 let co0 = co0 | ([IW] ; loc ; [LKW]) |            137 let co0 = co0 | ([IW] ; loc ; [LKW]) |
138         (([LKW] ; loc ; [UNMATCHED-LKW]) \ [UN    138         (([LKW] ; loc ; [UNMATCHED-LKW]) \ [UNMATCHED-LKW])
139 include "cos-opt.cat"                             139 include "cos-opt.cat"
140 let W = W | UL                                    140 let W = W | UL
141 let M = R | W                                     141 let M = R | W
142                                                   142 
143 (* Merge UL events into co *)                     143 (* Merge UL events into co *)
144 let co = (co | critical | (critical^-1 ; co))+    144 let co = (co | critical | (critical^-1 ; co))+
145 let coe = co & ext                                145 let coe = co & ext
146 let coi = co & int                                146 let coi = co & int
147                                                   147 
148 (* Merge LKR events into rf *)                    148 (* Merge LKR events into rf *)
149 let rf = rf | ([IW | UL] ; singlestep(co) ; lk    149 let rf = rf | ([IW | UL] ; singlestep(co) ; lk-rmw^-1)
150 let rfe = rf & ext                                150 let rfe = rf & ext
151 let rfi = rf & int                                151 let rfi = rf & int
152                                                   152 
153 let fr = rf^-1 ; co                               153 let fr = rf^-1 ; co
154 let fre = fr & ext                                154 let fre = fr & ext
155 let fri = fr & int                                155 let fri = fr & int
156                                                   156 
157 show co,rf,fr                                     157 show co,rf,fr
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php