~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/memory-model/lock.cat

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /tools/memory-model/lock.cat (Version linux-6.11.5) and /tools/memory-model/lock.cat (Version linux-6.2.16)


  1 // SPDX-License-Identifier: GPL-2.0+                1 // SPDX-License-Identifier: GPL-2.0+
  2 (*                                                  2 (*
  3  * Copyright (C) 2016 Luc Maranget <luc.marange      3  * Copyright (C) 2016 Luc Maranget <luc.maranget@inria.fr> for Inria
  4  * Copyright (C) 2017 Alan Stern <stern@rowland      4  * Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>
  5  *)                                                 5  *)
  6                                                     6 
  7 (*                                                  7 (*
  8  * Generate coherence orders and handle lock o      8  * Generate coherence orders and handle lock operations
  9  *)                                                 9  *)
 10                                                    10 
 11 include "cross.cat"                                11 include "cross.cat"
 12                                                    12 
 13 (*                                                 13 (*
 14  * The lock-related events generated by herd7      14  * The lock-related events generated by herd7 are as follows:
 15  *                                                 15  *
 16  * LKR          Lock-Read: the read part of a      16  * LKR          Lock-Read: the read part of a spin_lock() or successful
 17  *                      spin_trylock() read-mo     17  *                      spin_trylock() read-modify-write event pair
 18  * LKW          Lock-Write: the write part of      18  * LKW          Lock-Write: the write part of a spin_lock() or successful
 19  *                      spin_trylock() RMW eve     19  *                      spin_trylock() RMW event pair
 20  * UL           Unlock: a spin_unlock() event      20  * UL           Unlock: a spin_unlock() event
 21  * LF           Lock-Fail: a failed spin_trylo     21  * LF           Lock-Fail: a failed spin_trylock() event
 22  * RL           Read-Locked: a spin_is_locked(     22  * RL           Read-Locked: a spin_is_locked() event which returns True
 23  * RU           Read-Unlocked: a spin_is_locke     23  * RU           Read-Unlocked: a spin_is_locked() event which returns False
 24  *                                                 24  *
 25  * LKR and LKW events always come paired, like     25  * LKR and LKW events always come paired, like all RMW event sequences.
 26  *                                                 26  *
 27  * LKR, LF, RL, and RU are read events; LKR ha     27  * LKR, LF, RL, and RU are read events; LKR has Acquire ordering.
 28  * LKW and UL are write events; UL has Release     28  * LKW and UL are write events; UL has Release ordering.
 29  * LKW, LF, RL, and RU have no ordering proper     29  * LKW, LF, RL, and RU have no ordering properties.
 30  *)                                                30  *)
 31                                                    31 
 32 (* Backward compatibility *)                       32 (* Backward compatibility *)
 33 let RL = try RL with emptyset                      33 let RL = try RL with emptyset
 34 let RU = try RU with emptyset                      34 let RU = try RU with emptyset
 35                                                    35 
 36 (* Treat RL as a kind of LF: a read with no or     36 (* Treat RL as a kind of LF: a read with no ordering properties *)
 37 let LF = LF | RL                                   37 let LF = LF | RL
 38                                                    38 
 39 (* There should be no ordinary R or W accesses !!  39 (* There should be no ordinary R or W accesses to spinlocks *)
 40 let ALL-LOCKS = LKR | LKW | UL | LF | RU | Src !!  40 let ALL-LOCKS = LKR | LKW | UL | LF | RU
 41 flag ~empty [M \ IW \ ALL-LOCKS] ; loc ; [ALL- !!  41 flag ~empty [M \ IW] ; loc ; [ALL-LOCKS] as mixed-lock-accesses
 42                                                    42 
 43 (* Link Lock-Reads to their RMW-partner Lock-W     43 (* Link Lock-Reads to their RMW-partner Lock-Writes *)
 44 let lk-rmw = ([LKR] ; po-loc ; [LKW]) \ (po ;      44 let lk-rmw = ([LKR] ; po-loc ; [LKW]) \ (po ; po)
 45 let rmw = rmw | lk-rmw                             45 let rmw = rmw | lk-rmw
 46                                                    46 
 47 (* The litmus test is invalid if an LKR/LKW ev     47 (* The litmus test is invalid if an LKR/LKW event is not part of an RMW pair *)
 48 flag ~empty LKW \ range(lk-rmw) as unpaired-LK     48 flag ~empty LKW \ range(lk-rmw) as unpaired-LKW
 49 flag ~empty LKR \ domain(lk-rmw) as unpaired-L     49 flag ~empty LKR \ domain(lk-rmw) as unpaired-LKR
 50                                                    50 
 51 (*                                                 51 (*
 52  * An LKR must always see an unlocked value; s     52  * An LKR must always see an unlocked value; spin_lock() calls nested
 53  * inside a critical section (for the same loc     53  * inside a critical section (for the same lock) always deadlock.
 54  *)                                                54  *)
 55 empty ([LKW] ; po-loc ; [LKR]) \ (po-loc ; [UL     55 empty ([LKW] ; po-loc ; [LKR]) \ (po-loc ; [UL] ; po-loc) as lock-nest
 56                                                    56 
 57 (*                                             << 
 58  * In the same way, spin_is_locked() inside a  << 
 59  * return True (no RU events can be in a criti << 
 60  *)                                            << 
 61 empty ([LKW] ; po-loc ; [RU]) \ (po-loc ; [UL] << 
 62                                                << 
 63 (* The final value of a spinlock should not be     57 (* The final value of a spinlock should not be tested *)
 64 flag ~empty [FW] ; loc ; [ALL-LOCKS] as lock-f     58 flag ~empty [FW] ; loc ; [ALL-LOCKS] as lock-final
 65                                                    59 
 66 (*                                                 60 (*
 67  * Put lock operations in their appropriate cl     61  * Put lock operations in their appropriate classes, but leave UL out of W
 68  * until after the co relation has been genera     62  * until after the co relation has been generated.
 69  *)                                                63  *)
 70 let R = R | LKR | LF | RU                          64 let R = R | LKR | LF | RU
 71 let W = W | LKW                                    65 let W = W | LKW
 72                                                    66 
 73 let Release = Release | UL                         67 let Release = Release | UL
 74 let Acquire = Acquire | LKR                        68 let Acquire = Acquire | LKR
 75                                                    69 
 76 (* Match LKW events to their corresponding UL      70 (* Match LKW events to their corresponding UL events *)
 77 let critical = ([LKW] ; po-loc ; [UL]) \ (po-l     71 let critical = ([LKW] ; po-loc ; [UL]) \ (po-loc ; [LKW | UL] ; po-loc)
 78                                                    72 
 79 flag ~empty UL \ range(critical) as unmatched-     73 flag ~empty UL \ range(critical) as unmatched-unlock
 80                                                    74 
 81 (* Allow up to one unmatched LKW per location;     75 (* Allow up to one unmatched LKW per location; more must deadlock *)
 82 let UNMATCHED-LKW = LKW \ domain(critical)         76 let UNMATCHED-LKW = LKW \ domain(critical)
 83 empty ([UNMATCHED-LKW] ; loc ; [UNMATCHED-LKW]     77 empty ([UNMATCHED-LKW] ; loc ; [UNMATCHED-LKW]) \ id as unmatched-locks
 84                                                    78 
 85 (* rfi for LF events: link each LKW to the LF      79 (* rfi for LF events: link each LKW to the LF events in its critical section *)
 86 let rfi-lf = ([LKW] ; po-loc ; [LF]) \ ([LKW]      80 let rfi-lf = ([LKW] ; po-loc ; [LF]) \ ([LKW] ; po-loc ; [UL] ; po-loc)
 87                                                    81 
 88 (* Utility macro to convert a single pair to a !!  82 (* rfe for LF events *)
 89 let pair-to-relation p = p ++ 0                << 
 90                                                << 
 91 (*                                             << 
 92  * If a given LF event e is outside a critical << 
 93  * internally but it may read from an LKW even << 
 94  * Compute the relation containing these possi << 
 95  *)                                            << 
 96 let possible-rfe-noncrit-lf e = (LKW * {e}) &  << 
 97                                                << 
 98 (* Compute set of sets of possible rfe edges f << 
 99 let all-possible-rfe-lf =                          83 let all-possible-rfe-lf =
100         (*                                         84         (*
101          * Convert the possible-rfe-noncrit-lf !!  85          * Given an LF event r, compute the possible rfe edges for that event
102          * to a set of single edges            !!  86          * (all those starting from LKW events in other threads),
                                                   >>  87          * and then convert that relation to a set of single-edge relations.
103          *)                                        88          *)
104         let set-of-singleton-rfe-lf e =        !!  89         let possible-rfe-lf r =
105                         map pair-to-relation ( !!  90                 let pair-to-relation p = p ++ 0
106         (* Do this for each LF event e that is !!  91                 in map pair-to-relation ((LKW * {r}) & loc & ext)
107         in map set-of-singleton-rfe-lf (LF \ r !!  92         (* Do this for each LF event r that isn't in rfi-lf *)
                                                   >>  93         in map possible-rfe-lf (LF \ range(rfi-lf))
108                                                    94 
109 (* Generate all rf relations for LF events *)      95 (* Generate all rf relations for LF events *)
110 with rfe-lf from cross(all-possible-rfe-lf)        96 with rfe-lf from cross(all-possible-rfe-lf)
111 let rf-lf = rfe-lf | rfi-lf                        97 let rf-lf = rfe-lf | rfi-lf
112                                                    98 
113 (*                                                 99 (*
114  * A given RU event e may read internally from !! 100  * RU, i.e., spin_is_locked() returning False, is slightly different.
115  * or it may read from a UL event in another t !! 101  * We rely on the memory model to rule out cases where spin_is_locked()
116  * Compute the relation containing these possi !! 102  * within one of the lock's critical sections returns False.
117  *)                                               103  *)
118 let possible-rf-ru e = (((UL * {e}) & po-loc)  !! 104 
119                         ([UL] ; po-loc ; [UL]  !! 105 (* rfi for RU events: an RU may read from the last po-previous UL *)
120                 (((UL | IW) * {e}) & loc & ext !! 106 let rfi-ru = ([UL] ; po-loc ; [RU]) \ ([UL] ; po-loc ; [LKW] ; po-loc)
121                                                !! 107 
122 (* Compute set of sets of possible rf edges fo !! 108 (* rfe for RU events: an RU may read from an external UL or the initial write *)
123 let all-possible-rf-ru =                       !! 109 let all-possible-rfe-ru =
124         (* Convert the possible-rf-ru relation !! 110         let possible-rfe-ru r =
125         let set-of-singleton-rf-ru e =         !! 111                 let pair-to-relation p = p ++ 0
126                 map pair-to-relation (possible !! 112                 in map pair-to-relation (((UL | IW) * {r}) & loc & ext)
127         (* Do this for each RU event e *)      !! 113         in map possible-rfe-ru RU
128         in map set-of-singleton-rf-ru RU       << 
129                                                   114 
130 (* Generate all rf relations for RU events *)     115 (* Generate all rf relations for RU events *)
131 with rf-ru from cross(all-possible-rf-ru)      !! 116 with rfe-ru from cross(all-possible-rfe-ru)
                                                   >> 117 let rf-ru = rfe-ru | rfi-ru
132                                                   118 
133 (* Final rf relation *)                           119 (* Final rf relation *)
134 let rf = rf | rf-lf | rf-ru                       120 let rf = rf | rf-lf | rf-ru
135                                                   121 
136 (* Generate all co relations, including LKW ev    122 (* Generate all co relations, including LKW events but not UL *)
137 let co0 = co0 | ([IW] ; loc ; [LKW]) |            123 let co0 = co0 | ([IW] ; loc ; [LKW]) |
138         (([LKW] ; loc ; [UNMATCHED-LKW]) \ [UN    124         (([LKW] ; loc ; [UNMATCHED-LKW]) \ [UNMATCHED-LKW])
139 include "cos-opt.cat"                             125 include "cos-opt.cat"
140 let W = W | UL                                    126 let W = W | UL
141 let M = R | W                                     127 let M = R | W
142                                                   128 
143 (* Merge UL events into co *)                     129 (* Merge UL events into co *)
144 let co = (co | critical | (critical^-1 ; co))+    130 let co = (co | critical | (critical^-1 ; co))+
145 let coe = co & ext                                131 let coe = co & ext
146 let coi = co & int                                132 let coi = co & int
147                                                   133 
148 (* Merge LKR events into rf *)                    134 (* Merge LKR events into rf *)
149 let rf = rf | ([IW | UL] ; singlestep(co) ; lk    135 let rf = rf | ([IW | UL] ; singlestep(co) ; lk-rmw^-1)
150 let rfe = rf & ext                                136 let rfe = rf & ext
151 let rfi = rf & int                                137 let rfi = rf & int
152                                                   138 
153 let fr = rf^-1 ; co                               139 let fr = rf^-1 ; co
154 let fre = fr & ext                                140 let fre = fr & ext
155 let fri = fr & int                                141 let fri = fr & int
156                                                   142 
157 show co,rf,fr                                     143 show co,rf,fr
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php