~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/Documentation/topdown.txt

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /tools/perf/Documentation/topdown.txt (Version linux-6.12-rc7) and /tools/perf/Documentation/topdown.txt (Version linux-5.11.22)


  1 Using TopDown metrics                          !!   1 Using TopDown metrics in user space
  2 ---------------------                          !!   2 -----------------------------------
  3                                                     3 
  4 TopDown metrics break apart performance bottle !!   4 Intel CPUs (since Sandy Bridge and Silvermont) support a TopDown
  5 1 it is typical to get metrics on retiring, ba !!   5 methology to break down CPU pipeline execution into 4 bottlenecks:
  6 bound, and backend bound. Higher levels provid !!   6 frontend bound, backend bound, bad speculation, retiring.
  7 level 1 bottlenecks, such as at level 2: core  << 
  8 heavy operations, light operations, branch mis << 
  9 clears, fetch latency and fetch bandwidth. For << 
 10                                                     7 
 11 perf stat --topdown implements this using avai !!   8 For more details on Topdown see [1][5]
 12 per architecture.                              << 
 13                                                     9 
 14 % perf stat -a --topdown -I1000                !!  10 Traditionally this was implemented by events in generic counters
 15 #           time      %  tma_retiring %  tma_b !!  11 and specific formulas to compute the bottlenecks.
 16      1.001141351                 11.5          !!  12 
 17      2.006141972                 13.4          !!  13 perf stat --topdown implements this.
 18      3.010162040                 12.9          !!  14 
 19      4.014009311                 12.5          !!  15 Full Top Down includes more levels that can break down the
 20      5.017838554                 11.8          !!  16 bottlenecks further. This is not directly implemented in perf,
 21      5.704818971                 14.0          !!  17 but available in other tools that can run on top of perf,
 22 ...                                            !!  18 such as toplev[2] or vtune[3]
 23                                                    19 
 24 New Topdown features in Intel Ice Lake         !!  20 New Topdown features in Ice Lake
 25 ======================================         !!  21 ===============================
 26                                                    22 
 27 With Ice Lake CPUs the TopDown metrics are dir     23 With Ice Lake CPUs the TopDown metrics are directly available as
 28 fixed counters and do not require generic coun     24 fixed counters and do not require generic counters. This allows
 29 to collect TopDown always in addition to other     25 to collect TopDown always in addition to other events.
 30                                                    26 
 31 Using TopDown through RDPMC in applications on !!  27 % perf stat -a --topdown -I1000
 32 ============================================== !!  28 #           time             retiring      bad speculation       frontend bound        backend bound
                                                   >>  29      1.001281330                23.0%                15.3%                29.6%                32.1%
                                                   >>  30      2.003009005                 5.0%                 6.8%                46.6%                41.6%
                                                   >>  31      3.004646182                 6.7%                 6.7%                46.0%                40.6%
                                                   >>  32      4.006326375                 5.0%                 6.4%                47.6%                41.0%
                                                   >>  33      5.007991804                 5.1%                 6.3%                46.3%                42.3%
                                                   >>  34      6.009626773                 6.2%                 7.1%                47.3%                39.3%
                                                   >>  35      7.011296356                 4.7%                 6.7%                46.2%                42.4%
                                                   >>  36      8.012951831                 4.7%                 6.7%                47.5%                41.1%
                                                   >>  37 ...
                                                   >>  38 
                                                   >>  39 This also enables measuring TopDown per thread/process instead
                                                   >>  40 of only per core.
                                                   >>  41 
                                                   >>  42 Using TopDown through RDPMC in applications on Ice Lake
                                                   >>  43 ======================================================
 33                                                    44 
 34 For more fine grained measurements it can be u     45 For more fine grained measurements it can be useful to
 35 access the new  directly from user space. This     46 access the new  directly from user space. This is more complicated,
 36 but drastically lowers overhead.                   47 but drastically lowers overhead.
 37                                                    48 
 38 On Ice Lake, there is a new fixed counter 3: S     49 On Ice Lake, there is a new fixed counter 3: SLOTS, which reports
 39 "pipeline SLOTS" (cycles multiplied by core is     50 "pipeline SLOTS" (cycles multiplied by core issue width) and a
 40 metric register that reports slots ratios for      51 metric register that reports slots ratios for the different bottleneck
 41 categories.                                        52 categories.
 42                                                    53 
 43 The metrics counter is CPU model specific and      54 The metrics counter is CPU model specific and is not available on older
 44 CPUs.                                              55 CPUs.
 45                                                    56 
 46 Example code                                       57 Example code
 47 ============                                       58 ============
 48                                                    59 
 49 Library functions to do the functionality desc     60 Library functions to do the functionality described below
 50 is also available in libjevents [4]                61 is also available in libjevents [4]
 51                                                    62 
 52 The application opens a group with fixed count     63 The application opens a group with fixed counter 3 (SLOTS) and any
 53 metric event, and allow user programs to read      64 metric event, and allow user programs to read the performance counters.
 54                                                    65 
 55 Fixed counter 3 is mapped to a pseudo event ev     66 Fixed counter 3 is mapped to a pseudo event event=0x00, umask=04,
 56 so the perf_event_attr structure should be ini     67 so the perf_event_attr structure should be initialized with
 57 { .config = 0x0400, .type = PERF_TYPE_RAW }        68 { .config = 0x0400, .type = PERF_TYPE_RAW }
 58 The metric events are mapped to the pseudo eve     69 The metric events are mapped to the pseudo event event=0x00, umask=0x8X.
 59 For example, the perf_event_attr structure can     70 For example, the perf_event_attr structure can be initialized with
 60 { .config = 0x8000, .type = PERF_TYPE_RAW } fo     71 { .config = 0x8000, .type = PERF_TYPE_RAW } for Retiring metric event
 61 The Fixed counter 3 must be the leader of the      72 The Fixed counter 3 must be the leader of the group.
 62                                                    73 
 63 #include <linux/perf_event.h>                      74 #include <linux/perf_event.h>
 64 #include <sys/mman.h>                          << 
 65 #include <sys/syscall.h>                           75 #include <sys/syscall.h>
 66 #include <unistd.h>                                76 #include <unistd.h>
 67                                                    77 
 68 /* Provide own perf_event_open stub because gl     78 /* Provide own perf_event_open stub because glibc doesn't */
 69 __attribute__((weak))                              79 __attribute__((weak))
 70 int perf_event_open(struct perf_event_attr *at     80 int perf_event_open(struct perf_event_attr *attr, pid_t pid,
 71                     int cpu, int group_fd, uns     81                     int cpu, int group_fd, unsigned long flags)
 72 {                                                  82 {
 73         return syscall(__NR_perf_event_open, a     83         return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags);
 74 }                                                  84 }
 75                                                    85 
 76 /* Open slots counter file descriptor for curr     86 /* Open slots counter file descriptor for current task. */
 77 struct perf_event_attr slots = {                   87 struct perf_event_attr slots = {
 78         .type = PERF_TYPE_RAW,                     88         .type = PERF_TYPE_RAW,
 79         .size = sizeof(struct perf_event_attr)     89         .size = sizeof(struct perf_event_attr),
 80         .config = 0x400,                           90         .config = 0x400,
 81         .exclude_kernel = 1,                       91         .exclude_kernel = 1,
 82 };                                                 92 };
 83                                                    93 
 84 int slots_fd = perf_event_open(&slots, 0, -1,      94 int slots_fd = perf_event_open(&slots, 0, -1, -1, 0);
 85 if (slots_fd < 0)                                  95 if (slots_fd < 0)
 86         ... error ...                              96         ... error ...
 87                                                    97 
 88 /* Memory mapping the fd permits _rdpmc calls  << 
 89 void *slots_p = mmap(0, getpagesize(), PROT_RE << 
 90 if (!slot_p)                                   << 
 91         .... error ...                         << 
 92                                                << 
 93 /*                                                 98 /*
 94  * Open metrics event file descriptor for curr     99  * Open metrics event file descriptor for current task.
 95  * Set slots event as the leader of the group.    100  * Set slots event as the leader of the group.
 96  */                                               101  */
 97 struct perf_event_attr metrics = {                102 struct perf_event_attr metrics = {
 98         .type = PERF_TYPE_RAW,                    103         .type = PERF_TYPE_RAW,
 99         .size = sizeof(struct perf_event_attr)    104         .size = sizeof(struct perf_event_attr),
100         .config = 0x8000,                         105         .config = 0x8000,
101         .exclude_kernel = 1,                      106         .exclude_kernel = 1,
102 };                                                107 };
103                                                   108 
104 int metrics_fd = perf_event_open(&metrics, 0,     109 int metrics_fd = perf_event_open(&metrics, 0, -1, slots_fd, 0);
105 if (metrics_fd < 0)                               110 if (metrics_fd < 0)
106         ... error ...                             111         ... error ...
107                                                   112 
108 /* Memory mapping the fd permits _rdpmc calls  << 
109 void *metrics_p = mmap(0, getpagesize(), PROT_ << 
110 if (!metrics_p)                                << 
111         ... error ...                          << 
112                                                << 
113 Note: the file descriptors returned by the per << 
114 mapped to permit calls to the _rdpmd instructi << 
115 by writing the /sys/devices/cpu/rdpmc sysfs no << 
116                                                   113 
117 The RDPMC instruction (or _rdpmc compiler intr    114 The RDPMC instruction (or _rdpmc compiler intrinsic) can now be used
118 to read slots and the topdown metrics at diffe    115 to read slots and the topdown metrics at different points of the program:
119                                                   116 
120 #include <stdint.h>                               117 #include <stdint.h>
121 #include <x86intrin.h>                            118 #include <x86intrin.h>
122                                                   119 
123 #define RDPMC_FIXED     (1 << 30)       /* ret    120 #define RDPMC_FIXED     (1 << 30)       /* return fixed counters */
124 #define RDPMC_METRIC    (1 << 29)       /* ret    121 #define RDPMC_METRIC    (1 << 29)       /* return metric counters */
125                                                   122 
126 #define FIXED_COUNTER_SLOTS             3         123 #define FIXED_COUNTER_SLOTS             3
127 #define METRIC_COUNTER_TOPDOWN_L1_L2    0      !! 124 #define METRIC_COUNTER_TOPDOWN_L1       0
128                                                   125 
129 static inline uint64_t read_slots(void)           126 static inline uint64_t read_slots(void)
130 {                                                 127 {
131         return _rdpmc(RDPMC_FIXED | FIXED_COUN    128         return _rdpmc(RDPMC_FIXED | FIXED_COUNTER_SLOTS);
132 }                                                 129 }
133                                                   130 
134 static inline uint64_t read_metrics(void)         131 static inline uint64_t read_metrics(void)
135 {                                                 132 {
136         return _rdpmc(RDPMC_METRIC | METRIC_CO !! 133         return _rdpmc(RDPMC_METRIC | METRIC_COUNTER_TOPDOWN_L1);
137 }                                                 134 }
138                                                   135 
139 Then the program can be instrumented to read t    136 Then the program can be instrumented to read these metrics at different
140 points.                                           137 points.
141                                                   138 
142 It's not a good idea to do this with too short    139 It's not a good idea to do this with too short code regions,
143 as the parallelism and overlap in the CPU prog    140 as the parallelism and overlap in the CPU program execution will
144 cause too much measurement inaccuracy. For exa    141 cause too much measurement inaccuracy. For example instrumenting
145 individual basic blocks is definitely too fine    142 individual basic blocks is definitely too fine grained.
146                                                   143 
147 _rdpmc calls should not be mixed with reading  << 
148 through system calls, as the kernel will reset << 
149 call.                                          << 
150                                                << 
151 Decoding metrics values                           144 Decoding metrics values
152 =======================                           145 =======================
153                                                   146 
154 The value reported by read_metrics() contains     147 The value reported by read_metrics() contains four 8 bit fields
155 that represent a scaled ratio that represent t    148 that represent a scaled ratio that represent the Level 1 bottleneck.
156 All four fields add up to 0xff (= 100%)           149 All four fields add up to 0xff (= 100%)
157                                                   150 
158 The binary ratios in the metric value can be c    151 The binary ratios in the metric value can be converted to float ratios:
159                                                   152 
160 #define GET_METRIC(m, i) (((m) >> (i*8)) & 0xf    153 #define GET_METRIC(m, i) (((m) >> (i*8)) & 0xff)
161                                                   154 
162 /* L1 Topdown metric events */                 << 
163 #define TOPDOWN_RETIRING(val)   ((float)GET_ME    155 #define TOPDOWN_RETIRING(val)   ((float)GET_METRIC(val, 0) / 0xff)
164 #define TOPDOWN_BAD_SPEC(val)   ((float)GET_ME    156 #define TOPDOWN_BAD_SPEC(val)   ((float)GET_METRIC(val, 1) / 0xff)
165 #define TOPDOWN_FE_BOUND(val)   ((float)GET_ME    157 #define TOPDOWN_FE_BOUND(val)   ((float)GET_METRIC(val, 2) / 0xff)
166 #define TOPDOWN_BE_BOUND(val)   ((float)GET_ME    158 #define TOPDOWN_BE_BOUND(val)   ((float)GET_METRIC(val, 3) / 0xff)
167                                                   159 
168 /*                                             << 
169  * L2 Topdown metric events.                   << 
170  * Available on Sapphire Rapids and later plat << 
171  */                                            << 
172 #define TOPDOWN_HEAVY_OPS(val)          ((floa << 
173 #define TOPDOWN_BR_MISPREDICT(val)      ((floa << 
174 #define TOPDOWN_FETCH_LAT(val)          ((floa << 
175 #define TOPDOWN_MEM_BOUND(val)          ((floa << 
176                                                << 
177 and then converted to percent for printing.       160 and then converted to percent for printing.
178                                                   161 
179 The ratios in the metric accumulate for the ti    162 The ratios in the metric accumulate for the time when the counter
180 is enabled. For measuring programs it is often    163 is enabled. For measuring programs it is often useful to measure
181 specific sections. For this it is needed to de    164 specific sections. For this it is needed to deltas on metrics.
182                                                   165 
183 This can be done by scaling the metrics with t    166 This can be done by scaling the metrics with the slots counter
184 read at the same time.                            167 read at the same time.
185                                                   168 
186 Then it's possible to take deltas of these slo    169 Then it's possible to take deltas of these slots counts
187 measured at different points, and determine th    170 measured at different points, and determine the metrics
188 for that time period.                             171 for that time period.
189                                                   172 
190         slots_a = read_slots();                   173         slots_a = read_slots();
191         metric_a = read_metrics();                174         metric_a = read_metrics();
192                                                   175 
193         ... larger code region ...                176         ... larger code region ...
194                                                   177 
195         slots_b = read_slots()                    178         slots_b = read_slots()
196         metric_b = read_metrics()                 179         metric_b = read_metrics()
197                                                   180 
198         # compute scaled metrics for measureme    181         # compute scaled metrics for measurement a
199         retiring_slots_a = GET_METRIC(metric_a    182         retiring_slots_a = GET_METRIC(metric_a, 0) * slots_a
200         bad_spec_slots_a = GET_METRIC(metric_a    183         bad_spec_slots_a = GET_METRIC(metric_a, 1) * slots_a
201         fe_bound_slots_a = GET_METRIC(metric_a    184         fe_bound_slots_a = GET_METRIC(metric_a, 2) * slots_a
202         be_bound_slots_a = GET_METRIC(metric_a    185         be_bound_slots_a = GET_METRIC(metric_a, 3) * slots_a
203                                                   186 
204         # compute delta scaled metrics between    187         # compute delta scaled metrics between b and a
205         retiring_slots = GET_METRIC(metric_b,     188         retiring_slots = GET_METRIC(metric_b, 0) * slots_b - retiring_slots_a
206         bad_spec_slots = GET_METRIC(metric_b,     189         bad_spec_slots = GET_METRIC(metric_b, 1) * slots_b - bad_spec_slots_a
207         fe_bound_slots = GET_METRIC(metric_b,     190         fe_bound_slots = GET_METRIC(metric_b, 2) * slots_b - fe_bound_slots_a
208         be_bound_slots = GET_METRIC(metric_b,     191         be_bound_slots = GET_METRIC(metric_b, 3) * slots_b - be_bound_slots_a
209                                                   192 
210 Later the individual ratios of L1 metric event !! 193 Later the individual ratios for the measurement period can be recreated
211 be recreated from these counts.                !! 194 from these counts.
212                                                   195 
213         slots_delta = slots_b - slots_a           196         slots_delta = slots_b - slots_a
214         retiring_ratio = (float)retiring_slots    197         retiring_ratio = (float)retiring_slots / slots_delta
215         bad_spec_ratio = (float)bad_spec_slots    198         bad_spec_ratio = (float)bad_spec_slots / slots_delta
216         fe_bound_ratio = (float)fe_bound_slots    199         fe_bound_ratio = (float)fe_bound_slots / slots_delta
217         be_bound_ratio = (float)be_bound_slots    200         be_bound_ratio = (float)be_bound_slots / slota_delta
218                                                   201 
219         printf("Retiring %.2f%% Bad Speculatio    202         printf("Retiring %.2f%% Bad Speculation %.2f%% FE Bound %.2f%% BE Bound %.2f%%\n",
220                 retiring_ratio * 100.,            203                 retiring_ratio * 100.,
221                 bad_spec_ratio * 100.,            204                 bad_spec_ratio * 100.,
222                 fe_bound_ratio * 100.,            205                 fe_bound_ratio * 100.,
223                 be_bound_ratio * 100.);           206                 be_bound_ratio * 100.);
224                                                   207 
225 The individual ratios of L2 metric events for  << 
226 recreated from L1 and L2 metric counters. (Ava << 
227 later platforms)                               << 
228                                                << 
229         # compute scaled metrics for measureme << 
230         heavy_ops_slots_a = GET_METRIC(metric_ << 
231         br_mispredict_slots_a = GET_METRIC(met << 
232         fetch_lat_slots_a = GET_METRIC(metric_ << 
233         mem_bound_slots_a = GET_METRIC(metric_ << 
234                                                << 
235         # compute delta scaled metrics between << 
236         heavy_ops_slots = GET_METRIC(metric_b, << 
237         br_mispredict_slots = GET_METRIC(metri << 
238         fetch_lat_slots = GET_METRIC(metric_b, << 
239         mem_bound_slots = GET_METRIC(metric_b, << 
240                                                << 
241         slots_delta = slots_b - slots_a        << 
242         heavy_ops_ratio = (float)heavy_ops_slo << 
243         light_ops_ratio = retiring_ratio - hea << 
244                                                << 
245         br_mispredict_ratio = (float)br_mispre << 
246         machine_clears_ratio = bad_spec_ratio  << 
247                                                << 
248         fetch_lat_ratio = (float)fetch_lat_slo << 
249         fetch_bw_ratio = fe_bound_ratio - fetc << 
250                                                << 
251         mem_bound_ratio = (float)mem_bound_slo << 
252         core_bound_ratio = be_bound_ratio - me << 
253                                                << 
254         printf("Heavy Operations %.2f%% Light  << 
255                "Branch Mispredict %.2f%% Machi << 
256                "Fetch Latency %.2f%% Fetch Ban << 
257                "Mem Bound %.2f%% Core Bound %. << 
258                 heavy_ops_ratio * 100.,        << 
259                 light_ops_ratio * 100.,        << 
260                 br_mispredict_ratio * 100.,    << 
261                 machine_clears_ratio * 100.,   << 
262                 fetch_lat_ratio * 100.,        << 
263                 fetch_bw_ratio * 100.,         << 
264                 mem_bound_ratio * 100.,        << 
265                 core_bound_ratio * 100.);      << 
266                                                << 
267 Resetting metrics counters                        208 Resetting metrics counters
268 ==========================                        209 ==========================
269                                                   210 
270 Since the individual metrics are only 8bit the    211 Since the individual metrics are only 8bit they lose precision for
271 short regions over time because the number of     212 short regions over time because the number of cycles covered by each
272 fraction bit shrinks. So the counters need to     213 fraction bit shrinks. So the counters need to be reset regularly.
273                                                   214 
274 When using the kernel perf API the kernel rese    215 When using the kernel perf API the kernel resets on every read.
275 So as long as the reading is at reasonable int    216 So as long as the reading is at reasonable intervals (every few
276 seconds) the precision is good.                   217 seconds) the precision is good.
277                                                   218 
278 When using perf stat it is recommended to alwa    219 When using perf stat it is recommended to always use the -I option,
279 with no longer interval than a few seconds        220 with no longer interval than a few seconds
280                                                   221 
281         perf stat -I 1000 --topdown ...           222         perf stat -I 1000 --topdown ...
282                                                   223 
283 For user programs using RDPMC directly the cou    224 For user programs using RDPMC directly the counter can
284 be reset explicitly using ioctl:                  225 be reset explicitly using ioctl:
285                                                   226 
286         ioctl(perf_fd, PERF_EVENT_IOC_RESET, 0    227         ioctl(perf_fd, PERF_EVENT_IOC_RESET, 0);
287                                                   228 
288 This "opens" a new measurement period.            229 This "opens" a new measurement period.
289                                                   230 
290 A program using RDPMC for TopDown should sched    231 A program using RDPMC for TopDown should schedule such a reset
291 regularly, as in every few seconds.               232 regularly, as in every few seconds.
292                                                   233 
293 Limits on Intel Ice Lake                       !! 234 Limits on Ice Lake
294 ========================                       !! 235 ==================
295                                                   236 
296 Four pseudo TopDown metric events are exposed     237 Four pseudo TopDown metric events are exposed for the end-users,
297 topdown-retiring, topdown-bad-spec, topdown-fe    238 topdown-retiring, topdown-bad-spec, topdown-fe-bound and topdown-be-bound.
298 They can be used to collect the TopDown value     239 They can be used to collect the TopDown value under the following
299 rules:                                            240 rules:
300 - All the TopDown metric events must be in a g    241 - All the TopDown metric events must be in a group with the SLOTS event.
301 - The SLOTS event must be the leader of the gr    242 - The SLOTS event must be the leader of the group.
302 - The PERF_FORMAT_GROUP flag must be applied f    243 - The PERF_FORMAT_GROUP flag must be applied for each TopDown metric
303   events                                          244   events
304                                                   245 
305 The SLOTS event and the TopDown metric events     246 The SLOTS event and the TopDown metric events can be counting members of
306 a sampling read group. Since the SLOTS event m    247 a sampling read group. Since the SLOTS event must be the leader of a TopDown
307 group, the second event of the group is the sa    248 group, the second event of the group is the sampling event.
308 For example, perf record -e '{slots, $sampling    249 For example, perf record -e '{slots, $sampling_event, topdown-retiring}:S'
309                                                   250 
310 Extension on Intel Sapphire Rapids Server      << 
311 =========================================      << 
312 The metrics counter is extended to support TMA << 
313 The lower half of the register is the TMA leve << 
314 The upper half is also divided into four 8-bit << 
315 metrics. Four more TopDown metric events are e << 
316 topdown-heavy-ops, topdown-br-mispredict, topd << 
317 topdown-mem-bound.                             << 
318                                                << 
319 Each of the new level 2 metrics in the upper h << 
320 corresponding level 1 metric in the lower half << 
321 other four level 2 metrics by subtracting corr << 
322                                                << 
323     Light_Operations = Retiring - Heavy_Operat << 
324     Machine_Clears = Bad_Speculation - Branch_ << 
325     Fetch_Bandwidth = Frontend_Bound - Fetch_L << 
326     Core_Bound = Backend_Bound - Memory_Bound  << 
327                                                << 
328 TPEBS in TopDown                               << 
329 ================                               << 
330                                                << 
331 TPEBS (Timed PEBS) is one of the new Intel PMU << 
332 Rapids microarchitecture. The TPEBS feature ad << 
333 in the Basic Info group of the PEBS record. It << 
334 retirement of the previous instruction to the  << 
335 Please refer to Section 8.4.1 of "Intel® Arch << 
336 Programming Reference" for more details about  << 
337 extends PEBS record, sampling with weight opti << 
338 retire_latency value.                          << 
339                                                << 
340         perf record -e event_name -W ...       << 
341                                                << 
342 In the most recent release of TMA, the metrics << 
343 values in some of the metrics’ formulas on p << 
344 For previous generations that do not support T << 
345 predefined per processor family by the hardwar << 
346 of workloads in execution environments, retire << 
347 time are more accurate. Therefore, new TMA met << 
348 more accurate performance analysis results.    << 
349                                                << 
350 To support TPEBS in TMA metrics, a new modifie << 
351 capture retire_latency value of required event << 
352 with perf record. The retire_latency value wou << 
353 Currently, this feature is supported through p << 
354                                                << 
355         perf stat -M metric_name --record-tpeb << 
356                                                << 
357                                                << 
358                                                   251 
359 [1] https://software.intel.com/en-us/top-down-    252 [1] https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win
360 [2] https://sites.google.com/site/analysismeth !! 253 [2] https://github.com/andikleen/pmu-tools/wiki/toplev-manual
361 [3] https://perf.wiki.kernel.org/index.php/Top !! 254 [3] https://software.intel.com/en-us/intel-vtune-amplifier-xe
362 [4] https://github.com/andikleen/pmu-tools/tre    255 [4] https://github.com/andikleen/pmu-tools/tree/master/jevents
                                                   >> 256 [5] https://sites.google.com/site/analysismethods/yasin-pubs
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php