1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * numa.c 3 * numa.c 4 * 4 * 5 * numa: Simulate NUMA-sensitive workload and 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 6 */ 7 7 8 #include <inttypes.h> 8 #include <inttypes.h> >> 9 /* For the CLR_() macros */ >> 10 #include <pthread.h> 9 11 >> 12 #include "../perf.h" >> 13 #include "../builtin.h" >> 14 #include "../util/util.h" 10 #include <subcmd/parse-options.h> 15 #include <subcmd/parse-options.h> 11 #include "../util/cloexec.h" 16 #include "../util/cloexec.h" 12 17 13 #include "bench.h" 18 #include "bench.h" 14 19 15 #include <errno.h> 20 #include <errno.h> 16 #include <sched.h> 21 #include <sched.h> 17 #include <stdio.h> 22 #include <stdio.h> 18 #include <assert.h> 23 #include <assert.h> 19 #include <debug.h> << 20 #include <malloc.h> 24 #include <malloc.h> 21 #include <signal.h> 25 #include <signal.h> 22 #include <stdlib.h> 26 #include <stdlib.h> 23 #include <string.h> 27 #include <string.h> 24 #include <unistd.h> 28 #include <unistd.h> 25 #include <sys/mman.h> 29 #include <sys/mman.h> 26 #include <sys/time.h> 30 #include <sys/time.h> 27 #include <sys/resource.h> 31 #include <sys/resource.h> 28 #include <sys/wait.h> 32 #include <sys/wait.h> 29 #include <sys/prctl.h> 33 #include <sys/prctl.h> 30 #include <sys/types.h> 34 #include <sys/types.h> 31 #include <linux/kernel.h> 35 #include <linux/kernel.h> 32 #include <linux/time64.h> 36 #include <linux/time64.h> 33 #include <linux/numa.h> << 34 #include <linux/zalloc.h> << 35 37 36 #include "../util/header.h" << 37 #include "../util/mutex.h" << 38 #include <numa.h> 38 #include <numa.h> 39 #include <numaif.h> 39 #include <numaif.h> 40 40 41 #ifndef RUSAGE_THREAD << 42 # define RUSAGE_THREAD 1 << 43 #endif << 44 << 45 /* 41 /* 46 * Regular printout to the terminal, suppresse !! 42 * Regular printout to the terminal, supressed if -q is specified: 47 */ 43 */ 48 #define tprintf(x...) do { if (g && g->p.show_ 44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 49 45 50 /* 46 /* 51 * Debug printf: 47 * Debug printf: 52 */ 48 */ 53 #undef dprintf 49 #undef dprintf 54 #define dprintf(x...) do { if (g && g->p.show_ 50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 55 51 56 struct thread_data { 52 struct thread_data { 57 int curr_cpu; 53 int curr_cpu; 58 cpu_set_t *bind_cpumask; !! 54 cpu_set_t bind_cpumask; 59 int bind_node; 55 int bind_node; 60 u8 *process_data; 56 u8 *process_data; 61 int process_nr; 57 int process_nr; 62 int thread_nr; 58 int thread_nr; 63 int task_nr; 59 int task_nr; 64 unsigned int loops_done; 60 unsigned int loops_done; 65 u64 val; 61 u64 val; 66 u64 runtime_ns; 62 u64 runtime_ns; 67 u64 system_time_ns 63 u64 system_time_ns; 68 u64 user_time_ns; 64 u64 user_time_ns; 69 double speed_gbs; 65 double speed_gbs; 70 struct mutex *process_lock; !! 66 pthread_mutex_t *process_lock; 71 }; 67 }; 72 68 73 /* Parameters set by options: */ 69 /* Parameters set by options: */ 74 70 75 struct params { 71 struct params { 76 /* Startup synchronization: */ 72 /* Startup synchronization: */ 77 bool serialize_star 73 bool serialize_startup; 78 74 79 /* Task hierarchy: */ 75 /* Task hierarchy: */ 80 int nr_proc; 76 int nr_proc; 81 int nr_threads; 77 int nr_threads; 82 78 83 /* Working set sizes: */ 79 /* Working set sizes: */ 84 const char *mb_global_str 80 const char *mb_global_str; 85 const char *mb_proc_str; 81 const char *mb_proc_str; 86 const char *mb_proc_locke 82 const char *mb_proc_locked_str; 87 const char *mb_thread_str 83 const char *mb_thread_str; 88 84 89 double mb_global; 85 double mb_global; 90 double mb_proc; 86 double mb_proc; 91 double mb_proc_locked 87 double mb_proc_locked; 92 double mb_thread; 88 double mb_thread; 93 89 94 /* Access patterns to the working set: 90 /* Access patterns to the working set: */ 95 bool data_reads; 91 bool data_reads; 96 bool data_writes; 92 bool data_writes; 97 bool data_backwards 93 bool data_backwards; 98 bool data_zero_mems 94 bool data_zero_memset; 99 bool data_rand_walk 95 bool data_rand_walk; 100 u32 nr_loops; 96 u32 nr_loops; 101 u32 nr_secs; 97 u32 nr_secs; 102 u32 sleep_usecs; 98 u32 sleep_usecs; 103 99 104 /* Working set initialization: */ 100 /* Working set initialization: */ 105 bool init_zero; 101 bool init_zero; 106 bool init_random; 102 bool init_random; 107 bool init_cpu0; 103 bool init_cpu0; 108 104 109 /* Misc options: */ 105 /* Misc options: */ 110 int show_details; 106 int show_details; 111 int run_all; 107 int run_all; 112 int thp; 108 int thp; 113 109 114 long bytes_global; 110 long bytes_global; 115 long bytes_process; 111 long bytes_process; 116 long bytes_process_ 112 long bytes_process_locked; 117 long bytes_thread; 113 long bytes_thread; 118 114 119 int nr_tasks; 115 int nr_tasks; >> 116 bool show_quiet; 120 117 121 bool show_convergen 118 bool show_convergence; 122 bool measure_conver 119 bool measure_convergence; 123 120 124 int perturb_secs; 121 int perturb_secs; 125 int nr_cpus; 122 int nr_cpus; 126 int nr_nodes; 123 int nr_nodes; 127 124 128 /* Affinity options -C and -N: */ 125 /* Affinity options -C and -N: */ 129 char *cpu_list_str; 126 char *cpu_list_str; 130 char *node_list_str 127 char *node_list_str; 131 }; 128 }; 132 129 133 130 134 /* Global, read-writable area, accessible to a 131 /* Global, read-writable area, accessible to all processes and threads: */ 135 132 136 struct global_info { 133 struct global_info { 137 u8 *data; 134 u8 *data; 138 135 139 struct mutex startup_mutex; !! 136 pthread_mutex_t startup_mutex; 140 struct cond startup_cond; << 141 int nr_tasks_start 137 int nr_tasks_started; 142 138 143 struct mutex start_work_mut !! 139 pthread_mutex_t startup_done_mutex; 144 struct cond start_work_con !! 140 >> 141 pthread_mutex_t start_work_mutex; 145 int nr_tasks_worki 142 int nr_tasks_working; 146 bool start_work; << 147 143 148 struct mutex stop_work_mute !! 144 pthread_mutex_t stop_work_mutex; 149 u64 bytes_done; 145 u64 bytes_done; 150 146 151 struct thread_data *threads; 147 struct thread_data *threads; 152 148 153 /* Convergence latency measurement: */ 149 /* Convergence latency measurement: */ 154 bool all_converged; 150 bool all_converged; 155 bool stop_work; 151 bool stop_work; 156 152 157 int print_once; 153 int print_once; 158 154 159 struct params p; 155 struct params p; 160 }; 156 }; 161 157 162 static struct global_info *g = NULL; 158 static struct global_info *g = NULL; 163 159 164 static int parse_cpus_opt(const struct option 160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 165 static int parse_nodes_opt(const struct option 161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 166 162 167 struct params p0; 163 struct params p0; 168 164 169 static const struct option options[] = { 165 static const struct option options[] = { 170 OPT_INTEGER('p', "nr_proc" , &p0. 166 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 171 OPT_INTEGER('t', "nr_threads" , &p0. 167 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 172 168 173 OPT_STRING('G', "mb_global" , &p0. 169 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 174 OPT_STRING('P', "mb_proc" , &p0. 170 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 175 OPT_STRING('L', "mb_proc_locked", &p0. 171 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 176 OPT_STRING('T', "mb_thread" , &p0. 172 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 177 173 178 OPT_UINTEGER('l', "nr_loops" , &p0. 174 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 179 OPT_UINTEGER('s', "nr_secs" , &p0. 175 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 180 OPT_UINTEGER('u', "usleep" , &p0. 176 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 181 177 182 OPT_BOOLEAN('R', "data_reads" , &p0. 178 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 183 OPT_BOOLEAN('W', "data_writes" , &p0. 179 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 184 OPT_BOOLEAN('B', "data_backwards", &p0 180 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 185 OPT_BOOLEAN('Z', "data_zero_memset", & 181 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 186 OPT_BOOLEAN('r', "data_rand_walk", &p0 182 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 187 183 188 184 189 OPT_BOOLEAN('z', "init_zero" , &p0. 185 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 190 OPT_BOOLEAN('I', "init_random" , &p0. 186 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 191 OPT_BOOLEAN('', "init_cpu0" , &p0.i 187 OPT_BOOLEAN('', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 192 OPT_INTEGER('x', "perturb_secs", &p0.p 188 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 193 189 194 OPT_INCR ('d', "show_details" , &p0. 190 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 195 OPT_INCR ('a', "all" , &p0. 191 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 196 OPT_INTEGER('H', "thp" , &p0. 192 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 197 OPT_BOOLEAN('c', "show_convergence", & 193 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 198 "convergence is reached wh 194 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 199 OPT_BOOLEAN('m', "measure_convergence" 195 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 200 OPT_BOOLEAN('q', "quiet" , &qui !! 196 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 201 "quiet mode (do not show a << 202 OPT_BOOLEAN('S', "serialize-startup", 197 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 203 198 204 /* Special option string parsing callb 199 /* Special option string parsing callbacks: */ 205 OPT_CALLBACK('C', "cpus", NULL, "cpu[, 200 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 206 "bind the first N task 201 "bind the first N tasks to these specific cpus (the rest is unbound)", 207 parse_cpus_opt), 202 parse_cpus_opt), 208 OPT_CALLBACK('M', "memnodes", NULL, "n 203 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 209 "bind the first N task 204 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 210 parse_nodes_opt), 205 parse_nodes_opt), 211 OPT_END() 206 OPT_END() 212 }; 207 }; 213 208 214 static const char * const bench_numa_usage[] = 209 static const char * const bench_numa_usage[] = { 215 "perf bench numa <options>", 210 "perf bench numa <options>", 216 NULL 211 NULL 217 }; 212 }; 218 213 219 static const char * const numa_usage[] = { 214 static const char * const numa_usage[] = { 220 "perf bench numa mem [<options>]", 215 "perf bench numa mem [<options>]", 221 NULL 216 NULL 222 }; 217 }; 223 218 224 /* 219 /* 225 * To get number of numa nodes present. 220 * To get number of numa nodes present. 226 */ 221 */ 227 static int nr_numa_nodes(void) 222 static int nr_numa_nodes(void) 228 { 223 { 229 int i, nr_nodes = 0; 224 int i, nr_nodes = 0; 230 225 231 for (i = 0; i < g->p.nr_nodes; i++) { 226 for (i = 0; i < g->p.nr_nodes; i++) { 232 if (numa_bitmask_isbitset(numa 227 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 233 nr_nodes++; 228 nr_nodes++; 234 } 229 } 235 230 236 return nr_nodes; 231 return nr_nodes; 237 } 232 } 238 233 239 /* 234 /* 240 * To check if given numa node is present. 235 * To check if given numa node is present. 241 */ 236 */ 242 static int is_node_present(int node) 237 static int is_node_present(int node) 243 { 238 { 244 return numa_bitmask_isbitset(numa_node 239 return numa_bitmask_isbitset(numa_nodes_ptr, node); 245 } 240 } 246 241 247 /* 242 /* 248 * To check given numa node has cpus. 243 * To check given numa node has cpus. 249 */ 244 */ 250 static bool node_has_cpus(int node) 245 static bool node_has_cpus(int node) 251 { 246 { 252 struct bitmask *cpumask = numa_allocat !! 247 struct bitmask *cpu = numa_allocate_cpumask(); 253 bool ret = false; /* fall back to nocp !! 248 unsigned int i; 254 int cpu; << 255 249 256 BUG_ON(!cpumask); !! 250 if (cpu && !numa_node_to_cpus(node, cpu)) { 257 if (!numa_node_to_cpus(node, cpumask)) !! 251 for (i = 0; i < cpu->size; i++) { 258 for (cpu = 0; cpu < (int)cpuma !! 252 if (numa_bitmask_isbitset(cpu, i)) 259 if (numa_bitmask_isbit !! 253 return true; 260 ret = true; << 261 break; << 262 } << 263 } 254 } 264 } 255 } 265 numa_free_cpumask(cpumask); << 266 256 267 return ret; !! 257 return false; /* lets fall back to nocpus safely */ 268 } 258 } 269 259 270 static cpu_set_t *bind_to_cpu(int target_cpu) !! 260 static cpu_set_t bind_to_cpu(int target_cpu) 271 { 261 { 272 int nrcpus = numa_num_possible_cpus(); !! 262 cpu_set_t orig_mask, mask; 273 cpu_set_t *orig_mask, *mask; !! 263 int ret; 274 size_t size; << 275 << 276 orig_mask = CPU_ALLOC(nrcpus); << 277 BUG_ON(!orig_mask); << 278 size = CPU_ALLOC_SIZE(nrcpus); << 279 CPU_ZERO_S(size, orig_mask); << 280 << 281 if (sched_getaffinity(0, size, orig_ma << 282 goto err_out; << 283 264 284 mask = CPU_ALLOC(nrcpus); !! 265 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 285 if (!mask) !! 266 BUG_ON(ret); 286 goto err_out; << 287 267 288 CPU_ZERO_S(size, mask); !! 268 CPU_ZERO(&mask); 289 269 290 if (target_cpu == -1) { 270 if (target_cpu == -1) { 291 int cpu; 271 int cpu; 292 272 293 for (cpu = 0; cpu < g->p.nr_cp 273 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 294 CPU_SET_S(cpu, size, m !! 274 CPU_SET(cpu, &mask); 295 } else { 275 } else { 296 if (target_cpu < 0 || target_c !! 276 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 297 goto err; !! 277 CPU_SET(target_cpu, &mask); 298 << 299 CPU_SET_S(target_cpu, size, ma << 300 } 278 } 301 279 302 if (sched_setaffinity(0, size, mask)) !! 280 ret = sched_setaffinity(0, sizeof(mask), &mask); 303 goto err; !! 281 BUG_ON(ret); 304 282 305 return orig_mask; 283 return orig_mask; 306 << 307 err: << 308 CPU_FREE(mask); << 309 err_out: << 310 CPU_FREE(orig_mask); << 311 << 312 /* BUG_ON due to failure in allocation << 313 BUG_ON(-1); << 314 return NULL; << 315 } 284 } 316 285 317 static cpu_set_t *bind_to_node(int target_node !! 286 static cpu_set_t bind_to_node(int target_node) 318 { 287 { 319 int nrcpus = numa_num_possible_cpus(); !! 288 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes(); 320 size_t size; !! 289 cpu_set_t orig_mask, mask; 321 cpu_set_t *orig_mask, *mask; << 322 int cpu; 290 int cpu; >> 291 int ret; 323 292 324 orig_mask = CPU_ALLOC(nrcpus); !! 293 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus); 325 BUG_ON(!orig_mask); !! 294 BUG_ON(!cpus_per_node); 326 size = CPU_ALLOC_SIZE(nrcpus); << 327 CPU_ZERO_S(size, orig_mask); << 328 << 329 if (sched_getaffinity(0, size, orig_ma << 330 goto err_out; << 331 295 332 mask = CPU_ALLOC(nrcpus); !! 296 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 333 if (!mask) !! 297 BUG_ON(ret); 334 goto err_out; << 335 298 336 CPU_ZERO_S(size, mask); !! 299 CPU_ZERO(&mask); 337 300 338 if (target_node == NUMA_NO_NODE) { !! 301 if (target_node == -1) { 339 for (cpu = 0; cpu < g->p.nr_cp 302 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 340 CPU_SET_S(cpu, size, m !! 303 CPU_SET(cpu, &mask); 341 } else { 304 } else { 342 struct bitmask *cpumask = numa !! 305 int cpu_start = (target_node + 0) * cpus_per_node; >> 306 int cpu_stop = (target_node + 1) * cpus_per_node; 343 307 344 if (!cpumask) !! 308 BUG_ON(cpu_stop > g->p.nr_cpus); 345 goto err; << 346 309 347 if (!numa_node_to_cpus(target_ !! 310 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 348 for (cpu = 0; cpu < (i !! 311 CPU_SET(cpu, &mask); 349 if (numa_bitma << 350 CPU_SE << 351 } << 352 } << 353 numa_free_cpumask(cpumask); << 354 } 312 } 355 313 356 if (sched_setaffinity(0, size, mask)) !! 314 ret = sched_setaffinity(0, sizeof(mask), &mask); 357 goto err; !! 315 BUG_ON(ret); 358 316 359 return orig_mask; 317 return orig_mask; 360 << 361 err: << 362 CPU_FREE(mask); << 363 err_out: << 364 CPU_FREE(orig_mask); << 365 << 366 /* BUG_ON due to failure in allocation << 367 BUG_ON(-1); << 368 return NULL; << 369 } 318 } 370 319 371 static void bind_to_cpumask(cpu_set_t *mask) !! 320 static void bind_to_cpumask(cpu_set_t mask) 372 { 321 { 373 int ret; 322 int ret; 374 size_t size = CPU_ALLOC_SIZE(numa_num_ << 375 323 376 ret = sched_setaffinity(0, size, mask) !! 324 ret = sched_setaffinity(0, sizeof(mask), &mask); 377 if (ret) { !! 325 BUG_ON(ret); 378 CPU_FREE(mask); << 379 BUG_ON(ret); << 380 } << 381 } 326 } 382 327 383 static void mempol_restore(void) 328 static void mempol_restore(void) 384 { 329 { 385 int ret; 330 int ret; 386 331 387 ret = set_mempolicy(MPOL_DEFAULT, NULL 332 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 388 333 389 BUG_ON(ret); 334 BUG_ON(ret); 390 } 335 } 391 336 392 static void bind_to_memnode(int node) 337 static void bind_to_memnode(int node) 393 { 338 { 394 struct bitmask *node_mask; !! 339 unsigned long nodemask; 395 int ret; 340 int ret; 396 341 397 if (node == NUMA_NO_NODE) !! 342 if (node == -1) 398 return; 343 return; 399 344 400 node_mask = numa_allocate_nodemask(); !! 345 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 401 BUG_ON(!node_mask); !! 346 nodemask = 1L << node; 402 << 403 numa_bitmask_clearall(node_mask); << 404 numa_bitmask_setbit(node_mask, node); << 405 347 406 ret = set_mempolicy(MPOL_BIND, node_ma !! 348 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 407 dprintf("binding to node %d, mask: %01 !! 349 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 408 350 409 numa_bitmask_free(node_mask); << 410 BUG_ON(ret); 351 BUG_ON(ret); 411 } 352 } 412 353 413 #define HPSIZE (2*1024*1024) 354 #define HPSIZE (2*1024*1024) 414 355 415 #define set_taskname(fmt...) 356 #define set_taskname(fmt...) \ 416 do { 357 do { \ 417 char name[20]; 358 char name[20]; \ 418 359 \ 419 snprintf(name, 20, fmt); 360 snprintf(name, 20, fmt); \ 420 prctl(PR_SET_NAME, name); 361 prctl(PR_SET_NAME, name); \ 421 } while (0) 362 } while (0) 422 363 423 static u8 *alloc_data(ssize_t bytes0, int map_ 364 static u8 *alloc_data(ssize_t bytes0, int map_flags, 424 int init_zero, int init_ 365 int init_zero, int init_cpu0, int thp, int init_random) 425 { 366 { 426 cpu_set_t *orig_mask = NULL; !! 367 cpu_set_t orig_mask; 427 ssize_t bytes; 368 ssize_t bytes; 428 u8 *buf; 369 u8 *buf; 429 int ret; 370 int ret; 430 371 431 if (!bytes0) 372 if (!bytes0) 432 return NULL; 373 return NULL; 433 374 434 /* Allocate and initialize all memory 375 /* Allocate and initialize all memory on CPU#0: */ 435 if (init_cpu0) { 376 if (init_cpu0) { 436 int node = numa_node_of_cpu(0) !! 377 orig_mask = bind_to_node(0); 437 !! 378 bind_to_memnode(0); 438 orig_mask = bind_to_node(node) << 439 bind_to_memnode(node); << 440 } 379 } 441 380 442 bytes = bytes0 + HPSIZE; 381 bytes = bytes0 + HPSIZE; 443 382 444 buf = (void *)mmap(0, bytes, PROT_READ 383 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 445 BUG_ON(buf == (void *)-1); 384 BUG_ON(buf == (void *)-1); 446 385 447 if (map_flags == MAP_PRIVATE) { 386 if (map_flags == MAP_PRIVATE) { 448 if (thp > 0) { 387 if (thp > 0) { 449 ret = madvise(buf, byt 388 ret = madvise(buf, bytes, MADV_HUGEPAGE); 450 if (ret && !g->print_o 389 if (ret && !g->print_once) { 451 g->print_once 390 g->print_once = 1; 452 printf("WARNIN 391 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 453 } 392 } 454 } 393 } 455 if (thp < 0) { 394 if (thp < 0) { 456 ret = madvise(buf, byt 395 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 457 if (ret && !g->print_o 396 if (ret && !g->print_once) { 458 g->print_once 397 g->print_once = 1; 459 printf("WARNIN 398 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 460 } 399 } 461 } 400 } 462 } 401 } 463 402 464 if (init_zero) { 403 if (init_zero) { 465 bzero(buf, bytes); 404 bzero(buf, bytes); 466 } else { 405 } else { 467 /* Initialize random contents, 406 /* Initialize random contents, different in each word: */ 468 if (init_random) { 407 if (init_random) { 469 u64 *wbuf = (void *)bu 408 u64 *wbuf = (void *)buf; 470 long off = rand(); 409 long off = rand(); 471 long i; 410 long i; 472 411 473 for (i = 0; i < bytes/ 412 for (i = 0; i < bytes/8; i++) 474 wbuf[i] = i + 413 wbuf[i] = i + off; 475 } 414 } 476 } 415 } 477 416 478 /* Align to 2MB boundary: */ 417 /* Align to 2MB boundary: */ 479 buf = (void *)(((unsigned long)buf + H 418 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 480 419 481 /* Restore affinity: */ 420 /* Restore affinity: */ 482 if (init_cpu0) { 421 if (init_cpu0) { 483 bind_to_cpumask(orig_mask); 422 bind_to_cpumask(orig_mask); 484 CPU_FREE(orig_mask); << 485 mempol_restore(); 423 mempol_restore(); 486 } 424 } 487 425 488 return buf; 426 return buf; 489 } 427 } 490 428 491 static void free_data(void *data, ssize_t byte 429 static void free_data(void *data, ssize_t bytes) 492 { 430 { 493 int ret; 431 int ret; 494 432 495 if (!data) 433 if (!data) 496 return; 434 return; 497 435 498 ret = munmap(data, bytes); 436 ret = munmap(data, bytes); 499 BUG_ON(ret); 437 BUG_ON(ret); 500 } 438 } 501 439 502 /* 440 /* 503 * Create a shared memory buffer that can be s 441 * Create a shared memory buffer that can be shared between processes, zeroed: 504 */ 442 */ 505 static void * zalloc_shared_data(ssize_t bytes 443 static void * zalloc_shared_data(ssize_t bytes) 506 { 444 { 507 return alloc_data(bytes, MAP_SHARED, 1 445 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 508 } 446 } 509 447 510 /* 448 /* 511 * Create a shared memory buffer that can be s 449 * Create a shared memory buffer that can be shared between processes: 512 */ 450 */ 513 static void * setup_shared_data(ssize_t bytes) 451 static void * setup_shared_data(ssize_t bytes) 514 { 452 { 515 return alloc_data(bytes, MAP_SHARED, 0 453 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 516 } 454 } 517 455 518 /* 456 /* 519 * Allocate process-local memory - this will e 457 * Allocate process-local memory - this will either be shared between 520 * threads of this process, or only be accesse 458 * threads of this process, or only be accessed by this thread: 521 */ 459 */ 522 static void * setup_private_data(ssize_t bytes 460 static void * setup_private_data(ssize_t bytes) 523 { 461 { 524 return alloc_data(bytes, MAP_PRIVATE, 462 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 525 } 463 } 526 464 >> 465 /* >> 466 * Return a process-shared (global) mutex: >> 467 */ >> 468 static void init_global_mutex(pthread_mutex_t *mutex) >> 469 { >> 470 pthread_mutexattr_t attr; >> 471 >> 472 pthread_mutexattr_init(&attr); >> 473 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); >> 474 pthread_mutex_init(mutex, &attr); >> 475 } >> 476 527 static int parse_cpu_list(const char *arg) 477 static int parse_cpu_list(const char *arg) 528 { 478 { 529 p0.cpu_list_str = strdup(arg); 479 p0.cpu_list_str = strdup(arg); 530 480 531 dprintf("got CPU list: {%s}\n", p0.cpu 481 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 532 482 533 return 0; 483 return 0; 534 } 484 } 535 485 536 static int parse_setup_cpu_list(void) 486 static int parse_setup_cpu_list(void) 537 { 487 { 538 struct thread_data *td; 488 struct thread_data *td; 539 char *str0, *str; 489 char *str0, *str; 540 int t; 490 int t; 541 491 542 if (!g->p.cpu_list_str) 492 if (!g->p.cpu_list_str) 543 return 0; 493 return 0; 544 494 545 dprintf("g->p.nr_tasks: %d\n", g->p.nr 495 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 546 496 547 str0 = str = strdup(g->p.cpu_list_str) 497 str0 = str = strdup(g->p.cpu_list_str); 548 t = 0; 498 t = 0; 549 499 550 BUG_ON(!str); 500 BUG_ON(!str); 551 501 552 tprintf("# binding tasks to CPUs:\n"); 502 tprintf("# binding tasks to CPUs:\n"); 553 tprintf("# "); 503 tprintf("# "); 554 504 555 while (true) { 505 while (true) { 556 int bind_cpu, bind_cpu_0, bind 506 int bind_cpu, bind_cpu_0, bind_cpu_1; 557 char *tok, *tok_end, *tok_step 507 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 558 int bind_len; 508 int bind_len; 559 int step; 509 int step; 560 int mul; 510 int mul; 561 511 562 tok = strsep(&str, ","); 512 tok = strsep(&str, ","); 563 if (!tok) 513 if (!tok) 564 break; 514 break; 565 515 566 tok_end = strstr(tok, "-"); 516 tok_end = strstr(tok, "-"); 567 517 568 dprintf("\ntoken: {%s}, end: { 518 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 569 if (!tok_end) { 519 if (!tok_end) { 570 /* Single CPU specifie 520 /* Single CPU specified: */ 571 bind_cpu_0 = bind_cpu_ 521 bind_cpu_0 = bind_cpu_1 = atol(tok); 572 } else { 522 } else { 573 /* CPU range specified 523 /* CPU range specified (for example: "5-11"): */ 574 bind_cpu_0 = atol(tok) 524 bind_cpu_0 = atol(tok); 575 bind_cpu_1 = atol(tok_ 525 bind_cpu_1 = atol(tok_end + 1); 576 } 526 } 577 527 578 step = 1; 528 step = 1; 579 tok_step = strstr(tok, "#"); 529 tok_step = strstr(tok, "#"); 580 if (tok_step) { 530 if (tok_step) { 581 step = atol(tok_step + 531 step = atol(tok_step + 1); 582 BUG_ON(step <= 0 || st 532 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 583 } 533 } 584 534 585 /* 535 /* 586 * Mask length. 536 * Mask length. 587 * Eg: "--cpus 8_4-16#4" means 537 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 588 * where the _4 means the next 538 * where the _4 means the next 4 CPUs are allowed. 589 */ 539 */ 590 bind_len = 1; 540 bind_len = 1; 591 tok_len = strstr(tok, "_"); 541 tok_len = strstr(tok, "_"); 592 if (tok_len) { 542 if (tok_len) { 593 bind_len = atol(tok_le 543 bind_len = atol(tok_len + 1); 594 BUG_ON(bind_len <= 0 | 544 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 595 } 545 } 596 546 597 /* Multiplicator shortcut, "0x 547 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 598 mul = 1; 548 mul = 1; 599 tok_mul = strstr(tok, "x"); 549 tok_mul = strstr(tok, "x"); 600 if (tok_mul) { 550 if (tok_mul) { 601 mul = atol(tok_mul + 1 551 mul = atol(tok_mul + 1); 602 BUG_ON(mul <= 0); 552 BUG_ON(mul <= 0); 603 } 553 } 604 554 605 dprintf("CPUs: %d_%d-%d#%dx%d\ 555 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 606 556 607 if (bind_cpu_0 >= g->p.nr_cpus 557 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 608 printf("\nTest not app 558 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 609 return -1; 559 return -1; 610 } 560 } 611 561 612 if (is_cpu_online(bind_cpu_0) << 613 printf("\nTest not app << 614 return -1; << 615 } << 616 << 617 BUG_ON(bind_cpu_0 < 0 || bind_ 562 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 618 BUG_ON(bind_cpu_0 > bind_cpu_1 563 BUG_ON(bind_cpu_0 > bind_cpu_1); 619 564 620 for (bind_cpu = bind_cpu_0; bi 565 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 621 size_t size = CPU_ALLO << 622 int i; 566 int i; 623 567 624 for (i = 0; i < mul; i 568 for (i = 0; i < mul; i++) { 625 int cpu; 569 int cpu; 626 570 627 if (t >= g->p. 571 if (t >= g->p.nr_tasks) { 628 printf 572 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 629 goto o 573 goto out; 630 } 574 } 631 td = g->thread 575 td = g->threads + t; 632 576 633 if (t) 577 if (t) 634 tprint 578 tprintf(","); 635 if (bind_len > 579 if (bind_len > 1) { 636 tprint 580 tprintf("%2d/%d", bind_cpu, bind_len); 637 } else { 581 } else { 638 tprint 582 tprintf("%2d", bind_cpu); 639 } 583 } 640 584 641 td->bind_cpuma !! 585 CPU_ZERO(&td->bind_cpumask); 642 BUG_ON(!td->bi << 643 CPU_ZERO_S(siz << 644 for (cpu = bin 586 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 645 if (cp !! 587 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 646 !! 588 CPU_SET(cpu, &td->bind_cpumask); 647 << 648 } << 649 CPU_SE << 650 } 589 } 651 t++; 590 t++; 652 } 591 } 653 } 592 } 654 } 593 } 655 out: 594 out: 656 595 657 tprintf("\n"); 596 tprintf("\n"); 658 597 659 if (t < g->p.nr_tasks) 598 if (t < g->p.nr_tasks) 660 printf("# NOTE: %d tasks bound 599 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 661 600 662 free(str0); 601 free(str0); 663 return 0; 602 return 0; 664 } 603 } 665 604 666 static int parse_cpus_opt(const struct option 605 static int parse_cpus_opt(const struct option *opt __maybe_unused, 667 const char *arg, int 606 const char *arg, int unset __maybe_unused) 668 { 607 { 669 if (!arg) 608 if (!arg) 670 return -1; 609 return -1; 671 610 672 return parse_cpu_list(arg); 611 return parse_cpu_list(arg); 673 } 612 } 674 613 675 static int parse_node_list(const char *arg) 614 static int parse_node_list(const char *arg) 676 { 615 { 677 p0.node_list_str = strdup(arg); 616 p0.node_list_str = strdup(arg); 678 617 679 dprintf("got NODE list: {%s}\n", p0.no 618 dprintf("got NODE list: {%s}\n", p0.node_list_str); 680 619 681 return 0; 620 return 0; 682 } 621 } 683 622 684 static int parse_setup_node_list(void) 623 static int parse_setup_node_list(void) 685 { 624 { 686 struct thread_data *td; 625 struct thread_data *td; 687 char *str0, *str; 626 char *str0, *str; 688 int t; 627 int t; 689 628 690 if (!g->p.node_list_str) 629 if (!g->p.node_list_str) 691 return 0; 630 return 0; 692 631 693 dprintf("g->p.nr_tasks: %d\n", g->p.nr 632 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 694 633 695 str0 = str = strdup(g->p.node_list_str 634 str0 = str = strdup(g->p.node_list_str); 696 t = 0; 635 t = 0; 697 636 698 BUG_ON(!str); 637 BUG_ON(!str); 699 638 700 tprintf("# binding tasks to NODEs:\n") 639 tprintf("# binding tasks to NODEs:\n"); 701 tprintf("# "); 640 tprintf("# "); 702 641 703 while (true) { 642 while (true) { 704 int bind_node, bind_node_0, bi 643 int bind_node, bind_node_0, bind_node_1; 705 char *tok, *tok_end, *tok_step 644 char *tok, *tok_end, *tok_step, *tok_mul; 706 int step; 645 int step; 707 int mul; 646 int mul; 708 647 709 tok = strsep(&str, ","); 648 tok = strsep(&str, ","); 710 if (!tok) 649 if (!tok) 711 break; 650 break; 712 651 713 tok_end = strstr(tok, "-"); 652 tok_end = strstr(tok, "-"); 714 653 715 dprintf("\ntoken: {%s}, end: { 654 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 716 if (!tok_end) { 655 if (!tok_end) { 717 /* Single NODE specifi 656 /* Single NODE specified: */ 718 bind_node_0 = bind_nod 657 bind_node_0 = bind_node_1 = atol(tok); 719 } else { 658 } else { 720 /* NODE range specifie 659 /* NODE range specified (for example: "5-11"): */ 721 bind_node_0 = atol(tok 660 bind_node_0 = atol(tok); 722 bind_node_1 = atol(tok 661 bind_node_1 = atol(tok_end + 1); 723 } 662 } 724 663 725 step = 1; 664 step = 1; 726 tok_step = strstr(tok, "#"); 665 tok_step = strstr(tok, "#"); 727 if (tok_step) { 666 if (tok_step) { 728 step = atol(tok_step + 667 step = atol(tok_step + 1); 729 BUG_ON(step <= 0 || st 668 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 730 } 669 } 731 670 732 /* Multiplicator shortcut, "0x 671 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 733 mul = 1; 672 mul = 1; 734 tok_mul = strstr(tok, "x"); 673 tok_mul = strstr(tok, "x"); 735 if (tok_mul) { 674 if (tok_mul) { 736 mul = atol(tok_mul + 1 675 mul = atol(tok_mul + 1); 737 BUG_ON(mul <= 0); 676 BUG_ON(mul <= 0); 738 } 677 } 739 678 740 dprintf("NODEs: %d-%d #%d\n", 679 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 741 680 742 if (bind_node_0 >= g->p.nr_nod 681 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 743 printf("\nTest not app 682 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 744 return -1; 683 return -1; 745 } 684 } 746 685 747 BUG_ON(bind_node_0 < 0 || bind 686 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 748 BUG_ON(bind_node_0 > bind_node 687 BUG_ON(bind_node_0 > bind_node_1); 749 688 750 for (bind_node = bind_node_0; 689 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 751 int i; 690 int i; 752 691 753 for (i = 0; i < mul; i 692 for (i = 0; i < mul; i++) { 754 if (t >= g->p. 693 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 755 printf 694 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 756 goto o 695 goto out; 757 } 696 } 758 td = g->thread 697 td = g->threads + t; 759 698 760 if (!t) 699 if (!t) 761 tprint 700 tprintf(" %2d", bind_node); 762 else 701 else 763 tprint 702 tprintf(",%2d", bind_node); 764 703 765 td->bind_node 704 td->bind_node = bind_node; 766 t++; 705 t++; 767 } 706 } 768 } 707 } 769 } 708 } 770 out: 709 out: 771 710 772 tprintf("\n"); 711 tprintf("\n"); 773 712 774 if (t < g->p.nr_tasks) 713 if (t < g->p.nr_tasks) 775 printf("# NOTE: %d tasks mem-b 714 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 776 715 777 free(str0); 716 free(str0); 778 return 0; 717 return 0; 779 } 718 } 780 719 781 static int parse_nodes_opt(const struct option 720 static int parse_nodes_opt(const struct option *opt __maybe_unused, 782 const char *arg, int 721 const char *arg, int unset __maybe_unused) 783 { 722 { 784 if (!arg) 723 if (!arg) 785 return -1; 724 return -1; 786 725 787 return parse_node_list(arg); 726 return parse_node_list(arg); >> 727 >> 728 return 0; 788 } 729 } 789 730 >> 731 #define BIT(x) (1ul << x) >> 732 790 static inline uint32_t lfsr_32(uint32_t lfsr) 733 static inline uint32_t lfsr_32(uint32_t lfsr) 791 { 734 { 792 const uint32_t taps = BIT(1) | BIT(5) 735 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 793 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x 736 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 794 } 737 } 795 738 796 /* 739 /* 797 * Make sure there's real data dependency to R 740 * Make sure there's real data dependency to RAM (when read 798 * accesses are enabled), so the compiler, the 741 * accesses are enabled), so the compiler, the CPU and the 799 * kernel (KSM, zero page, etc.) cannot optimi 742 * kernel (KSM, zero page, etc.) cannot optimize away RAM 800 * accesses: 743 * accesses: 801 */ 744 */ 802 static inline u64 access_data(u64 *data, u64 v 745 static inline u64 access_data(u64 *data, u64 val) 803 { 746 { 804 if (g->p.data_reads) 747 if (g->p.data_reads) 805 val += *data; 748 val += *data; 806 if (g->p.data_writes) 749 if (g->p.data_writes) 807 *data = val + 1; 750 *data = val + 1; 808 return val; 751 return val; 809 } 752 } 810 753 811 /* 754 /* 812 * The worker process does two types of work, 755 * The worker process does two types of work, a forwards going 813 * loop and a backwards going loop. 756 * loop and a backwards going loop. 814 * 757 * 815 * We do this so that on multiprocessor system 758 * We do this so that on multiprocessor systems we do not create 816 * a 'train' of processing, with highly synchr 759 * a 'train' of processing, with highly synchronized processes, 817 * skewing the whole benchmark. 760 * skewing the whole benchmark. 818 */ 761 */ 819 static u64 do_work(u8 *__data, long bytes, int 762 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 820 { 763 { 821 long words = bytes/sizeof(u64); 764 long words = bytes/sizeof(u64); 822 u64 *data = (void *)__data; 765 u64 *data = (void *)__data; 823 long chunk_0, chunk_1; 766 long chunk_0, chunk_1; 824 u64 *d0, *d, *d1; 767 u64 *d0, *d, *d1; 825 long off; 768 long off; 826 long i; 769 long i; 827 770 828 BUG_ON(!data && words); 771 BUG_ON(!data && words); 829 BUG_ON(data && !words); 772 BUG_ON(data && !words); 830 773 831 if (!data) 774 if (!data) 832 return val; 775 return val; 833 776 834 /* Very simple memset() work variant: 777 /* Very simple memset() work variant: */ 835 if (g->p.data_zero_memset && !g->p.dat 778 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 836 bzero(data, bytes); 779 bzero(data, bytes); 837 return val; 780 return val; 838 } 781 } 839 782 840 /* Spread out by PID/TID nr and by loo 783 /* Spread out by PID/TID nr and by loop nr: */ 841 chunk_0 = words/nr_max; 784 chunk_0 = words/nr_max; 842 chunk_1 = words/g->p.nr_loops; 785 chunk_1 = words/g->p.nr_loops; 843 off = nr*chunk_0 + loop*chunk_1; 786 off = nr*chunk_0 + loop*chunk_1; 844 787 845 while (off >= words) 788 while (off >= words) 846 off -= words; 789 off -= words; 847 790 848 if (g->p.data_rand_walk) { 791 if (g->p.data_rand_walk) { 849 u32 lfsr = nr + loop + val; 792 u32 lfsr = nr + loop + val; 850 long j; !! 793 int j; 851 794 852 for (i = 0; i < words/1024; i+ 795 for (i = 0; i < words/1024; i++) { 853 long start, end; 796 long start, end; 854 797 855 lfsr = lfsr_32(lfsr); 798 lfsr = lfsr_32(lfsr); 856 799 857 start = lfsr % words; 800 start = lfsr % words; 858 end = min(start + 1024 801 end = min(start + 1024, words-1); 859 802 860 if (g->p.data_zero_mem 803 if (g->p.data_zero_memset) { 861 bzero(data + s 804 bzero(data + start, (end-start) * sizeof(u64)); 862 } else { 805 } else { 863 for (j = start 806 for (j = start; j < end; j++) 864 val = 807 val = access_data(data + j, val); 865 } 808 } 866 } 809 } 867 } else if (!g->p.data_backwards || (nr 810 } else if (!g->p.data_backwards || (nr + loop) & 1) { 868 /* Process data forwards: */ << 869 811 870 d0 = data + off; 812 d0 = data + off; 871 d = data + off + 1; 813 d = data + off + 1; 872 d1 = data + words; 814 d1 = data + words; 873 815 >> 816 /* Process data forwards: */ 874 for (;;) { 817 for (;;) { 875 if (unlikely(d >= d1)) 818 if (unlikely(d >= d1)) 876 d = data; 819 d = data; 877 if (unlikely(d == d0)) 820 if (unlikely(d == d0)) 878 break; 821 break; 879 822 880 val = access_data(d, v 823 val = access_data(d, val); 881 824 882 d++; 825 d++; 883 } 826 } 884 } else { 827 } else { 885 /* Process data backwards: */ 828 /* Process data backwards: */ 886 829 887 d0 = data + off; 830 d0 = data + off; 888 d = data + off - 1; 831 d = data + off - 1; 889 d1 = data + words; 832 d1 = data + words; 890 833 >> 834 /* Process data forwards: */ 891 for (;;) { 835 for (;;) { 892 if (unlikely(d < data) 836 if (unlikely(d < data)) 893 d = data + wor 837 d = data + words-1; 894 if (unlikely(d == d0)) 838 if (unlikely(d == d0)) 895 break; 839 break; 896 840 897 val = access_data(d, v 841 val = access_data(d, val); 898 842 899 d--; 843 d--; 900 } 844 } 901 } 845 } 902 846 903 return val; 847 return val; 904 } 848 } 905 849 906 static void update_curr_cpu(int task_nr, unsig 850 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 907 { 851 { 908 unsigned int cpu; 852 unsigned int cpu; 909 853 910 cpu = sched_getcpu(); 854 cpu = sched_getcpu(); 911 855 912 g->threads[task_nr].curr_cpu = cpu; 856 g->threads[task_nr].curr_cpu = cpu; 913 prctl(0, bytes_worked); 857 prctl(0, bytes_worked); 914 } 858 } 915 859 >> 860 #define MAX_NR_NODES 64 >> 861 916 /* 862 /* 917 * Count the number of nodes a process's threa 863 * Count the number of nodes a process's threads 918 * are spread out on. 864 * are spread out on. 919 * 865 * 920 * A count of 1 means that the process is comp 866 * A count of 1 means that the process is compressed 921 * to a single node. A count of g->p.nr_nodes 867 * to a single node. A count of g->p.nr_nodes means it's 922 * spread out on the whole system. 868 * spread out on the whole system. 923 */ 869 */ 924 static int count_process_nodes(int process_nr) 870 static int count_process_nodes(int process_nr) 925 { 871 { 926 char *node_present; !! 872 char node_present[MAX_NR_NODES] = { 0, }; 927 int nodes; 873 int nodes; 928 int n, t; 874 int n, t; 929 875 930 node_present = (char *)malloc(g->p.nr_ << 931 BUG_ON(!node_present); << 932 for (nodes = 0; nodes < g->p.nr_nodes; << 933 node_present[nodes] = 0; << 934 << 935 for (t = 0; t < g->p.nr_threads; t++) 876 for (t = 0; t < g->p.nr_threads; t++) { 936 struct thread_data *td; 877 struct thread_data *td; 937 int task_nr; 878 int task_nr; 938 int node; 879 int node; 939 880 940 task_nr = process_nr*g->p.nr_t 881 task_nr = process_nr*g->p.nr_threads + t; 941 td = g->threads + task_nr; 882 td = g->threads + task_nr; 942 883 943 node = numa_node_of_cpu(td->cu 884 node = numa_node_of_cpu(td->curr_cpu); 944 if (node < 0) /* curr_cpu was !! 885 if (node < 0) /* curr_cpu was likely still -1 */ 945 free(node_present); << 946 return 0; 886 return 0; 947 } << 948 887 949 node_present[node] = 1; 888 node_present[node] = 1; 950 } 889 } 951 890 952 nodes = 0; 891 nodes = 0; 953 892 954 for (n = 0; n < g->p.nr_nodes; n++) !! 893 for (n = 0; n < MAX_NR_NODES; n++) 955 nodes += node_present[n]; 894 nodes += node_present[n]; 956 895 957 free(node_present); << 958 return nodes; 896 return nodes; 959 } 897 } 960 898 961 /* 899 /* 962 * Count the number of distinct process-thread 900 * Count the number of distinct process-threads a node contains. 963 * 901 * 964 * A count of 1 means that the node contains o 902 * A count of 1 means that the node contains only a single 965 * process. If all nodes on the system contain 903 * process. If all nodes on the system contain at most one 966 * process then we are well-converged. 904 * process then we are well-converged. 967 */ 905 */ 968 static int count_node_processes(int node) 906 static int count_node_processes(int node) 969 { 907 { 970 int processes = 0; 908 int processes = 0; 971 int t, p; 909 int t, p; 972 910 973 for (p = 0; p < g->p.nr_proc; p++) { 911 for (p = 0; p < g->p.nr_proc; p++) { 974 for (t = 0; t < g->p.nr_thread 912 for (t = 0; t < g->p.nr_threads; t++) { 975 struct thread_data *td 913 struct thread_data *td; 976 int task_nr; 914 int task_nr; 977 int n; 915 int n; 978 916 979 task_nr = p*g->p.nr_th 917 task_nr = p*g->p.nr_threads + t; 980 td = g->threads + task 918 td = g->threads + task_nr; 981 919 982 n = numa_node_of_cpu(t 920 n = numa_node_of_cpu(td->curr_cpu); 983 if (n == node) { 921 if (n == node) { 984 processes++; 922 processes++; 985 break; 923 break; 986 } 924 } 987 } 925 } 988 } 926 } 989 927 990 return processes; 928 return processes; 991 } 929 } 992 930 993 static void calc_convergence_compression(int * 931 static void calc_convergence_compression(int *strong) 994 { 932 { 995 unsigned int nodes_min, nodes_max; 933 unsigned int nodes_min, nodes_max; 996 int p; 934 int p; 997 935 998 nodes_min = -1; 936 nodes_min = -1; 999 nodes_max = 0; 937 nodes_max = 0; 1000 938 1001 for (p = 0; p < g->p.nr_proc; p++) { 939 for (p = 0; p < g->p.nr_proc; p++) { 1002 unsigned int nodes = count_pr 940 unsigned int nodes = count_process_nodes(p); 1003 941 1004 if (!nodes) { 942 if (!nodes) { 1005 *strong = 0; 943 *strong = 0; 1006 return; 944 return; 1007 } 945 } 1008 946 1009 nodes_min = min(nodes, nodes_ 947 nodes_min = min(nodes, nodes_min); 1010 nodes_max = max(nodes, nodes_ 948 nodes_max = max(nodes, nodes_max); 1011 } 949 } 1012 950 1013 /* Strong convergence: all threads co 951 /* Strong convergence: all threads compress on a single node: */ 1014 if (nodes_min == 1 && nodes_max == 1) 952 if (nodes_min == 1 && nodes_max == 1) { 1015 *strong = 1; 953 *strong = 1; 1016 } else { 954 } else { 1017 *strong = 0; 955 *strong = 0; 1018 tprintf(" {%d-%d}", nodes_min 956 tprintf(" {%d-%d}", nodes_min, nodes_max); 1019 } 957 } 1020 } 958 } 1021 959 1022 static void calc_convergence(double runtime_n 960 static void calc_convergence(double runtime_ns_max, double *convergence) 1023 { 961 { 1024 unsigned int loops_done_min, loops_do 962 unsigned int loops_done_min, loops_done_max; 1025 int process_groups; 963 int process_groups; 1026 int *nodes; !! 964 int nodes[MAX_NR_NODES]; 1027 int distance; 965 int distance; 1028 int nr_min; 966 int nr_min; 1029 int nr_max; 967 int nr_max; 1030 int strong; 968 int strong; 1031 int sum; 969 int sum; 1032 int nr; 970 int nr; 1033 int node; 971 int node; 1034 int cpu; 972 int cpu; 1035 int t; 973 int t; 1036 974 1037 if (!g->p.show_convergence && !g->p.m 975 if (!g->p.show_convergence && !g->p.measure_convergence) 1038 return; 976 return; 1039 977 1040 nodes = (int *)malloc(g->p.nr_nodes * << 1041 BUG_ON(!nodes); << 1042 for (node = 0; node < g->p.nr_nodes; 978 for (node = 0; node < g->p.nr_nodes; node++) 1043 nodes[node] = 0; 979 nodes[node] = 0; 1044 980 1045 loops_done_min = -1; 981 loops_done_min = -1; 1046 loops_done_max = 0; 982 loops_done_max = 0; 1047 983 1048 for (t = 0; t < g->p.nr_tasks; t++) { 984 for (t = 0; t < g->p.nr_tasks; t++) { 1049 struct thread_data *td = g->t 985 struct thread_data *td = g->threads + t; 1050 unsigned int loops_done; 986 unsigned int loops_done; 1051 987 1052 cpu = td->curr_cpu; 988 cpu = td->curr_cpu; 1053 989 1054 /* Not all threads have writt 990 /* Not all threads have written it yet: */ 1055 if (cpu < 0) 991 if (cpu < 0) 1056 continue; 992 continue; 1057 993 1058 node = numa_node_of_cpu(cpu); 994 node = numa_node_of_cpu(cpu); 1059 995 1060 nodes[node]++; 996 nodes[node]++; 1061 997 1062 loops_done = td->loops_done; 998 loops_done = td->loops_done; 1063 loops_done_min = min(loops_do 999 loops_done_min = min(loops_done, loops_done_min); 1064 loops_done_max = max(loops_do 1000 loops_done_max = max(loops_done, loops_done_max); 1065 } 1001 } 1066 1002 1067 nr_max = 0; 1003 nr_max = 0; 1068 nr_min = g->p.nr_tasks; 1004 nr_min = g->p.nr_tasks; 1069 sum = 0; 1005 sum = 0; 1070 1006 1071 for (node = 0; node < g->p.nr_nodes; 1007 for (node = 0; node < g->p.nr_nodes; node++) { 1072 if (!is_node_present(node)) 1008 if (!is_node_present(node)) 1073 continue; 1009 continue; 1074 nr = nodes[node]; 1010 nr = nodes[node]; 1075 nr_min = min(nr, nr_min); 1011 nr_min = min(nr, nr_min); 1076 nr_max = max(nr, nr_max); 1012 nr_max = max(nr, nr_max); 1077 sum += nr; 1013 sum += nr; 1078 } 1014 } 1079 BUG_ON(nr_min > nr_max); 1015 BUG_ON(nr_min > nr_max); 1080 1016 1081 BUG_ON(sum > g->p.nr_tasks); 1017 BUG_ON(sum > g->p.nr_tasks); 1082 1018 1083 if (0 && (sum < g->p.nr_tasks)) { !! 1019 if (0 && (sum < g->p.nr_tasks)) 1084 free(nodes); << 1085 return; 1020 return; 1086 } << 1087 1021 1088 /* 1022 /* 1089 * Count the number of distinct proce 1023 * Count the number of distinct process groups present 1090 * on nodes - when we are converged t 1024 * on nodes - when we are converged this will decrease 1091 * to g->p.nr_proc: 1025 * to g->p.nr_proc: 1092 */ 1026 */ 1093 process_groups = 0; 1027 process_groups = 0; 1094 1028 1095 for (node = 0; node < g->p.nr_nodes; 1029 for (node = 0; node < g->p.nr_nodes; node++) { 1096 int processes; 1030 int processes; 1097 1031 1098 if (!is_node_present(node)) 1032 if (!is_node_present(node)) 1099 continue; 1033 continue; 1100 processes = count_node_proces 1034 processes = count_node_processes(node); 1101 nr = nodes[node]; 1035 nr = nodes[node]; 1102 tprintf(" %2d/%-2d", nr, proc 1036 tprintf(" %2d/%-2d", nr, processes); 1103 1037 1104 process_groups += processes; 1038 process_groups += processes; 1105 } 1039 } 1106 1040 1107 distance = nr_max - nr_min; 1041 distance = nr_max - nr_min; 1108 1042 1109 tprintf(" [%2d/%-2d]", distance, proc 1043 tprintf(" [%2d/%-2d]", distance, process_groups); 1110 1044 1111 tprintf(" l:%3d-%-3d (%3d)", 1045 tprintf(" l:%3d-%-3d (%3d)", 1112 loops_done_min, loops_done_ma 1046 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1113 1047 1114 if (loops_done_min && loops_done_max) 1048 if (loops_done_min && loops_done_max) { 1115 double skew = 1.0 - (double)l 1049 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1116 1050 1117 tprintf(" [%4.1f%%]", skew * 1051 tprintf(" [%4.1f%%]", skew * 100.0); 1118 } 1052 } 1119 1053 1120 calc_convergence_compression(&strong) 1054 calc_convergence_compression(&strong); 1121 1055 1122 if (strong && process_groups == g->p. 1056 if (strong && process_groups == g->p.nr_proc) { 1123 if (!*convergence) { 1057 if (!*convergence) { 1124 *convergence = runtim 1058 *convergence = runtime_ns_max; 1125 tprintf(" (%6.1fs con 1059 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1126 if (g->p.measure_conv 1060 if (g->p.measure_convergence) { 1127 g->all_conver 1061 g->all_converged = true; 1128 g->stop_work 1062 g->stop_work = true; 1129 } 1063 } 1130 } 1064 } 1131 } else { 1065 } else { 1132 if (*convergence) { 1066 if (*convergence) { 1133 tprintf(" (%6.1fs de- 1067 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1134 *convergence = 0; 1068 *convergence = 0; 1135 } 1069 } 1136 tprintf("\n"); 1070 tprintf("\n"); 1137 } 1071 } 1138 << 1139 free(nodes); << 1140 } 1072 } 1141 1073 1142 static void show_summary(double runtime_ns_ma 1074 static void show_summary(double runtime_ns_max, int l, double *convergence) 1143 { 1075 { 1144 tprintf("\r # %5.1f%% [%.1f mins]", 1076 tprintf("\r # %5.1f%% [%.1f mins]", 1145 (double)(l+1)/g->p.nr_loops*1 1077 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1146 1078 1147 calc_convergence(runtime_ns_max, conv 1079 calc_convergence(runtime_ns_max, convergence); 1148 1080 1149 if (g->p.show_details >= 0) 1081 if (g->p.show_details >= 0) 1150 fflush(stdout); 1082 fflush(stdout); 1151 } 1083 } 1152 1084 1153 static void *worker_thread(void *__tdata) 1085 static void *worker_thread(void *__tdata) 1154 { 1086 { 1155 struct thread_data *td = __tdata; 1087 struct thread_data *td = __tdata; 1156 struct timeval start0, start, stop, d 1088 struct timeval start0, start, stop, diff; 1157 int process_nr = td->process_nr; 1089 int process_nr = td->process_nr; 1158 int thread_nr = td->thread_nr; 1090 int thread_nr = td->thread_nr; 1159 unsigned long last_perturbance; 1091 unsigned long last_perturbance; 1160 int task_nr = td->task_nr; 1092 int task_nr = td->task_nr; 1161 int details = g->p.show_details; 1093 int details = g->p.show_details; 1162 int first_task, last_task; 1094 int first_task, last_task; 1163 double convergence = 0; 1095 double convergence = 0; 1164 u64 val = td->val; 1096 u64 val = td->val; 1165 double runtime_ns_max; 1097 double runtime_ns_max; 1166 u8 *global_data; 1098 u8 *global_data; 1167 u8 *process_data; 1099 u8 *process_data; 1168 u8 *thread_data; 1100 u8 *thread_data; 1169 u64 bytes_done, secs; 1101 u64 bytes_done, secs; 1170 long work_done; 1102 long work_done; 1171 u32 l; 1103 u32 l; 1172 struct rusage rusage; 1104 struct rusage rusage; 1173 1105 1174 bind_to_cpumask(td->bind_cpumask); 1106 bind_to_cpumask(td->bind_cpumask); 1175 bind_to_memnode(td->bind_node); 1107 bind_to_memnode(td->bind_node); 1176 1108 1177 set_taskname("thread %d/%d", process_ 1109 set_taskname("thread %d/%d", process_nr, thread_nr); 1178 1110 1179 global_data = g->data; 1111 global_data = g->data; 1180 process_data = td->process_data; 1112 process_data = td->process_data; 1181 thread_data = setup_private_data(g->p 1113 thread_data = setup_private_data(g->p.bytes_thread); 1182 1114 1183 bytes_done = 0; 1115 bytes_done = 0; 1184 1116 1185 last_task = 0; 1117 last_task = 0; 1186 if (process_nr == g->p.nr_proc-1 && t 1118 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1187 last_task = 1; 1119 last_task = 1; 1188 1120 1189 first_task = 0; 1121 first_task = 0; 1190 if (process_nr == 0 && thread_nr == 0 1122 if (process_nr == 0 && thread_nr == 0) 1191 first_task = 1; 1123 first_task = 1; 1192 1124 1193 if (details >= 2) { 1125 if (details >= 2) { 1194 printf("# thread %2d / %2d g 1126 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1195 process_nr, thread_nr 1127 process_nr, thread_nr, global_data, process_data, thread_data); 1196 } 1128 } 1197 1129 1198 if (g->p.serialize_startup) { 1130 if (g->p.serialize_startup) { 1199 mutex_lock(&g->startup_mutex) !! 1131 pthread_mutex_lock(&g->startup_mutex); 1200 g->nr_tasks_started++; 1132 g->nr_tasks_started++; 1201 /* The last thread wakes the !! 1133 pthread_mutex_unlock(&g->startup_mutex); 1202 if (g->nr_tasks_started == g- << 1203 cond_signal(&g->start << 1204 << 1205 mutex_unlock(&g->startup_mute << 1206 1134 1207 /* Here we will wait for the 1135 /* Here we will wait for the main process to start us all at once: */ 1208 mutex_lock(&g->start_work_mut !! 1136 pthread_mutex_lock(&g->start_work_mutex); 1209 g->start_work = false; << 1210 g->nr_tasks_working++; 1137 g->nr_tasks_working++; 1211 while (!g->start_work) << 1212 cond_wait(&g->start_w << 1213 1138 1214 mutex_unlock(&g->start_work_m !! 1139 /* Last one wake the main process: */ >> 1140 if (g->nr_tasks_working == g->p.nr_tasks) >> 1141 pthread_mutex_unlock(&g->startup_done_mutex); >> 1142 >> 1143 pthread_mutex_unlock(&g->start_work_mutex); 1215 } 1144 } 1216 1145 1217 gettimeofday(&start0, NULL); 1146 gettimeofday(&start0, NULL); 1218 1147 1219 start = stop = start0; 1148 start = stop = start0; 1220 last_perturbance = start.tv_sec; 1149 last_perturbance = start.tv_sec; 1221 1150 1222 for (l = 0; l < g->p.nr_loops; l++) { 1151 for (l = 0; l < g->p.nr_loops; l++) { 1223 start = stop; 1152 start = stop; 1224 1153 1225 if (g->stop_work) 1154 if (g->stop_work) 1226 break; 1155 break; 1227 1156 1228 val += do_work(global_data, 1157 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1229 val += do_work(process_data, 1158 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1230 val += do_work(thread_data, 1159 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1231 1160 1232 if (g->p.sleep_usecs) { 1161 if (g->p.sleep_usecs) { 1233 mutex_lock(td->proces !! 1162 pthread_mutex_lock(td->process_lock); 1234 usleep(g->p.sleep_use 1163 usleep(g->p.sleep_usecs); 1235 mutex_unlock(td->proc !! 1164 pthread_mutex_unlock(td->process_lock); 1236 } 1165 } 1237 /* 1166 /* 1238 * Amount of work to be done 1167 * Amount of work to be done under a process-global lock: 1239 */ 1168 */ 1240 if (g->p.bytes_process_locked 1169 if (g->p.bytes_process_locked) { 1241 mutex_lock(td->proces !! 1170 pthread_mutex_lock(td->process_lock); 1242 val += do_work(proces 1171 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1243 mutex_unlock(td->proc !! 1172 pthread_mutex_unlock(td->process_lock); 1244 } 1173 } 1245 1174 1246 work_done = g->p.bytes_global 1175 work_done = g->p.bytes_global + g->p.bytes_process + 1247 g->p.bytes_proces 1176 g->p.bytes_process_locked + g->p.bytes_thread; 1248 1177 1249 update_curr_cpu(task_nr, work 1178 update_curr_cpu(task_nr, work_done); 1250 bytes_done += work_done; 1179 bytes_done += work_done; 1251 1180 1252 if (details < 0 && !g->p.pert 1181 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1253 continue; 1182 continue; 1254 1183 1255 td->loops_done = l; 1184 td->loops_done = l; 1256 1185 1257 gettimeofday(&stop, NULL); 1186 gettimeofday(&stop, NULL); 1258 1187 1259 /* Check whether our max runt 1188 /* Check whether our max runtime timed out: */ 1260 if (g->p.nr_secs) { 1189 if (g->p.nr_secs) { 1261 timersub(&stop, &star 1190 timersub(&stop, &start0, &diff); 1262 if ((u32)diff.tv_sec 1191 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1263 g->stop_work 1192 g->stop_work = true; 1264 break; 1193 break; 1265 } 1194 } 1266 } 1195 } 1267 1196 1268 /* Update the summary at most 1197 /* Update the summary at most once per second: */ 1269 if (start.tv_sec == stop.tv_s 1198 if (start.tv_sec == stop.tv_sec) 1270 continue; 1199 continue; 1271 1200 1272 /* 1201 /* 1273 * Perturb the first task's e 1202 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1274 * by migrating to CPU#0: 1203 * by migrating to CPU#0: 1275 */ 1204 */ 1276 if (first_task && g->p.pertur 1205 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1277 cpu_set_t *orig_mask; !! 1206 cpu_set_t orig_mask; 1278 int target_cpu; 1207 int target_cpu; 1279 int this_cpu; 1208 int this_cpu; 1280 1209 1281 last_perturbance = st 1210 last_perturbance = stop.tv_sec; 1282 1211 1283 /* 1212 /* 1284 * Depending on where 1213 * Depending on where we are running, move into 1285 * the other half of 1214 * the other half of the system, to create some 1286 * real disturbance: 1215 * real disturbance: 1287 */ 1216 */ 1288 this_cpu = g->threads 1217 this_cpu = g->threads[task_nr].curr_cpu; 1289 if (this_cpu < g->p.n 1218 if (this_cpu < g->p.nr_cpus/2) 1290 target_cpu = 1219 target_cpu = g->p.nr_cpus-1; 1291 else 1220 else 1292 target_cpu = 1221 target_cpu = 0; 1293 1222 1294 orig_mask = bind_to_c 1223 orig_mask = bind_to_cpu(target_cpu); 1295 1224 1296 /* Here we are runnin 1225 /* Here we are running on the target CPU already */ 1297 if (details >= 1) 1226 if (details >= 1) 1298 printf(" (inj 1227 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1299 1228 1300 bind_to_cpumask(orig_ 1229 bind_to_cpumask(orig_mask); 1301 CPU_FREE(orig_mask); << 1302 } 1230 } 1303 1231 1304 if (details >= 3) { 1232 if (details >= 3) { 1305 timersub(&stop, &star 1233 timersub(&stop, &start, &diff); 1306 runtime_ns_max = diff 1234 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1307 runtime_ns_max += dif 1235 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1308 1236 1309 if (details >= 0) { 1237 if (details >= 0) { 1310 printf(" #%2d 1238 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1311 proce 1239 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1312 } 1240 } 1313 fflush(stdout); 1241 fflush(stdout); 1314 } 1242 } 1315 if (!last_task) 1243 if (!last_task) 1316 continue; 1244 continue; 1317 1245 1318 timersub(&stop, &start0, &dif 1246 timersub(&stop, &start0, &diff); 1319 runtime_ns_max = diff.tv_sec 1247 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1320 runtime_ns_max += diff.tv_use 1248 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1321 1249 1322 show_summary(runtime_ns_max, 1250 show_summary(runtime_ns_max, l, &convergence); 1323 } 1251 } 1324 1252 1325 gettimeofday(&stop, NULL); 1253 gettimeofday(&stop, NULL); 1326 timersub(&stop, &start0, &diff); 1254 timersub(&stop, &start0, &diff); 1327 td->runtime_ns = diff.tv_sec * NSEC_P 1255 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1328 td->runtime_ns += diff.tv_usec * NSEC 1256 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1329 secs = td->runtime_ns / NSEC_PER_SEC; 1257 secs = td->runtime_ns / NSEC_PER_SEC; 1330 td->speed_gbs = secs ? bytes_done / s 1258 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1331 1259 1332 getrusage(RUSAGE_THREAD, &rusage); 1260 getrusage(RUSAGE_THREAD, &rusage); 1333 td->system_time_ns = rusage.ru_stime. 1261 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1334 td->system_time_ns += rusage.ru_stime 1262 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1335 td->user_time_ns = rusage.ru_utime.tv 1263 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1336 td->user_time_ns += rusage.ru_utime.t 1264 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1337 1265 1338 free_data(thread_data, g->p.bytes_thr 1266 free_data(thread_data, g->p.bytes_thread); 1339 1267 1340 mutex_lock(&g->stop_work_mutex); !! 1268 pthread_mutex_lock(&g->stop_work_mutex); 1341 g->bytes_done += bytes_done; 1269 g->bytes_done += bytes_done; 1342 mutex_unlock(&g->stop_work_mutex); !! 1270 pthread_mutex_unlock(&g->stop_work_mutex); 1343 1271 1344 return NULL; 1272 return NULL; 1345 } 1273 } 1346 1274 1347 /* 1275 /* 1348 * A worker process starts a couple of thread 1276 * A worker process starts a couple of threads: 1349 */ 1277 */ 1350 static void worker_process(int process_nr) 1278 static void worker_process(int process_nr) 1351 { 1279 { 1352 struct mutex process_lock; !! 1280 pthread_mutex_t process_lock; 1353 struct thread_data *td; 1281 struct thread_data *td; 1354 pthread_t *pthreads; 1282 pthread_t *pthreads; 1355 u8 *process_data; 1283 u8 *process_data; 1356 int task_nr; 1284 int task_nr; 1357 int ret; 1285 int ret; 1358 int t; 1286 int t; 1359 1287 1360 mutex_init(&process_lock); !! 1288 pthread_mutex_init(&process_lock, NULL); 1361 set_taskname("process %d", process_nr 1289 set_taskname("process %d", process_nr); 1362 1290 1363 /* 1291 /* 1364 * Pick up the memory policy and the 1292 * Pick up the memory policy and the CPU binding of our first thread, 1365 * so that we initialize memory accor 1293 * so that we initialize memory accordingly: 1366 */ 1294 */ 1367 task_nr = process_nr*g->p.nr_threads; 1295 task_nr = process_nr*g->p.nr_threads; 1368 td = g->threads + task_nr; 1296 td = g->threads + task_nr; 1369 1297 1370 bind_to_memnode(td->bind_node); 1298 bind_to_memnode(td->bind_node); 1371 bind_to_cpumask(td->bind_cpumask); 1299 bind_to_cpumask(td->bind_cpumask); 1372 1300 1373 pthreads = zalloc(g->p.nr_threads * s 1301 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1374 process_data = setup_private_data(g-> 1302 process_data = setup_private_data(g->p.bytes_process); 1375 1303 1376 if (g->p.show_details >= 3) { 1304 if (g->p.show_details >= 3) { 1377 printf(" # process %2d global 1305 printf(" # process %2d global mem: %p, process mem: %p\n", 1378 process_nr, g->data, 1306 process_nr, g->data, process_data); 1379 } 1307 } 1380 1308 1381 for (t = 0; t < g->p.nr_threads; t++) 1309 for (t = 0; t < g->p.nr_threads; t++) { 1382 task_nr = process_nr*g->p.nr_ 1310 task_nr = process_nr*g->p.nr_threads + t; 1383 td = g->threads + task_nr; 1311 td = g->threads + task_nr; 1384 1312 1385 td->process_data = process_da 1313 td->process_data = process_data; 1386 td->process_nr = process_nr 1314 td->process_nr = process_nr; 1387 td->thread_nr = t; 1315 td->thread_nr = t; 1388 td->task_nr = task_nr; 1316 td->task_nr = task_nr; 1389 td->val = rand(); 1317 td->val = rand(); 1390 td->curr_cpu = -1; 1318 td->curr_cpu = -1; 1391 td->process_lock = &process_l 1319 td->process_lock = &process_lock; 1392 1320 1393 ret = pthread_create(pthreads 1321 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1394 BUG_ON(ret); 1322 BUG_ON(ret); 1395 } 1323 } 1396 1324 1397 for (t = 0; t < g->p.nr_threads; t++) 1325 for (t = 0; t < g->p.nr_threads; t++) { 1398 ret = pthread_join(pthreads[t 1326 ret = pthread_join(pthreads[t], NULL); 1399 BUG_ON(ret); 1327 BUG_ON(ret); 1400 } 1328 } 1401 1329 1402 free_data(process_data, g->p.bytes_pr 1330 free_data(process_data, g->p.bytes_process); 1403 free(pthreads); 1331 free(pthreads); 1404 } 1332 } 1405 1333 1406 static void print_summary(void) 1334 static void print_summary(void) 1407 { 1335 { 1408 if (g->p.show_details < 0) 1336 if (g->p.show_details < 0) 1409 return; 1337 return; 1410 1338 1411 printf("\n ###\n"); 1339 printf("\n ###\n"); 1412 printf(" # %d %s will execute (on %d 1340 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1413 g->p.nr_tasks, g->p.nr_tasks 1341 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1414 printf(" # %5dx %5ldMB global s 1342 printf(" # %5dx %5ldMB global shared mem operations\n", 1415 g->p.nr_loops, g->p.b 1343 g->p.nr_loops, g->p.bytes_global/1024/1024); 1416 printf(" # %5dx %5ldMB process s 1344 printf(" # %5dx %5ldMB process shared mem operations\n", 1417 g->p.nr_loops, g->p.b 1345 g->p.nr_loops, g->p.bytes_process/1024/1024); 1418 printf(" # %5dx %5ldMB thread l 1346 printf(" # %5dx %5ldMB thread local mem operations\n", 1419 g->p.nr_loops, g->p.b 1347 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1420 1348 1421 printf(" ###\n"); 1349 printf(" ###\n"); 1422 1350 1423 printf("\n ###\n"); fflush(stdout); 1351 printf("\n ###\n"); fflush(stdout); 1424 } 1352 } 1425 1353 1426 static void init_thread_data(void) 1354 static void init_thread_data(void) 1427 { 1355 { 1428 ssize_t size = sizeof(*g->threads)*g- 1356 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1429 int t; 1357 int t; 1430 1358 1431 g->threads = zalloc_shared_data(size) 1359 g->threads = zalloc_shared_data(size); 1432 1360 1433 for (t = 0; t < g->p.nr_tasks; t++) { 1361 for (t = 0; t < g->p.nr_tasks; t++) { 1434 struct thread_data *td = g->t 1362 struct thread_data *td = g->threads + t; 1435 size_t cpuset_size = CPU_ALLO << 1436 int cpu; 1363 int cpu; 1437 1364 1438 /* Allow all nodes by default 1365 /* Allow all nodes by default: */ 1439 td->bind_node = NUMA_NO_NODE; !! 1366 td->bind_node = -1; 1440 1367 1441 /* Allow all CPUs by default: 1368 /* Allow all CPUs by default: */ 1442 td->bind_cpumask = CPU_ALLOC( !! 1369 CPU_ZERO(&td->bind_cpumask); 1443 BUG_ON(!td->bind_cpumask); << 1444 CPU_ZERO_S(cpuset_size, td->b << 1445 for (cpu = 0; cpu < g->p.nr_c 1370 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1446 CPU_SET_S(cpu, cpuset !! 1371 CPU_SET(cpu, &td->bind_cpumask); 1447 } 1372 } 1448 } 1373 } 1449 1374 1450 static void deinit_thread_data(void) 1375 static void deinit_thread_data(void) 1451 { 1376 { 1452 ssize_t size = sizeof(*g->threads)*g- 1377 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1453 int t; << 1454 << 1455 /* Free the bind_cpumask allocated fo << 1456 for (t = 0; t < g->p.nr_tasks; t++) { << 1457 struct thread_data *td = g->t << 1458 CPU_FREE(td->bind_cpumask); << 1459 } << 1460 1378 1461 free_data(g->threads, size); 1379 free_data(g->threads, size); 1462 } 1380 } 1463 1381 1464 static int init(void) 1382 static int init(void) 1465 { 1383 { 1466 g = (void *)alloc_data(sizeof(*g), MA 1384 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1467 1385 1468 /* Copy over options: */ 1386 /* Copy over options: */ 1469 g->p = p0; 1387 g->p = p0; 1470 1388 1471 g->p.nr_cpus = numa_num_configured_cp 1389 g->p.nr_cpus = numa_num_configured_cpus(); 1472 1390 1473 g->p.nr_nodes = numa_max_node() + 1; 1391 g->p.nr_nodes = numa_max_node() + 1; 1474 1392 1475 /* char array in count_process_nodes( 1393 /* char array in count_process_nodes(): */ 1476 BUG_ON(g->p.nr_nodes < 0); !! 1394 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1477 1395 1478 if (quiet && !g->p.show_details) !! 1396 if (g->p.show_quiet && !g->p.show_details) 1479 g->p.show_details = -1; 1397 g->p.show_details = -1; 1480 1398 1481 /* Some memory should be specified: * 1399 /* Some memory should be specified: */ 1482 if (!g->p.mb_global_str && !g->p.mb_p 1400 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1483 return -1; 1401 return -1; 1484 1402 1485 if (g->p.mb_global_str) { 1403 if (g->p.mb_global_str) { 1486 g->p.mb_global = atof(g->p.mb 1404 g->p.mb_global = atof(g->p.mb_global_str); 1487 BUG_ON(g->p.mb_global < 0); 1405 BUG_ON(g->p.mb_global < 0); 1488 } 1406 } 1489 1407 1490 if (g->p.mb_proc_str) { 1408 if (g->p.mb_proc_str) { 1491 g->p.mb_proc = atof(g->p.mb_p 1409 g->p.mb_proc = atof(g->p.mb_proc_str); 1492 BUG_ON(g->p.mb_proc < 0); 1410 BUG_ON(g->p.mb_proc < 0); 1493 } 1411 } 1494 1412 1495 if (g->p.mb_proc_locked_str) { 1413 if (g->p.mb_proc_locked_str) { 1496 g->p.mb_proc_locked = atof(g- 1414 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1497 BUG_ON(g->p.mb_proc_locked < 1415 BUG_ON(g->p.mb_proc_locked < 0); 1498 BUG_ON(g->p.mb_proc_locked > 1416 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1499 } 1417 } 1500 1418 1501 if (g->p.mb_thread_str) { 1419 if (g->p.mb_thread_str) { 1502 g->p.mb_thread = atof(g->p.mb 1420 g->p.mb_thread = atof(g->p.mb_thread_str); 1503 BUG_ON(g->p.mb_thread < 0); 1421 BUG_ON(g->p.mb_thread < 0); 1504 } 1422 } 1505 1423 1506 BUG_ON(g->p.nr_threads <= 0); 1424 BUG_ON(g->p.nr_threads <= 0); 1507 BUG_ON(g->p.nr_proc <= 0); 1425 BUG_ON(g->p.nr_proc <= 0); 1508 1426 1509 g->p.nr_tasks = g->p.nr_proc*g->p.nr_ 1427 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1510 1428 1511 g->p.bytes_global = g-> 1429 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1512 g->p.bytes_process = g-> 1430 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1513 g->p.bytes_process_locked = g-> 1431 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1514 g->p.bytes_thread = g-> 1432 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1515 1433 1516 g->data = setup_shared_data(g->p.byte 1434 g->data = setup_shared_data(g->p.bytes_global); 1517 1435 1518 /* Startup serialization: */ 1436 /* Startup serialization: */ 1519 mutex_init_pshared(&g->start_work_mut !! 1437 init_global_mutex(&g->start_work_mutex); 1520 cond_init_pshared(&g->start_work_cond !! 1438 init_global_mutex(&g->startup_mutex); 1521 mutex_init_pshared(&g->startup_mutex) !! 1439 init_global_mutex(&g->startup_done_mutex); 1522 cond_init_pshared(&g->startup_cond); !! 1440 init_global_mutex(&g->stop_work_mutex); 1523 mutex_init_pshared(&g->stop_work_mute << 1524 1441 1525 init_thread_data(); 1442 init_thread_data(); 1526 1443 1527 tprintf("#\n"); 1444 tprintf("#\n"); 1528 if (parse_setup_cpu_list() || parse_s 1445 if (parse_setup_cpu_list() || parse_setup_node_list()) 1529 return -1; 1446 return -1; 1530 tprintf("#\n"); 1447 tprintf("#\n"); 1531 1448 1532 print_summary(); 1449 print_summary(); 1533 1450 1534 return 0; 1451 return 0; 1535 } 1452 } 1536 1453 1537 static void deinit(void) 1454 static void deinit(void) 1538 { 1455 { 1539 free_data(g->data, g->p.bytes_global) 1456 free_data(g->data, g->p.bytes_global); 1540 g->data = NULL; 1457 g->data = NULL; 1541 1458 1542 deinit_thread_data(); 1459 deinit_thread_data(); 1543 1460 1544 free_data(g, sizeof(*g)); 1461 free_data(g, sizeof(*g)); 1545 g = NULL; 1462 g = NULL; 1546 } 1463 } 1547 1464 1548 /* 1465 /* 1549 * Print a short or long result, depending on 1466 * Print a short or long result, depending on the verbosity setting: 1550 */ 1467 */ 1551 static void print_res(const char *name, doubl 1468 static void print_res(const char *name, double val, 1552 const char *txt_unit, c 1469 const char *txt_unit, const char *txt_short, const char *txt_long) 1553 { 1470 { 1554 if (!name) 1471 if (!name) 1555 name = "main,"; 1472 name = "main,"; 1556 1473 1557 if (!quiet) !! 1474 if (!g->p.show_quiet) 1558 printf(" %-30s %15.3f, %-15s 1475 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1559 else 1476 else 1560 printf(" %14.3f %s\n", val, t 1477 printf(" %14.3f %s\n", val, txt_long); 1561 } 1478 } 1562 1479 1563 static int __bench_numa(const char *name) 1480 static int __bench_numa(const char *name) 1564 { 1481 { 1565 struct timeval start, stop, diff; 1482 struct timeval start, stop, diff; 1566 u64 runtime_ns_min, runtime_ns_sum; 1483 u64 runtime_ns_min, runtime_ns_sum; 1567 pid_t *pids, pid, wpid; 1484 pid_t *pids, pid, wpid; 1568 double delta_runtime; 1485 double delta_runtime; 1569 double runtime_avg; 1486 double runtime_avg; 1570 double runtime_sec_max; 1487 double runtime_sec_max; 1571 double runtime_sec_min; 1488 double runtime_sec_min; 1572 int wait_stat; 1489 int wait_stat; 1573 double bytes; 1490 double bytes; 1574 int i, t, p; 1491 int i, t, p; 1575 1492 1576 if (init()) 1493 if (init()) 1577 return -1; 1494 return -1; 1578 1495 1579 pids = zalloc(g->p.nr_proc * sizeof(* 1496 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1580 pid = -1; 1497 pid = -1; 1581 1498 >> 1499 /* All threads try to acquire it, this way we can wait for them to start up: */ >> 1500 pthread_mutex_lock(&g->start_work_mutex); >> 1501 1582 if (g->p.serialize_startup) { 1502 if (g->p.serialize_startup) { 1583 tprintf(" #\n"); 1503 tprintf(" #\n"); 1584 tprintf(" # Startup synchroni 1504 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1585 } 1505 } 1586 1506 1587 gettimeofday(&start, NULL); 1507 gettimeofday(&start, NULL); 1588 1508 1589 for (i = 0; i < g->p.nr_proc; i++) { 1509 for (i = 0; i < g->p.nr_proc; i++) { 1590 pid = fork(); 1510 pid = fork(); 1591 dprintf(" # process %2d: PID 1511 dprintf(" # process %2d: PID %d\n", i, pid); 1592 1512 1593 BUG_ON(pid < 0); 1513 BUG_ON(pid < 0); 1594 if (!pid) { 1514 if (!pid) { 1595 /* Child process: */ 1515 /* Child process: */ 1596 worker_process(i); 1516 worker_process(i); 1597 1517 1598 exit(0); 1518 exit(0); 1599 } 1519 } 1600 pids[i] = pid; 1520 pids[i] = pid; 1601 1521 1602 } 1522 } >> 1523 /* Wait for all the threads to start up: */ >> 1524 while (g->nr_tasks_started != g->p.nr_tasks) >> 1525 usleep(USEC_PER_MSEC); >> 1526 >> 1527 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1603 1528 1604 if (g->p.serialize_startup) { 1529 if (g->p.serialize_startup) { 1605 bool threads_ready = false; << 1606 double startup_sec; 1530 double startup_sec; 1607 1531 1608 /* !! 1532 pthread_mutex_lock(&g->startup_done_mutex); 1609 * Wait for all the threads t !! 1533 1610 * signal this process. !! 1534 /* This will start all threads: */ 1611 */ !! 1535 pthread_mutex_unlock(&g->start_work_mutex); 1612 mutex_lock(&g->startup_mutex) !! 1536 1613 while (g->nr_tasks_started != !! 1537 /* This mutex is locked - the last started thread will wake us: */ 1614 cond_wait(&g->startup !! 1538 pthread_mutex_lock(&g->startup_done_mutex); 1615 << 1616 mutex_unlock(&g->startup_mute << 1617 << 1618 /* Wait for all threads to be << 1619 while (!threads_ready) { << 1620 mutex_lock(&g->start_ << 1621 threads_ready = (g->n << 1622 mutex_unlock(&g->star << 1623 if (!threads_ready) << 1624 usleep(1); << 1625 } << 1626 1539 1627 gettimeofday(&stop, NULL); 1540 gettimeofday(&stop, NULL); 1628 1541 1629 timersub(&stop, &start, &diff 1542 timersub(&stop, &start, &diff); 1630 1543 1631 startup_sec = diff.tv_sec * N 1544 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1632 startup_sec += diff.tv_usec * 1545 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1633 startup_sec /= NSEC_PER_SEC; 1546 startup_sec /= NSEC_PER_SEC; 1634 1547 1635 tprintf(" threads initialized 1548 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1636 tprintf(" #\n"); 1549 tprintf(" #\n"); 1637 1550 1638 start = stop; 1551 start = stop; 1639 /* Start all threads running. !! 1552 pthread_mutex_unlock(&g->startup_done_mutex); 1640 mutex_lock(&g->start_work_mut << 1641 g->start_work = true; << 1642 mutex_unlock(&g->start_work_m << 1643 cond_broadcast(&g->start_work << 1644 } else { 1553 } else { 1645 gettimeofday(&start, NULL); 1554 gettimeofday(&start, NULL); 1646 } 1555 } 1647 1556 1648 /* Parent process: */ 1557 /* Parent process: */ 1649 1558 1650 1559 1651 for (i = 0; i < g->p.nr_proc; i++) { 1560 for (i = 0; i < g->p.nr_proc; i++) { 1652 wpid = waitpid(pids[i], &wait 1561 wpid = waitpid(pids[i], &wait_stat, 0); 1653 BUG_ON(wpid < 0); 1562 BUG_ON(wpid < 0); 1654 BUG_ON(!WIFEXITED(wait_stat)) 1563 BUG_ON(!WIFEXITED(wait_stat)); 1655 1564 1656 } 1565 } 1657 1566 1658 runtime_ns_sum = 0; 1567 runtime_ns_sum = 0; 1659 runtime_ns_min = -1LL; 1568 runtime_ns_min = -1LL; 1660 1569 1661 for (t = 0; t < g->p.nr_tasks; t++) { 1570 for (t = 0; t < g->p.nr_tasks; t++) { 1662 u64 thread_runtime_ns = g->th 1571 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1663 1572 1664 runtime_ns_sum += thread_runt 1573 runtime_ns_sum += thread_runtime_ns; 1665 runtime_ns_min = min(thread_r 1574 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1666 } 1575 } 1667 1576 1668 gettimeofday(&stop, NULL); 1577 gettimeofday(&stop, NULL); 1669 timersub(&stop, &start, &diff); 1578 timersub(&stop, &start, &diff); 1670 1579 1671 BUG_ON(bench_format != BENCH_FORMAT_D 1580 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1672 1581 1673 tprintf("\n ###\n"); 1582 tprintf("\n ###\n"); 1674 tprintf("\n"); 1583 tprintf("\n"); 1675 1584 1676 runtime_sec_max = diff.tv_sec * NSEC_ 1585 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1677 runtime_sec_max += diff.tv_usec * NSE 1586 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1678 runtime_sec_max /= NSEC_PER_SEC; 1587 runtime_sec_max /= NSEC_PER_SEC; 1679 1588 1680 runtime_sec_min = runtime_ns_min / NS 1589 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1681 1590 1682 bytes = g->bytes_done; 1591 bytes = g->bytes_done; 1683 runtime_avg = (double)runtime_ns_sum 1592 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1684 1593 1685 if (g->p.measure_convergence) { 1594 if (g->p.measure_convergence) { 1686 print_res(name, runtime_sec_m 1595 print_res(name, runtime_sec_max, 1687 "secs,", "NUMA-conver 1596 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1688 } 1597 } 1689 1598 1690 print_res(name, runtime_sec_max, 1599 print_res(name, runtime_sec_max, 1691 "secs,", "runtime-max/thread" 1600 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1692 1601 1693 print_res(name, runtime_sec_min, 1602 print_res(name, runtime_sec_min, 1694 "secs,", "runtime-min/thread" 1603 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1695 1604 1696 print_res(name, runtime_avg, 1605 print_res(name, runtime_avg, 1697 "secs,", "runtime-avg/thread" 1606 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1698 1607 1699 delta_runtime = (runtime_sec_max - ru 1608 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1700 print_res(name, delta_runtime / runti 1609 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1701 "%,", "spread-runtime/thread" 1610 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1702 1611 1703 print_res(name, bytes / g->p.nr_tasks 1612 print_res(name, bytes / g->p.nr_tasks / 1e9, 1704 "GB,", "data/thread", 1613 "GB,", "data/thread", "GB data processed, per thread"); 1705 1614 1706 print_res(name, bytes / 1e9, 1615 print_res(name, bytes / 1e9, 1707 "GB,", "data-total", 1616 "GB,", "data-total", "GB data processed, total"); 1708 1617 1709 print_res(name, runtime_sec_max * NSE 1618 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1710 "nsecs,", "runtime/byte/threa 1619 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1711 1620 1712 print_res(name, bytes / g->p.nr_tasks 1621 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1713 "GB/sec,", "thread-speed", 1622 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1714 1623 1715 print_res(name, bytes / runtime_sec_m 1624 print_res(name, bytes / runtime_sec_max / 1e9, 1716 "GB/sec,", "total-speed", 1625 "GB/sec,", "total-speed", "GB/sec total speed"); 1717 1626 1718 if (g->p.show_details >= 2) { 1627 if (g->p.show_details >= 2) { 1719 char tname[14 + 2 * 11 + 1]; !! 1628 char tname[14 + 2 * 10 + 1]; 1720 struct thread_data *td; 1629 struct thread_data *td; 1721 for (p = 0; p < g->p.nr_proc; 1630 for (p = 0; p < g->p.nr_proc; p++) { 1722 for (t = 0; t < g->p. 1631 for (t = 0; t < g->p.nr_threads; t++) { 1723 memset(tname, 1632 memset(tname, 0, sizeof(tname)); 1724 td = g->threa 1633 td = g->threads + p*g->p.nr_threads + t; 1725 snprintf(tnam 1634 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1726 print_res(tna 1635 print_res(tname, td->speed_gbs, 1727 "GB/s 1636 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1728 print_res(tna 1637 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1729 "secs 1638 "secs", "thread-system-time", "system CPU time/thread"); 1730 print_res(tna 1639 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1731 "secs 1640 "secs", "thread-user-time", "user CPU time/thread"); 1732 } 1641 } 1733 } 1642 } 1734 } 1643 } 1735 1644 1736 free(pids); 1645 free(pids); 1737 1646 1738 deinit(); 1647 deinit(); 1739 1648 1740 return 0; 1649 return 0; 1741 } 1650 } 1742 1651 1743 #define MAX_ARGS 50 1652 #define MAX_ARGS 50 1744 1653 1745 static int command_size(const char **argv) 1654 static int command_size(const char **argv) 1746 { 1655 { 1747 int size = 0; 1656 int size = 0; 1748 1657 1749 while (*argv) { 1658 while (*argv) { 1750 size++; 1659 size++; 1751 argv++; 1660 argv++; 1752 } 1661 } 1753 1662 1754 BUG_ON(size >= MAX_ARGS); 1663 BUG_ON(size >= MAX_ARGS); 1755 1664 1756 return size; 1665 return size; 1757 } 1666 } 1758 1667 1759 static void init_params(struct params *p, con 1668 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1760 { 1669 { 1761 int i; 1670 int i; 1762 1671 1763 printf("\n # Running %s \"perf bench 1672 printf("\n # Running %s \"perf bench numa", name); 1764 1673 1765 for (i = 0; i < argc; i++) 1674 for (i = 0; i < argc; i++) 1766 printf(" %s", argv[i]); 1675 printf(" %s", argv[i]); 1767 1676 1768 printf("\"\n"); 1677 printf("\"\n"); 1769 1678 1770 memset(p, 0, sizeof(*p)); 1679 memset(p, 0, sizeof(*p)); 1771 1680 1772 /* Initialize nonzero defaults: */ 1681 /* Initialize nonzero defaults: */ 1773 1682 1774 p->serialize_startup = 1; 1683 p->serialize_startup = 1; 1775 p->data_reads = tru 1684 p->data_reads = true; 1776 p->data_writes = tru 1685 p->data_writes = true; 1777 p->data_backwards = tru 1686 p->data_backwards = true; 1778 p->data_rand_walk = tru 1687 p->data_rand_walk = true; 1779 p->nr_loops = -1; 1688 p->nr_loops = -1; 1780 p->init_random = tru 1689 p->init_random = true; 1781 p->mb_global_str = "1" 1690 p->mb_global_str = "1"; 1782 p->nr_proc = 1; 1691 p->nr_proc = 1; 1783 p->nr_threads = 1; 1692 p->nr_threads = 1; 1784 p->nr_secs = 5; 1693 p->nr_secs = 5; 1785 p->run_all = arg 1694 p->run_all = argc == 1; 1786 } 1695 } 1787 1696 1788 static int run_bench_numa(const char *name, c 1697 static int run_bench_numa(const char *name, const char **argv) 1789 { 1698 { 1790 int argc = command_size(argv); 1699 int argc = command_size(argv); 1791 1700 1792 init_params(&p0, name, argc, argv); 1701 init_params(&p0, name, argc, argv); 1793 argc = parse_options(argc, argv, opti 1702 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1794 if (argc) 1703 if (argc) 1795 goto err; 1704 goto err; 1796 1705 1797 if (__bench_numa(name)) 1706 if (__bench_numa(name)) 1798 goto err; 1707 goto err; 1799 1708 1800 return 0; 1709 return 0; 1801 1710 1802 err: 1711 err: 1803 return -1; 1712 return -1; 1804 } 1713 } 1805 1714 1806 #define OPT_BW_RAM "-s", "20", 1715 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1807 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, 1716 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1808 1717 1809 #define OPT_CONV "-s", "100", 1718 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1810 #define OPT_CONV_NOTHP OPT_CONV, 1719 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1811 1720 1812 #define OPT_BW "-s", "20", 1721 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1813 #define OPT_BW_NOTHP OPT_BW, 1722 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1814 1723 1815 /* 1724 /* 1816 * The built-in test-suite executed by "perf 1725 * The built-in test-suite executed by "perf bench numa -a". 1817 * 1726 * 1818 * (A minimum of 4 nodes and 16 GB of RAM is 1727 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1819 */ 1728 */ 1820 static const char *tests[][MAX_ARGS] = { 1729 static const char *tests[][MAX_ARGS] = { 1821 /* Basic single-stream NUMA bandwidth meas 1730 /* Basic single-stream NUMA bandwidth measurements: */ 1822 { "RAM-bw-local,", "mem", "-p", "1", !! 1731 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1823 "-C" , "", "-M", 1732 "-C" , "", "-M", "", OPT_BW_RAM }, 1824 { "RAM-bw-local-NOTHP,", 1733 { "RAM-bw-local-NOTHP,", 1825 "mem", "-p", "1", 1734 "mem", "-p", "1", "-t", "1", "-P", "1024", 1826 "-C" , "", "-M", 1735 "-C" , "", "-M", "", OPT_BW_RAM_NOTHP }, 1827 { "RAM-bw-remote,", "mem", "-p", "1", !! 1736 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1828 "-C" , "", "-M", 1737 "-C" , "", "-M", "1", OPT_BW_RAM }, 1829 1738 1830 /* 2-stream NUMA bandwidth measurements: * 1739 /* 2-stream NUMA bandwidth measurements: */ 1831 { "RAM-bw-local-2x,", "mem", "-p", "2", 1740 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1832 "-C", "0,2", "-M", 1741 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1833 { "RAM-bw-remote-2x,", "mem", "-p", "2", 1742 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1834 "-C", "0,2", "-M", 1743 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1835 1744 1836 /* Cross-stream NUMA bandwidth measurement 1745 /* Cross-stream NUMA bandwidth measurement: */ 1837 { "RAM-bw-cross,", "mem", "-p", "2", 1746 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1838 "-C", "0,8", "-M", 1747 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1839 1748 1840 /* Convergence latency measurements: */ 1749 /* Convergence latency measurements: */ 1841 { " 1x3-convergence,", "mem", "-p", "1", 1750 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1842 { " 1x4-convergence,", "mem", "-p", "1", 1751 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1843 { " 1x6-convergence,", "mem", "-p", "1", 1752 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1844 { " 2x3-convergence,", "mem", "-p", "2", !! 1753 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1845 { " 3x3-convergence,", "mem", "-p", "3", 1754 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1846 { " 4x4-convergence,", "mem", "-p", "4", 1755 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1847 { " 4x4-convergence-NOTHP,", 1756 { " 4x4-convergence-NOTHP,", 1848 "mem", "-p", "4", 1757 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1849 { " 4x6-convergence,", "mem", "-p", "4", 1758 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1850 { " 4x8-convergence,", "mem", "-p", "4", 1759 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1851 { " 8x4-convergence,", "mem", "-p", "8", 1760 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1852 { " 8x4-convergence-NOTHP,", 1761 { " 8x4-convergence-NOTHP,", 1853 "mem", "-p", "8", 1762 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1854 { " 3x1-convergence,", "mem", "-p", "3", 1763 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1855 { " 4x1-convergence,", "mem", "-p", "4", 1764 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1856 { " 8x1-convergence,", "mem", "-p", "8", 1765 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1857 { "16x1-convergence,", "mem", "-p", "16", 1766 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1858 { "32x1-convergence,", "mem", "-p", "32", 1767 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1859 1768 1860 /* Various NUMA process/thread layout band 1769 /* Various NUMA process/thread layout bandwidth measurements: */ 1861 { " 2x1-bw-process,", "mem", "-p", "2", 1770 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1862 { " 3x1-bw-process,", "mem", "-p", "3", 1771 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1863 { " 4x1-bw-process,", "mem", "-p", "4", 1772 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1864 { " 8x1-bw-process,", "mem", "-p", "8", 1773 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1865 { " 8x1-bw-process-NOTHP,", 1774 { " 8x1-bw-process-NOTHP,", 1866 "mem", "-p", "8", 1775 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1867 { "16x1-bw-process,", "mem", "-p", "16", 1776 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1868 1777 1869 { " 1x4-bw-thread,", "mem", "-p", "1", !! 1778 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1870 { " 1x8-bw-thread,", "mem", "-p", "1", !! 1779 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1871 { "1x16-bw-thread,", "mem", "-p", "1", !! 1780 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1872 { "1x32-bw-thread,", "mem", "-p", "1", !! 1781 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1873 !! 1782 1874 { " 2x3-bw-process,", "mem", "-p", "2", !! 1783 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1875 { " 4x4-bw-process,", "mem", "-p", "4", !! 1784 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1876 { " 4x6-bw-process,", "mem", "-p", "4", !! 1785 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1877 { " 4x8-bw-process,", "mem", "-p", "4", !! 1786 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1878 { " 4x8-bw-process-NOTHP,", !! 1787 { " 4x8-bw-thread-NOTHP,", 1879 "mem", "-p", "4", 1788 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1880 { " 3x3-bw-process,", "mem", "-p", "3", !! 1789 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1881 { " 5x5-bw-process,", "mem", "-p", "5", !! 1790 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1882 1791 1883 { "2x16-bw-process,", "mem", "-p", "2", !! 1792 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1884 { "1x32-bw-process,", "mem", "-p", "1", !! 1793 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1885 1794 1886 { "numa02-bw,", "mem", "-p", "1", !! 1795 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1887 { "numa02-bw-NOTHP,", "mem", "-p", "1", 1796 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1888 { "numa01-bw-thread,", "mem", "-p", "2", 1797 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1889 { "numa01-bw-thread-NOTHP,", 1798 { "numa01-bw-thread-NOTHP,", 1890 "mem", "-p", "2", 1799 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1891 }; 1800 }; 1892 1801 1893 static int bench_all(void) 1802 static int bench_all(void) 1894 { 1803 { 1895 int nr = ARRAY_SIZE(tests); 1804 int nr = ARRAY_SIZE(tests); 1896 int ret; 1805 int ret; 1897 int i; 1806 int i; 1898 1807 1899 ret = system("echo ' #'; echo ' # Run 1808 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1900 BUG_ON(ret < 0); 1809 BUG_ON(ret < 0); 1901 1810 1902 for (i = 0; i < nr; i++) { 1811 for (i = 0; i < nr; i++) { 1903 run_bench_numa(tests[i][0], t 1812 run_bench_numa(tests[i][0], tests[i] + 1); 1904 } 1813 } 1905 1814 1906 printf("\n"); 1815 printf("\n"); 1907 1816 1908 return 0; 1817 return 0; 1909 } 1818 } 1910 1819 1911 int bench_numa(int argc, const char **argv) 1820 int bench_numa(int argc, const char **argv) 1912 { 1821 { 1913 init_params(&p0, "main,", argc, argv) 1822 init_params(&p0, "main,", argc, argv); 1914 argc = parse_options(argc, argv, opti 1823 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1915 if (argc) 1824 if (argc) 1916 goto err; 1825 goto err; 1917 1826 1918 if (p0.run_all) 1827 if (p0.run_all) 1919 return bench_all(); 1828 return bench_all(); 1920 1829 1921 if (__bench_numa(NULL)) 1830 if (__bench_numa(NULL)) 1922 goto err; 1831 goto err; 1923 1832 1924 return 0; 1833 return 0; 1925 1834 1926 err: 1835 err: 1927 usage_with_options(numa_usage, option 1836 usage_with_options(numa_usage, options); 1928 return -1; 1837 return -1; 1929 } 1838 } 1930 1839
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.