1 // SPDX-License-Identifier: GPL-2.0 << 2 /* 1 /* 3 * numa.c 2 * numa.c 4 * 3 * 5 * numa: Simulate NUMA-sensitive workload and 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 5 */ 7 6 8 #include <inttypes.h> !! 7 /* For the CLR_() macros */ >> 8 #include <pthread.h> 9 9 >> 10 #include "../perf.h" >> 11 #include "../builtin.h" >> 12 #include "../util/util.h" 10 #include <subcmd/parse-options.h> 13 #include <subcmd/parse-options.h> 11 #include "../util/cloexec.h" 14 #include "../util/cloexec.h" 12 15 13 #include "bench.h" 16 #include "bench.h" 14 17 15 #include <errno.h> 18 #include <errno.h> 16 #include <sched.h> 19 #include <sched.h> 17 #include <stdio.h> 20 #include <stdio.h> 18 #include <assert.h> 21 #include <assert.h> 19 #include <debug.h> << 20 #include <malloc.h> 22 #include <malloc.h> 21 #include <signal.h> 23 #include <signal.h> 22 #include <stdlib.h> 24 #include <stdlib.h> 23 #include <string.h> 25 #include <string.h> 24 #include <unistd.h> 26 #include <unistd.h> 25 #include <sys/mman.h> 27 #include <sys/mman.h> 26 #include <sys/time.h> 28 #include <sys/time.h> 27 #include <sys/resource.h> 29 #include <sys/resource.h> 28 #include <sys/wait.h> 30 #include <sys/wait.h> 29 #include <sys/prctl.h> 31 #include <sys/prctl.h> 30 #include <sys/types.h> 32 #include <sys/types.h> 31 #include <linux/kernel.h> << 32 #include <linux/time64.h> 33 #include <linux/time64.h> 33 #include <linux/numa.h> << 34 #include <linux/zalloc.h> << 35 34 36 #include "../util/header.h" << 37 #include "../util/mutex.h" << 38 #include <numa.h> 35 #include <numa.h> 39 #include <numaif.h> 36 #include <numaif.h> 40 37 41 #ifndef RUSAGE_THREAD 38 #ifndef RUSAGE_THREAD 42 # define RUSAGE_THREAD 1 39 # define RUSAGE_THREAD 1 43 #endif 40 #endif 44 41 45 /* 42 /* 46 * Regular printout to the terminal, suppresse !! 43 * Regular printout to the terminal, supressed if -q is specified: 47 */ 44 */ 48 #define tprintf(x...) do { if (g && g->p.show_ 45 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 49 46 50 /* 47 /* 51 * Debug printf: 48 * Debug printf: 52 */ 49 */ 53 #undef dprintf << 54 #define dprintf(x...) do { if (g && g->p.show_ 50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 55 51 56 struct thread_data { 52 struct thread_data { 57 int curr_cpu; 53 int curr_cpu; 58 cpu_set_t *bind_cpumask; !! 54 cpu_set_t bind_cpumask; 59 int bind_node; 55 int bind_node; 60 u8 *process_data; 56 u8 *process_data; 61 int process_nr; 57 int process_nr; 62 int thread_nr; 58 int thread_nr; 63 int task_nr; 59 int task_nr; 64 unsigned int loops_done; 60 unsigned int loops_done; 65 u64 val; 61 u64 val; 66 u64 runtime_ns; 62 u64 runtime_ns; 67 u64 system_time_ns 63 u64 system_time_ns; 68 u64 user_time_ns; 64 u64 user_time_ns; 69 double speed_gbs; 65 double speed_gbs; 70 struct mutex *process_lock; !! 66 pthread_mutex_t *process_lock; 71 }; 67 }; 72 68 73 /* Parameters set by options: */ 69 /* Parameters set by options: */ 74 70 75 struct params { 71 struct params { 76 /* Startup synchronization: */ 72 /* Startup synchronization: */ 77 bool serialize_star 73 bool serialize_startup; 78 74 79 /* Task hierarchy: */ 75 /* Task hierarchy: */ 80 int nr_proc; 76 int nr_proc; 81 int nr_threads; 77 int nr_threads; 82 78 83 /* Working set sizes: */ 79 /* Working set sizes: */ 84 const char *mb_global_str 80 const char *mb_global_str; 85 const char *mb_proc_str; 81 const char *mb_proc_str; 86 const char *mb_proc_locke 82 const char *mb_proc_locked_str; 87 const char *mb_thread_str 83 const char *mb_thread_str; 88 84 89 double mb_global; 85 double mb_global; 90 double mb_proc; 86 double mb_proc; 91 double mb_proc_locked 87 double mb_proc_locked; 92 double mb_thread; 88 double mb_thread; 93 89 94 /* Access patterns to the working set: 90 /* Access patterns to the working set: */ 95 bool data_reads; 91 bool data_reads; 96 bool data_writes; 92 bool data_writes; 97 bool data_backwards 93 bool data_backwards; 98 bool data_zero_mems 94 bool data_zero_memset; 99 bool data_rand_walk 95 bool data_rand_walk; 100 u32 nr_loops; 96 u32 nr_loops; 101 u32 nr_secs; 97 u32 nr_secs; 102 u32 sleep_usecs; 98 u32 sleep_usecs; 103 99 104 /* Working set initialization: */ 100 /* Working set initialization: */ 105 bool init_zero; 101 bool init_zero; 106 bool init_random; 102 bool init_random; 107 bool init_cpu0; 103 bool init_cpu0; 108 104 109 /* Misc options: */ 105 /* Misc options: */ 110 int show_details; 106 int show_details; 111 int run_all; 107 int run_all; 112 int thp; 108 int thp; 113 109 114 long bytes_global; 110 long bytes_global; 115 long bytes_process; 111 long bytes_process; 116 long bytes_process_ 112 long bytes_process_locked; 117 long bytes_thread; 113 long bytes_thread; 118 114 119 int nr_tasks; 115 int nr_tasks; >> 116 bool show_quiet; 120 117 121 bool show_convergen 118 bool show_convergence; 122 bool measure_conver 119 bool measure_convergence; 123 120 124 int perturb_secs; 121 int perturb_secs; 125 int nr_cpus; 122 int nr_cpus; 126 int nr_nodes; 123 int nr_nodes; 127 124 128 /* Affinity options -C and -N: */ 125 /* Affinity options -C and -N: */ 129 char *cpu_list_str; 126 char *cpu_list_str; 130 char *node_list_str 127 char *node_list_str; 131 }; 128 }; 132 129 133 130 134 /* Global, read-writable area, accessible to a 131 /* Global, read-writable area, accessible to all processes and threads: */ 135 132 136 struct global_info { 133 struct global_info { 137 u8 *data; 134 u8 *data; 138 135 139 struct mutex startup_mutex; !! 136 pthread_mutex_t startup_mutex; 140 struct cond startup_cond; << 141 int nr_tasks_start 137 int nr_tasks_started; 142 138 143 struct mutex start_work_mut !! 139 pthread_mutex_t startup_done_mutex; 144 struct cond start_work_con !! 140 >> 141 pthread_mutex_t start_work_mutex; 145 int nr_tasks_worki 142 int nr_tasks_working; 146 bool start_work; << 147 143 148 struct mutex stop_work_mute !! 144 pthread_mutex_t stop_work_mutex; 149 u64 bytes_done; 145 u64 bytes_done; 150 146 151 struct thread_data *threads; 147 struct thread_data *threads; 152 148 153 /* Convergence latency measurement: */ 149 /* Convergence latency measurement: */ 154 bool all_converged; 150 bool all_converged; 155 bool stop_work; 151 bool stop_work; 156 152 157 int print_once; 153 int print_once; 158 154 159 struct params p; 155 struct params p; 160 }; 156 }; 161 157 162 static struct global_info *g = NULL; 158 static struct global_info *g = NULL; 163 159 164 static int parse_cpus_opt(const struct option 160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 165 static int parse_nodes_opt(const struct option 161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 166 162 167 struct params p0; 163 struct params p0; 168 164 169 static const struct option options[] = { 165 static const struct option options[] = { 170 OPT_INTEGER('p', "nr_proc" , &p0. 166 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 171 OPT_INTEGER('t', "nr_threads" , &p0. 167 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 172 168 173 OPT_STRING('G', "mb_global" , &p0. 169 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 174 OPT_STRING('P', "mb_proc" , &p0. 170 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 175 OPT_STRING('L', "mb_proc_locked", &p0. 171 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 176 OPT_STRING('T', "mb_thread" , &p0. 172 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 177 173 178 OPT_UINTEGER('l', "nr_loops" , &p0. 174 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 179 OPT_UINTEGER('s', "nr_secs" , &p0. 175 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 180 OPT_UINTEGER('u', "usleep" , &p0. 176 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 181 177 182 OPT_BOOLEAN('R', "data_reads" , &p0. !! 178 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 183 OPT_BOOLEAN('W', "data_writes" , &p0. 179 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 184 OPT_BOOLEAN('B', "data_backwards", &p0 180 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 185 OPT_BOOLEAN('Z', "data_zero_memset", & 181 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 186 OPT_BOOLEAN('r', "data_rand_walk", &p0 182 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 187 183 188 184 189 OPT_BOOLEAN('z', "init_zero" , &p0. 185 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 190 OPT_BOOLEAN('I', "init_random" , &p0. 186 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 191 OPT_BOOLEAN('', "init_cpu0" , &p0.i 187 OPT_BOOLEAN('', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 192 OPT_INTEGER('x', "perturb_secs", &p0.p 188 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 193 189 194 OPT_INCR ('d', "show_details" , &p0. 190 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 195 OPT_INCR ('a', "all" , &p0. 191 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 196 OPT_INTEGER('H', "thp" , &p0. 192 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 197 OPT_BOOLEAN('c', "show_convergence", & !! 193 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 198 "convergence is reached wh << 199 OPT_BOOLEAN('m', "measure_convergence" 194 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 200 OPT_BOOLEAN('q', "quiet" , &qui !! 195 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 201 "quiet mode (do not show a << 202 OPT_BOOLEAN('S', "serialize-startup", 196 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 203 197 204 /* Special option string parsing callb 198 /* Special option string parsing callbacks: */ 205 OPT_CALLBACK('C', "cpus", NULL, "cpu[, 199 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 206 "bind the first N task 200 "bind the first N tasks to these specific cpus (the rest is unbound)", 207 parse_cpus_opt), 201 parse_cpus_opt), 208 OPT_CALLBACK('M', "memnodes", NULL, "n 202 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 209 "bind the first N task 203 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 210 parse_nodes_opt), 204 parse_nodes_opt), 211 OPT_END() 205 OPT_END() 212 }; 206 }; 213 207 214 static const char * const bench_numa_usage[] = 208 static const char * const bench_numa_usage[] = { 215 "perf bench numa <options>", 209 "perf bench numa <options>", 216 NULL 210 NULL 217 }; 211 }; 218 212 219 static const char * const numa_usage[] = { 213 static const char * const numa_usage[] = { 220 "perf bench numa mem [<options>]", 214 "perf bench numa mem [<options>]", 221 NULL 215 NULL 222 }; 216 }; 223 217 224 /* 218 /* 225 * To get number of numa nodes present. 219 * To get number of numa nodes present. 226 */ 220 */ 227 static int nr_numa_nodes(void) 221 static int nr_numa_nodes(void) 228 { 222 { 229 int i, nr_nodes = 0; 223 int i, nr_nodes = 0; 230 224 231 for (i = 0; i < g->p.nr_nodes; i++) { 225 for (i = 0; i < g->p.nr_nodes; i++) { 232 if (numa_bitmask_isbitset(numa 226 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 233 nr_nodes++; 227 nr_nodes++; 234 } 228 } 235 229 236 return nr_nodes; 230 return nr_nodes; 237 } 231 } 238 232 239 /* 233 /* 240 * To check if given numa node is present. 234 * To check if given numa node is present. 241 */ 235 */ 242 static int is_node_present(int node) 236 static int is_node_present(int node) 243 { 237 { 244 return numa_bitmask_isbitset(numa_node 238 return numa_bitmask_isbitset(numa_nodes_ptr, node); 245 } 239 } 246 240 247 /* 241 /* 248 * To check given numa node has cpus. 242 * To check given numa node has cpus. 249 */ 243 */ 250 static bool node_has_cpus(int node) 244 static bool node_has_cpus(int node) 251 { 245 { 252 struct bitmask *cpumask = numa_allocat !! 246 struct bitmask *cpu = numa_allocate_cpumask(); 253 bool ret = false; /* fall back to nocp !! 247 unsigned int i; 254 int cpu; << 255 248 256 BUG_ON(!cpumask); !! 249 if (cpu && !numa_node_to_cpus(node, cpu)) { 257 if (!numa_node_to_cpus(node, cpumask)) !! 250 for (i = 0; i < cpu->size; i++) { 258 for (cpu = 0; cpu < (int)cpuma !! 251 if (numa_bitmask_isbitset(cpu, i)) 259 if (numa_bitmask_isbit !! 252 return true; 260 ret = true; << 261 break; << 262 } << 263 } 253 } 264 } 254 } 265 numa_free_cpumask(cpumask); << 266 255 267 return ret; !! 256 return false; /* lets fall back to nocpus safely */ 268 } 257 } 269 258 270 static cpu_set_t *bind_to_cpu(int target_cpu) !! 259 static cpu_set_t bind_to_cpu(int target_cpu) 271 { 260 { 272 int nrcpus = numa_num_possible_cpus(); !! 261 cpu_set_t orig_mask, mask; 273 cpu_set_t *orig_mask, *mask; !! 262 int ret; 274 size_t size; << 275 << 276 orig_mask = CPU_ALLOC(nrcpus); << 277 BUG_ON(!orig_mask); << 278 size = CPU_ALLOC_SIZE(nrcpus); << 279 CPU_ZERO_S(size, orig_mask); << 280 << 281 if (sched_getaffinity(0, size, orig_ma << 282 goto err_out; << 283 263 284 mask = CPU_ALLOC(nrcpus); !! 264 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 285 if (!mask) !! 265 BUG_ON(ret); 286 goto err_out; << 287 266 288 CPU_ZERO_S(size, mask); !! 267 CPU_ZERO(&mask); 289 268 290 if (target_cpu == -1) { 269 if (target_cpu == -1) { 291 int cpu; 270 int cpu; 292 271 293 for (cpu = 0; cpu < g->p.nr_cp 272 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 294 CPU_SET_S(cpu, size, m !! 273 CPU_SET(cpu, &mask); 295 } else { 274 } else { 296 if (target_cpu < 0 || target_c !! 275 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 297 goto err; !! 276 CPU_SET(target_cpu, &mask); 298 << 299 CPU_SET_S(target_cpu, size, ma << 300 } 277 } 301 278 302 if (sched_setaffinity(0, size, mask)) !! 279 ret = sched_setaffinity(0, sizeof(mask), &mask); 303 goto err; !! 280 BUG_ON(ret); 304 281 305 return orig_mask; 282 return orig_mask; 306 << 307 err: << 308 CPU_FREE(mask); << 309 err_out: << 310 CPU_FREE(orig_mask); << 311 << 312 /* BUG_ON due to failure in allocation << 313 BUG_ON(-1); << 314 return NULL; << 315 } 283 } 316 284 317 static cpu_set_t *bind_to_node(int target_node !! 285 static cpu_set_t bind_to_node(int target_node) 318 { 286 { 319 int nrcpus = numa_num_possible_cpus(); !! 287 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes(); 320 size_t size; !! 288 cpu_set_t orig_mask, mask; 321 cpu_set_t *orig_mask, *mask; << 322 int cpu; 289 int cpu; >> 290 int ret; 323 291 324 orig_mask = CPU_ALLOC(nrcpus); !! 292 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus); 325 BUG_ON(!orig_mask); !! 293 BUG_ON(!cpus_per_node); 326 size = CPU_ALLOC_SIZE(nrcpus); << 327 CPU_ZERO_S(size, orig_mask); << 328 << 329 if (sched_getaffinity(0, size, orig_ma << 330 goto err_out; << 331 294 332 mask = CPU_ALLOC(nrcpus); !! 295 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 333 if (!mask) !! 296 BUG_ON(ret); 334 goto err_out; << 335 297 336 CPU_ZERO_S(size, mask); !! 298 CPU_ZERO(&mask); 337 299 338 if (target_node == NUMA_NO_NODE) { !! 300 if (target_node == -1) { 339 for (cpu = 0; cpu < g->p.nr_cp 301 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 340 CPU_SET_S(cpu, size, m !! 302 CPU_SET(cpu, &mask); 341 } else { 303 } else { 342 struct bitmask *cpumask = numa !! 304 int cpu_start = (target_node + 0) * cpus_per_node; >> 305 int cpu_stop = (target_node + 1) * cpus_per_node; 343 306 344 if (!cpumask) !! 307 BUG_ON(cpu_stop > g->p.nr_cpus); 345 goto err; << 346 308 347 if (!numa_node_to_cpus(target_ !! 309 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 348 for (cpu = 0; cpu < (i !! 310 CPU_SET(cpu, &mask); 349 if (numa_bitma << 350 CPU_SE << 351 } << 352 } << 353 numa_free_cpumask(cpumask); << 354 } 311 } 355 312 356 if (sched_setaffinity(0, size, mask)) !! 313 ret = sched_setaffinity(0, sizeof(mask), &mask); 357 goto err; !! 314 BUG_ON(ret); 358 315 359 return orig_mask; 316 return orig_mask; 360 << 361 err: << 362 CPU_FREE(mask); << 363 err_out: << 364 CPU_FREE(orig_mask); << 365 << 366 /* BUG_ON due to failure in allocation << 367 BUG_ON(-1); << 368 return NULL; << 369 } 317 } 370 318 371 static void bind_to_cpumask(cpu_set_t *mask) !! 319 static void bind_to_cpumask(cpu_set_t mask) 372 { 320 { 373 int ret; 321 int ret; 374 size_t size = CPU_ALLOC_SIZE(numa_num_ << 375 322 376 ret = sched_setaffinity(0, size, mask) !! 323 ret = sched_setaffinity(0, sizeof(mask), &mask); 377 if (ret) { !! 324 BUG_ON(ret); 378 CPU_FREE(mask); << 379 BUG_ON(ret); << 380 } << 381 } 325 } 382 326 383 static void mempol_restore(void) 327 static void mempol_restore(void) 384 { 328 { 385 int ret; 329 int ret; 386 330 387 ret = set_mempolicy(MPOL_DEFAULT, NULL 331 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 388 332 389 BUG_ON(ret); 333 BUG_ON(ret); 390 } 334 } 391 335 392 static void bind_to_memnode(int node) 336 static void bind_to_memnode(int node) 393 { 337 { 394 struct bitmask *node_mask; !! 338 unsigned long nodemask; 395 int ret; 339 int ret; 396 340 397 if (node == NUMA_NO_NODE) !! 341 if (node == -1) 398 return; 342 return; 399 343 400 node_mask = numa_allocate_nodemask(); !! 344 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 401 BUG_ON(!node_mask); !! 345 nodemask = 1L << node; 402 << 403 numa_bitmask_clearall(node_mask); << 404 numa_bitmask_setbit(node_mask, node); << 405 346 406 ret = set_mempolicy(MPOL_BIND, node_ma !! 347 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 407 dprintf("binding to node %d, mask: %01 !! 348 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 408 349 409 numa_bitmask_free(node_mask); << 410 BUG_ON(ret); 350 BUG_ON(ret); 411 } 351 } 412 352 413 #define HPSIZE (2*1024*1024) 353 #define HPSIZE (2*1024*1024) 414 354 415 #define set_taskname(fmt...) 355 #define set_taskname(fmt...) \ 416 do { 356 do { \ 417 char name[20]; 357 char name[20]; \ 418 358 \ 419 snprintf(name, 20, fmt); 359 snprintf(name, 20, fmt); \ 420 prctl(PR_SET_NAME, name); 360 prctl(PR_SET_NAME, name); \ 421 } while (0) 361 } while (0) 422 362 423 static u8 *alloc_data(ssize_t bytes0, int map_ 363 static u8 *alloc_data(ssize_t bytes0, int map_flags, 424 int init_zero, int init_ 364 int init_zero, int init_cpu0, int thp, int init_random) 425 { 365 { 426 cpu_set_t *orig_mask = NULL; !! 366 cpu_set_t orig_mask; 427 ssize_t bytes; 367 ssize_t bytes; 428 u8 *buf; 368 u8 *buf; 429 int ret; 369 int ret; 430 370 431 if (!bytes0) 371 if (!bytes0) 432 return NULL; 372 return NULL; 433 373 434 /* Allocate and initialize all memory 374 /* Allocate and initialize all memory on CPU#0: */ 435 if (init_cpu0) { 375 if (init_cpu0) { 436 int node = numa_node_of_cpu(0) 376 int node = numa_node_of_cpu(0); 437 377 438 orig_mask = bind_to_node(node) 378 orig_mask = bind_to_node(node); 439 bind_to_memnode(node); 379 bind_to_memnode(node); 440 } 380 } 441 381 442 bytes = bytes0 + HPSIZE; 382 bytes = bytes0 + HPSIZE; 443 383 444 buf = (void *)mmap(0, bytes, PROT_READ 384 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 445 BUG_ON(buf == (void *)-1); 385 BUG_ON(buf == (void *)-1); 446 386 447 if (map_flags == MAP_PRIVATE) { 387 if (map_flags == MAP_PRIVATE) { 448 if (thp > 0) { 388 if (thp > 0) { 449 ret = madvise(buf, byt 389 ret = madvise(buf, bytes, MADV_HUGEPAGE); 450 if (ret && !g->print_o 390 if (ret && !g->print_once) { 451 g->print_once 391 g->print_once = 1; 452 printf("WARNIN 392 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 453 } 393 } 454 } 394 } 455 if (thp < 0) { 395 if (thp < 0) { 456 ret = madvise(buf, byt 396 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 457 if (ret && !g->print_o 397 if (ret && !g->print_once) { 458 g->print_once 398 g->print_once = 1; 459 printf("WARNIN 399 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 460 } 400 } 461 } 401 } 462 } 402 } 463 403 464 if (init_zero) { 404 if (init_zero) { 465 bzero(buf, bytes); 405 bzero(buf, bytes); 466 } else { 406 } else { 467 /* Initialize random contents, 407 /* Initialize random contents, different in each word: */ 468 if (init_random) { 408 if (init_random) { 469 u64 *wbuf = (void *)bu 409 u64 *wbuf = (void *)buf; 470 long off = rand(); 410 long off = rand(); 471 long i; 411 long i; 472 412 473 for (i = 0; i < bytes/ 413 for (i = 0; i < bytes/8; i++) 474 wbuf[i] = i + 414 wbuf[i] = i + off; 475 } 415 } 476 } 416 } 477 417 478 /* Align to 2MB boundary: */ 418 /* Align to 2MB boundary: */ 479 buf = (void *)(((unsigned long)buf + H 419 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 480 420 481 /* Restore affinity: */ 421 /* Restore affinity: */ 482 if (init_cpu0) { 422 if (init_cpu0) { 483 bind_to_cpumask(orig_mask); 423 bind_to_cpumask(orig_mask); 484 CPU_FREE(orig_mask); << 485 mempol_restore(); 424 mempol_restore(); 486 } 425 } 487 426 488 return buf; 427 return buf; 489 } 428 } 490 429 491 static void free_data(void *data, ssize_t byte 430 static void free_data(void *data, ssize_t bytes) 492 { 431 { 493 int ret; 432 int ret; 494 433 495 if (!data) 434 if (!data) 496 return; 435 return; 497 436 498 ret = munmap(data, bytes); 437 ret = munmap(data, bytes); 499 BUG_ON(ret); 438 BUG_ON(ret); 500 } 439 } 501 440 502 /* 441 /* 503 * Create a shared memory buffer that can be s 442 * Create a shared memory buffer that can be shared between processes, zeroed: 504 */ 443 */ 505 static void * zalloc_shared_data(ssize_t bytes 444 static void * zalloc_shared_data(ssize_t bytes) 506 { 445 { 507 return alloc_data(bytes, MAP_SHARED, 1 446 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 508 } 447 } 509 448 510 /* 449 /* 511 * Create a shared memory buffer that can be s 450 * Create a shared memory buffer that can be shared between processes: 512 */ 451 */ 513 static void * setup_shared_data(ssize_t bytes) 452 static void * setup_shared_data(ssize_t bytes) 514 { 453 { 515 return alloc_data(bytes, MAP_SHARED, 0 454 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 516 } 455 } 517 456 518 /* 457 /* 519 * Allocate process-local memory - this will e 458 * Allocate process-local memory - this will either be shared between 520 * threads of this process, or only be accesse 459 * threads of this process, or only be accessed by this thread: 521 */ 460 */ 522 static void * setup_private_data(ssize_t bytes 461 static void * setup_private_data(ssize_t bytes) 523 { 462 { 524 return alloc_data(bytes, MAP_PRIVATE, 463 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 525 } 464 } 526 465 >> 466 /* >> 467 * Return a process-shared (global) mutex: >> 468 */ >> 469 static void init_global_mutex(pthread_mutex_t *mutex) >> 470 { >> 471 pthread_mutexattr_t attr; >> 472 >> 473 pthread_mutexattr_init(&attr); >> 474 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); >> 475 pthread_mutex_init(mutex, &attr); >> 476 } >> 477 527 static int parse_cpu_list(const char *arg) 478 static int parse_cpu_list(const char *arg) 528 { 479 { 529 p0.cpu_list_str = strdup(arg); 480 p0.cpu_list_str = strdup(arg); 530 481 531 dprintf("got CPU list: {%s}\n", p0.cpu 482 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 532 483 533 return 0; 484 return 0; 534 } 485 } 535 486 536 static int parse_setup_cpu_list(void) 487 static int parse_setup_cpu_list(void) 537 { 488 { 538 struct thread_data *td; 489 struct thread_data *td; 539 char *str0, *str; 490 char *str0, *str; 540 int t; 491 int t; 541 492 542 if (!g->p.cpu_list_str) 493 if (!g->p.cpu_list_str) 543 return 0; 494 return 0; 544 495 545 dprintf("g->p.nr_tasks: %d\n", g->p.nr 496 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 546 497 547 str0 = str = strdup(g->p.cpu_list_str) 498 str0 = str = strdup(g->p.cpu_list_str); 548 t = 0; 499 t = 0; 549 500 550 BUG_ON(!str); 501 BUG_ON(!str); 551 502 552 tprintf("# binding tasks to CPUs:\n"); 503 tprintf("# binding tasks to CPUs:\n"); 553 tprintf("# "); 504 tprintf("# "); 554 505 555 while (true) { 506 while (true) { 556 int bind_cpu, bind_cpu_0, bind 507 int bind_cpu, bind_cpu_0, bind_cpu_1; 557 char *tok, *tok_end, *tok_step 508 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 558 int bind_len; 509 int bind_len; 559 int step; 510 int step; 560 int mul; 511 int mul; 561 512 562 tok = strsep(&str, ","); 513 tok = strsep(&str, ","); 563 if (!tok) 514 if (!tok) 564 break; 515 break; 565 516 566 tok_end = strstr(tok, "-"); 517 tok_end = strstr(tok, "-"); 567 518 568 dprintf("\ntoken: {%s}, end: { 519 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 569 if (!tok_end) { 520 if (!tok_end) { 570 /* Single CPU specifie 521 /* Single CPU specified: */ 571 bind_cpu_0 = bind_cpu_ 522 bind_cpu_0 = bind_cpu_1 = atol(tok); 572 } else { 523 } else { 573 /* CPU range specified 524 /* CPU range specified (for example: "5-11"): */ 574 bind_cpu_0 = atol(tok) 525 bind_cpu_0 = atol(tok); 575 bind_cpu_1 = atol(tok_ 526 bind_cpu_1 = atol(tok_end + 1); 576 } 527 } 577 528 578 step = 1; 529 step = 1; 579 tok_step = strstr(tok, "#"); 530 tok_step = strstr(tok, "#"); 580 if (tok_step) { 531 if (tok_step) { 581 step = atol(tok_step + 532 step = atol(tok_step + 1); 582 BUG_ON(step <= 0 || st 533 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 583 } 534 } 584 535 585 /* 536 /* 586 * Mask length. 537 * Mask length. 587 * Eg: "--cpus 8_4-16#4" means 538 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 588 * where the _4 means the next 539 * where the _4 means the next 4 CPUs are allowed. 589 */ 540 */ 590 bind_len = 1; 541 bind_len = 1; 591 tok_len = strstr(tok, "_"); 542 tok_len = strstr(tok, "_"); 592 if (tok_len) { 543 if (tok_len) { 593 bind_len = atol(tok_le 544 bind_len = atol(tok_len + 1); 594 BUG_ON(bind_len <= 0 | 545 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 595 } 546 } 596 547 597 /* Multiplicator shortcut, "0x 548 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 598 mul = 1; 549 mul = 1; 599 tok_mul = strstr(tok, "x"); 550 tok_mul = strstr(tok, "x"); 600 if (tok_mul) { 551 if (tok_mul) { 601 mul = atol(tok_mul + 1 552 mul = atol(tok_mul + 1); 602 BUG_ON(mul <= 0); 553 BUG_ON(mul <= 0); 603 } 554 } 604 555 605 dprintf("CPUs: %d_%d-%d#%dx%d\ 556 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 606 557 607 if (bind_cpu_0 >= g->p.nr_cpus 558 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 608 printf("\nTest not app 559 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 609 return -1; 560 return -1; 610 } 561 } 611 562 612 if (is_cpu_online(bind_cpu_0) << 613 printf("\nTest not app << 614 return -1; << 615 } << 616 << 617 BUG_ON(bind_cpu_0 < 0 || bind_ 563 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 618 BUG_ON(bind_cpu_0 > bind_cpu_1 564 BUG_ON(bind_cpu_0 > bind_cpu_1); 619 565 620 for (bind_cpu = bind_cpu_0; bi 566 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 621 size_t size = CPU_ALLO << 622 int i; 567 int i; 623 568 624 for (i = 0; i < mul; i 569 for (i = 0; i < mul; i++) { 625 int cpu; 570 int cpu; 626 571 627 if (t >= g->p. 572 if (t >= g->p.nr_tasks) { 628 printf 573 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 629 goto o 574 goto out; 630 } 575 } 631 td = g->thread 576 td = g->threads + t; 632 577 633 if (t) 578 if (t) 634 tprint 579 tprintf(","); 635 if (bind_len > 580 if (bind_len > 1) { 636 tprint 581 tprintf("%2d/%d", bind_cpu, bind_len); 637 } else { 582 } else { 638 tprint 583 tprintf("%2d", bind_cpu); 639 } 584 } 640 585 641 td->bind_cpuma !! 586 CPU_ZERO(&td->bind_cpumask); 642 BUG_ON(!td->bi << 643 CPU_ZERO_S(siz << 644 for (cpu = bin 587 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 645 if (cp !! 588 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 646 !! 589 CPU_SET(cpu, &td->bind_cpumask); 647 << 648 } << 649 CPU_SE << 650 } 590 } 651 t++; 591 t++; 652 } 592 } 653 } 593 } 654 } 594 } 655 out: 595 out: 656 596 657 tprintf("\n"); 597 tprintf("\n"); 658 598 659 if (t < g->p.nr_tasks) 599 if (t < g->p.nr_tasks) 660 printf("# NOTE: %d tasks bound 600 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 661 601 662 free(str0); 602 free(str0); 663 return 0; 603 return 0; 664 } 604 } 665 605 666 static int parse_cpus_opt(const struct option 606 static int parse_cpus_opt(const struct option *opt __maybe_unused, 667 const char *arg, int 607 const char *arg, int unset __maybe_unused) 668 { 608 { 669 if (!arg) 609 if (!arg) 670 return -1; 610 return -1; 671 611 672 return parse_cpu_list(arg); 612 return parse_cpu_list(arg); 673 } 613 } 674 614 675 static int parse_node_list(const char *arg) 615 static int parse_node_list(const char *arg) 676 { 616 { 677 p0.node_list_str = strdup(arg); 617 p0.node_list_str = strdup(arg); 678 618 679 dprintf("got NODE list: {%s}\n", p0.no 619 dprintf("got NODE list: {%s}\n", p0.node_list_str); 680 620 681 return 0; 621 return 0; 682 } 622 } 683 623 684 static int parse_setup_node_list(void) 624 static int parse_setup_node_list(void) 685 { 625 { 686 struct thread_data *td; 626 struct thread_data *td; 687 char *str0, *str; 627 char *str0, *str; 688 int t; 628 int t; 689 629 690 if (!g->p.node_list_str) 630 if (!g->p.node_list_str) 691 return 0; 631 return 0; 692 632 693 dprintf("g->p.nr_tasks: %d\n", g->p.nr 633 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 694 634 695 str0 = str = strdup(g->p.node_list_str 635 str0 = str = strdup(g->p.node_list_str); 696 t = 0; 636 t = 0; 697 637 698 BUG_ON(!str); 638 BUG_ON(!str); 699 639 700 tprintf("# binding tasks to NODEs:\n") 640 tprintf("# binding tasks to NODEs:\n"); 701 tprintf("# "); 641 tprintf("# "); 702 642 703 while (true) { 643 while (true) { 704 int bind_node, bind_node_0, bi 644 int bind_node, bind_node_0, bind_node_1; 705 char *tok, *tok_end, *tok_step 645 char *tok, *tok_end, *tok_step, *tok_mul; 706 int step; 646 int step; 707 int mul; 647 int mul; 708 648 709 tok = strsep(&str, ","); 649 tok = strsep(&str, ","); 710 if (!tok) 650 if (!tok) 711 break; 651 break; 712 652 713 tok_end = strstr(tok, "-"); 653 tok_end = strstr(tok, "-"); 714 654 715 dprintf("\ntoken: {%s}, end: { 655 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 716 if (!tok_end) { 656 if (!tok_end) { 717 /* Single NODE specifi 657 /* Single NODE specified: */ 718 bind_node_0 = bind_nod 658 bind_node_0 = bind_node_1 = atol(tok); 719 } else { 659 } else { 720 /* NODE range specifie 660 /* NODE range specified (for example: "5-11"): */ 721 bind_node_0 = atol(tok 661 bind_node_0 = atol(tok); 722 bind_node_1 = atol(tok 662 bind_node_1 = atol(tok_end + 1); 723 } 663 } 724 664 725 step = 1; 665 step = 1; 726 tok_step = strstr(tok, "#"); 666 tok_step = strstr(tok, "#"); 727 if (tok_step) { 667 if (tok_step) { 728 step = atol(tok_step + 668 step = atol(tok_step + 1); 729 BUG_ON(step <= 0 || st 669 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 730 } 670 } 731 671 732 /* Multiplicator shortcut, "0x 672 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 733 mul = 1; 673 mul = 1; 734 tok_mul = strstr(tok, "x"); 674 tok_mul = strstr(tok, "x"); 735 if (tok_mul) { 675 if (tok_mul) { 736 mul = atol(tok_mul + 1 676 mul = atol(tok_mul + 1); 737 BUG_ON(mul <= 0); 677 BUG_ON(mul <= 0); 738 } 678 } 739 679 740 dprintf("NODEs: %d-%d #%d\n", 680 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 741 681 742 if (bind_node_0 >= g->p.nr_nod 682 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 743 printf("\nTest not app 683 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 744 return -1; 684 return -1; 745 } 685 } 746 686 747 BUG_ON(bind_node_0 < 0 || bind 687 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 748 BUG_ON(bind_node_0 > bind_node 688 BUG_ON(bind_node_0 > bind_node_1); 749 689 750 for (bind_node = bind_node_0; 690 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 751 int i; 691 int i; 752 692 753 for (i = 0; i < mul; i 693 for (i = 0; i < mul; i++) { 754 if (t >= g->p. 694 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 755 printf 695 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 756 goto o 696 goto out; 757 } 697 } 758 td = g->thread 698 td = g->threads + t; 759 699 760 if (!t) 700 if (!t) 761 tprint 701 tprintf(" %2d", bind_node); 762 else 702 else 763 tprint 703 tprintf(",%2d", bind_node); 764 704 765 td->bind_node 705 td->bind_node = bind_node; 766 t++; 706 t++; 767 } 707 } 768 } 708 } 769 } 709 } 770 out: 710 out: 771 711 772 tprintf("\n"); 712 tprintf("\n"); 773 713 774 if (t < g->p.nr_tasks) 714 if (t < g->p.nr_tasks) 775 printf("# NOTE: %d tasks mem-b 715 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 776 716 777 free(str0); 717 free(str0); 778 return 0; 718 return 0; 779 } 719 } 780 720 781 static int parse_nodes_opt(const struct option 721 static int parse_nodes_opt(const struct option *opt __maybe_unused, 782 const char *arg, int 722 const char *arg, int unset __maybe_unused) 783 { 723 { 784 if (!arg) 724 if (!arg) 785 return -1; 725 return -1; 786 726 787 return parse_node_list(arg); 727 return parse_node_list(arg); >> 728 >> 729 return 0; 788 } 730 } 789 731 >> 732 #define BIT(x) (1ul << x) >> 733 790 static inline uint32_t lfsr_32(uint32_t lfsr) 734 static inline uint32_t lfsr_32(uint32_t lfsr) 791 { 735 { 792 const uint32_t taps = BIT(1) | BIT(5) 736 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 793 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x 737 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 794 } 738 } 795 739 796 /* 740 /* 797 * Make sure there's real data dependency to R 741 * Make sure there's real data dependency to RAM (when read 798 * accesses are enabled), so the compiler, the 742 * accesses are enabled), so the compiler, the CPU and the 799 * kernel (KSM, zero page, etc.) cannot optimi 743 * kernel (KSM, zero page, etc.) cannot optimize away RAM 800 * accesses: 744 * accesses: 801 */ 745 */ 802 static inline u64 access_data(u64 *data, u64 v !! 746 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 803 { 747 { 804 if (g->p.data_reads) 748 if (g->p.data_reads) 805 val += *data; 749 val += *data; 806 if (g->p.data_writes) 750 if (g->p.data_writes) 807 *data = val + 1; 751 *data = val + 1; 808 return val; 752 return val; 809 } 753 } 810 754 811 /* 755 /* 812 * The worker process does two types of work, 756 * The worker process does two types of work, a forwards going 813 * loop and a backwards going loop. 757 * loop and a backwards going loop. 814 * 758 * 815 * We do this so that on multiprocessor system 759 * We do this so that on multiprocessor systems we do not create 816 * a 'train' of processing, with highly synchr 760 * a 'train' of processing, with highly synchronized processes, 817 * skewing the whole benchmark. 761 * skewing the whole benchmark. 818 */ 762 */ 819 static u64 do_work(u8 *__data, long bytes, int 763 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 820 { 764 { 821 long words = bytes/sizeof(u64); 765 long words = bytes/sizeof(u64); 822 u64 *data = (void *)__data; 766 u64 *data = (void *)__data; 823 long chunk_0, chunk_1; 767 long chunk_0, chunk_1; 824 u64 *d0, *d, *d1; 768 u64 *d0, *d, *d1; 825 long off; 769 long off; 826 long i; 770 long i; 827 771 828 BUG_ON(!data && words); 772 BUG_ON(!data && words); 829 BUG_ON(data && !words); 773 BUG_ON(data && !words); 830 774 831 if (!data) 775 if (!data) 832 return val; 776 return val; 833 777 834 /* Very simple memset() work variant: 778 /* Very simple memset() work variant: */ 835 if (g->p.data_zero_memset && !g->p.dat 779 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 836 bzero(data, bytes); 780 bzero(data, bytes); 837 return val; 781 return val; 838 } 782 } 839 783 840 /* Spread out by PID/TID nr and by loo 784 /* Spread out by PID/TID nr and by loop nr: */ 841 chunk_0 = words/nr_max; 785 chunk_0 = words/nr_max; 842 chunk_1 = words/g->p.nr_loops; 786 chunk_1 = words/g->p.nr_loops; 843 off = nr*chunk_0 + loop*chunk_1; 787 off = nr*chunk_0 + loop*chunk_1; 844 788 845 while (off >= words) 789 while (off >= words) 846 off -= words; 790 off -= words; 847 791 848 if (g->p.data_rand_walk) { 792 if (g->p.data_rand_walk) { 849 u32 lfsr = nr + loop + val; 793 u32 lfsr = nr + loop + val; 850 long j; !! 794 int j; 851 795 852 for (i = 0; i < words/1024; i+ 796 for (i = 0; i < words/1024; i++) { 853 long start, end; 797 long start, end; 854 798 855 lfsr = lfsr_32(lfsr); 799 lfsr = lfsr_32(lfsr); 856 800 857 start = lfsr % words; 801 start = lfsr % words; 858 end = min(start + 1024 802 end = min(start + 1024, words-1); 859 803 860 if (g->p.data_zero_mem 804 if (g->p.data_zero_memset) { 861 bzero(data + s 805 bzero(data + start, (end-start) * sizeof(u64)); 862 } else { 806 } else { 863 for (j = start 807 for (j = start; j < end; j++) 864 val = 808 val = access_data(data + j, val); 865 } 809 } 866 } 810 } 867 } else if (!g->p.data_backwards || (nr 811 } else if (!g->p.data_backwards || (nr + loop) & 1) { 868 /* Process data forwards: */ << 869 812 870 d0 = data + off; 813 d0 = data + off; 871 d = data + off + 1; 814 d = data + off + 1; 872 d1 = data + words; 815 d1 = data + words; 873 816 >> 817 /* Process data forwards: */ 874 for (;;) { 818 for (;;) { 875 if (unlikely(d >= d1)) 819 if (unlikely(d >= d1)) 876 d = data; 820 d = data; 877 if (unlikely(d == d0)) 821 if (unlikely(d == d0)) 878 break; 822 break; 879 823 880 val = access_data(d, v 824 val = access_data(d, val); 881 825 882 d++; 826 d++; 883 } 827 } 884 } else { 828 } else { 885 /* Process data backwards: */ 829 /* Process data backwards: */ 886 830 887 d0 = data + off; 831 d0 = data + off; 888 d = data + off - 1; 832 d = data + off - 1; 889 d1 = data + words; 833 d1 = data + words; 890 834 >> 835 /* Process data forwards: */ 891 for (;;) { 836 for (;;) { 892 if (unlikely(d < data) 837 if (unlikely(d < data)) 893 d = data + wor 838 d = data + words-1; 894 if (unlikely(d == d0)) 839 if (unlikely(d == d0)) 895 break; 840 break; 896 841 897 val = access_data(d, v 842 val = access_data(d, val); 898 843 899 d--; 844 d--; 900 } 845 } 901 } 846 } 902 847 903 return val; 848 return val; 904 } 849 } 905 850 906 static void update_curr_cpu(int task_nr, unsig 851 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 907 { 852 { 908 unsigned int cpu; 853 unsigned int cpu; 909 854 910 cpu = sched_getcpu(); 855 cpu = sched_getcpu(); 911 856 912 g->threads[task_nr].curr_cpu = cpu; 857 g->threads[task_nr].curr_cpu = cpu; 913 prctl(0, bytes_worked); 858 prctl(0, bytes_worked); 914 } 859 } 915 860 >> 861 #define MAX_NR_NODES 64 >> 862 916 /* 863 /* 917 * Count the number of nodes a process's threa 864 * Count the number of nodes a process's threads 918 * are spread out on. 865 * are spread out on. 919 * 866 * 920 * A count of 1 means that the process is comp 867 * A count of 1 means that the process is compressed 921 * to a single node. A count of g->p.nr_nodes 868 * to a single node. A count of g->p.nr_nodes means it's 922 * spread out on the whole system. 869 * spread out on the whole system. 923 */ 870 */ 924 static int count_process_nodes(int process_nr) 871 static int count_process_nodes(int process_nr) 925 { 872 { 926 char *node_present; !! 873 char node_present[MAX_NR_NODES] = { 0, }; 927 int nodes; 874 int nodes; 928 int n, t; 875 int n, t; 929 876 930 node_present = (char *)malloc(g->p.nr_ << 931 BUG_ON(!node_present); << 932 for (nodes = 0; nodes < g->p.nr_nodes; << 933 node_present[nodes] = 0; << 934 << 935 for (t = 0; t < g->p.nr_threads; t++) 877 for (t = 0; t < g->p.nr_threads; t++) { 936 struct thread_data *td; 878 struct thread_data *td; 937 int task_nr; 879 int task_nr; 938 int node; 880 int node; 939 881 940 task_nr = process_nr*g->p.nr_t 882 task_nr = process_nr*g->p.nr_threads + t; 941 td = g->threads + task_nr; 883 td = g->threads + task_nr; 942 884 943 node = numa_node_of_cpu(td->cu 885 node = numa_node_of_cpu(td->curr_cpu); 944 if (node < 0) /* curr_cpu was !! 886 if (node < 0) /* curr_cpu was likely still -1 */ 945 free(node_present); << 946 return 0; 887 return 0; 947 } << 948 888 949 node_present[node] = 1; 889 node_present[node] = 1; 950 } 890 } 951 891 952 nodes = 0; 892 nodes = 0; 953 893 954 for (n = 0; n < g->p.nr_nodes; n++) !! 894 for (n = 0; n < MAX_NR_NODES; n++) 955 nodes += node_present[n]; 895 nodes += node_present[n]; 956 896 957 free(node_present); << 958 return nodes; 897 return nodes; 959 } 898 } 960 899 961 /* 900 /* 962 * Count the number of distinct process-thread 901 * Count the number of distinct process-threads a node contains. 963 * 902 * 964 * A count of 1 means that the node contains o 903 * A count of 1 means that the node contains only a single 965 * process. If all nodes on the system contain 904 * process. If all nodes on the system contain at most one 966 * process then we are well-converged. 905 * process then we are well-converged. 967 */ 906 */ 968 static int count_node_processes(int node) 907 static int count_node_processes(int node) 969 { 908 { 970 int processes = 0; 909 int processes = 0; 971 int t, p; 910 int t, p; 972 911 973 for (p = 0; p < g->p.nr_proc; p++) { 912 for (p = 0; p < g->p.nr_proc; p++) { 974 for (t = 0; t < g->p.nr_thread 913 for (t = 0; t < g->p.nr_threads; t++) { 975 struct thread_data *td 914 struct thread_data *td; 976 int task_nr; 915 int task_nr; 977 int n; 916 int n; 978 917 979 task_nr = p*g->p.nr_th 918 task_nr = p*g->p.nr_threads + t; 980 td = g->threads + task 919 td = g->threads + task_nr; 981 920 982 n = numa_node_of_cpu(t 921 n = numa_node_of_cpu(td->curr_cpu); 983 if (n == node) { 922 if (n == node) { 984 processes++; 923 processes++; 985 break; 924 break; 986 } 925 } 987 } 926 } 988 } 927 } 989 928 990 return processes; 929 return processes; 991 } 930 } 992 931 993 static void calc_convergence_compression(int * 932 static void calc_convergence_compression(int *strong) 994 { 933 { 995 unsigned int nodes_min, nodes_max; 934 unsigned int nodes_min, nodes_max; 996 int p; 935 int p; 997 936 998 nodes_min = -1; 937 nodes_min = -1; 999 nodes_max = 0; 938 nodes_max = 0; 1000 939 1001 for (p = 0; p < g->p.nr_proc; p++) { 940 for (p = 0; p < g->p.nr_proc; p++) { 1002 unsigned int nodes = count_pr 941 unsigned int nodes = count_process_nodes(p); 1003 942 1004 if (!nodes) { 943 if (!nodes) { 1005 *strong = 0; 944 *strong = 0; 1006 return; 945 return; 1007 } 946 } 1008 947 1009 nodes_min = min(nodes, nodes_ 948 nodes_min = min(nodes, nodes_min); 1010 nodes_max = max(nodes, nodes_ 949 nodes_max = max(nodes, nodes_max); 1011 } 950 } 1012 951 1013 /* Strong convergence: all threads co 952 /* Strong convergence: all threads compress on a single node: */ 1014 if (nodes_min == 1 && nodes_max == 1) 953 if (nodes_min == 1 && nodes_max == 1) { 1015 *strong = 1; 954 *strong = 1; 1016 } else { 955 } else { 1017 *strong = 0; 956 *strong = 0; 1018 tprintf(" {%d-%d}", nodes_min 957 tprintf(" {%d-%d}", nodes_min, nodes_max); 1019 } 958 } 1020 } 959 } 1021 960 1022 static void calc_convergence(double runtime_n 961 static void calc_convergence(double runtime_ns_max, double *convergence) 1023 { 962 { 1024 unsigned int loops_done_min, loops_do 963 unsigned int loops_done_min, loops_done_max; 1025 int process_groups; 964 int process_groups; 1026 int *nodes; !! 965 int nodes[MAX_NR_NODES]; 1027 int distance; 966 int distance; 1028 int nr_min; 967 int nr_min; 1029 int nr_max; 968 int nr_max; 1030 int strong; 969 int strong; 1031 int sum; 970 int sum; 1032 int nr; 971 int nr; 1033 int node; 972 int node; 1034 int cpu; 973 int cpu; 1035 int t; 974 int t; 1036 975 1037 if (!g->p.show_convergence && !g->p.m 976 if (!g->p.show_convergence && !g->p.measure_convergence) 1038 return; 977 return; 1039 978 1040 nodes = (int *)malloc(g->p.nr_nodes * << 1041 BUG_ON(!nodes); << 1042 for (node = 0; node < g->p.nr_nodes; 979 for (node = 0; node < g->p.nr_nodes; node++) 1043 nodes[node] = 0; 980 nodes[node] = 0; 1044 981 1045 loops_done_min = -1; 982 loops_done_min = -1; 1046 loops_done_max = 0; 983 loops_done_max = 0; 1047 984 1048 for (t = 0; t < g->p.nr_tasks; t++) { 985 for (t = 0; t < g->p.nr_tasks; t++) { 1049 struct thread_data *td = g->t 986 struct thread_data *td = g->threads + t; 1050 unsigned int loops_done; 987 unsigned int loops_done; 1051 988 1052 cpu = td->curr_cpu; 989 cpu = td->curr_cpu; 1053 990 1054 /* Not all threads have writt 991 /* Not all threads have written it yet: */ 1055 if (cpu < 0) 992 if (cpu < 0) 1056 continue; 993 continue; 1057 994 1058 node = numa_node_of_cpu(cpu); 995 node = numa_node_of_cpu(cpu); 1059 996 1060 nodes[node]++; 997 nodes[node]++; 1061 998 1062 loops_done = td->loops_done; 999 loops_done = td->loops_done; 1063 loops_done_min = min(loops_do 1000 loops_done_min = min(loops_done, loops_done_min); 1064 loops_done_max = max(loops_do 1001 loops_done_max = max(loops_done, loops_done_max); 1065 } 1002 } 1066 1003 1067 nr_max = 0; 1004 nr_max = 0; 1068 nr_min = g->p.nr_tasks; 1005 nr_min = g->p.nr_tasks; 1069 sum = 0; 1006 sum = 0; 1070 1007 1071 for (node = 0; node < g->p.nr_nodes; 1008 for (node = 0; node < g->p.nr_nodes; node++) { 1072 if (!is_node_present(node)) 1009 if (!is_node_present(node)) 1073 continue; 1010 continue; 1074 nr = nodes[node]; 1011 nr = nodes[node]; 1075 nr_min = min(nr, nr_min); 1012 nr_min = min(nr, nr_min); 1076 nr_max = max(nr, nr_max); 1013 nr_max = max(nr, nr_max); 1077 sum += nr; 1014 sum += nr; 1078 } 1015 } 1079 BUG_ON(nr_min > nr_max); 1016 BUG_ON(nr_min > nr_max); 1080 1017 1081 BUG_ON(sum > g->p.nr_tasks); 1018 BUG_ON(sum > g->p.nr_tasks); 1082 1019 1083 if (0 && (sum < g->p.nr_tasks)) { !! 1020 if (0 && (sum < g->p.nr_tasks)) 1084 free(nodes); << 1085 return; 1021 return; 1086 } << 1087 1022 1088 /* 1023 /* 1089 * Count the number of distinct proce 1024 * Count the number of distinct process groups present 1090 * on nodes - when we are converged t 1025 * on nodes - when we are converged this will decrease 1091 * to g->p.nr_proc: 1026 * to g->p.nr_proc: 1092 */ 1027 */ 1093 process_groups = 0; 1028 process_groups = 0; 1094 1029 1095 for (node = 0; node < g->p.nr_nodes; 1030 for (node = 0; node < g->p.nr_nodes; node++) { 1096 int processes; 1031 int processes; 1097 1032 1098 if (!is_node_present(node)) 1033 if (!is_node_present(node)) 1099 continue; 1034 continue; 1100 processes = count_node_proces 1035 processes = count_node_processes(node); 1101 nr = nodes[node]; 1036 nr = nodes[node]; 1102 tprintf(" %2d/%-2d", nr, proc 1037 tprintf(" %2d/%-2d", nr, processes); 1103 1038 1104 process_groups += processes; 1039 process_groups += processes; 1105 } 1040 } 1106 1041 1107 distance = nr_max - nr_min; 1042 distance = nr_max - nr_min; 1108 1043 1109 tprintf(" [%2d/%-2d]", distance, proc 1044 tprintf(" [%2d/%-2d]", distance, process_groups); 1110 1045 1111 tprintf(" l:%3d-%-3d (%3d)", 1046 tprintf(" l:%3d-%-3d (%3d)", 1112 loops_done_min, loops_done_ma 1047 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1113 1048 1114 if (loops_done_min && loops_done_max) 1049 if (loops_done_min && loops_done_max) { 1115 double skew = 1.0 - (double)l 1050 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1116 1051 1117 tprintf(" [%4.1f%%]", skew * 1052 tprintf(" [%4.1f%%]", skew * 100.0); 1118 } 1053 } 1119 1054 1120 calc_convergence_compression(&strong) 1055 calc_convergence_compression(&strong); 1121 1056 1122 if (strong && process_groups == g->p. 1057 if (strong && process_groups == g->p.nr_proc) { 1123 if (!*convergence) { 1058 if (!*convergence) { 1124 *convergence = runtim 1059 *convergence = runtime_ns_max; 1125 tprintf(" (%6.1fs con 1060 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1126 if (g->p.measure_conv 1061 if (g->p.measure_convergence) { 1127 g->all_conver 1062 g->all_converged = true; 1128 g->stop_work 1063 g->stop_work = true; 1129 } 1064 } 1130 } 1065 } 1131 } else { 1066 } else { 1132 if (*convergence) { 1067 if (*convergence) { 1133 tprintf(" (%6.1fs de- 1068 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1134 *convergence = 0; 1069 *convergence = 0; 1135 } 1070 } 1136 tprintf("\n"); 1071 tprintf("\n"); 1137 } 1072 } 1138 << 1139 free(nodes); << 1140 } 1073 } 1141 1074 1142 static void show_summary(double runtime_ns_ma 1075 static void show_summary(double runtime_ns_max, int l, double *convergence) 1143 { 1076 { 1144 tprintf("\r # %5.1f%% [%.1f mins]", 1077 tprintf("\r # %5.1f%% [%.1f mins]", 1145 (double)(l+1)/g->p.nr_loops*1 1078 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1146 1079 1147 calc_convergence(runtime_ns_max, conv 1080 calc_convergence(runtime_ns_max, convergence); 1148 1081 1149 if (g->p.show_details >= 0) 1082 if (g->p.show_details >= 0) 1150 fflush(stdout); 1083 fflush(stdout); 1151 } 1084 } 1152 1085 1153 static void *worker_thread(void *__tdata) 1086 static void *worker_thread(void *__tdata) 1154 { 1087 { 1155 struct thread_data *td = __tdata; 1088 struct thread_data *td = __tdata; 1156 struct timeval start0, start, stop, d 1089 struct timeval start0, start, stop, diff; 1157 int process_nr = td->process_nr; 1090 int process_nr = td->process_nr; 1158 int thread_nr = td->thread_nr; 1091 int thread_nr = td->thread_nr; 1159 unsigned long last_perturbance; 1092 unsigned long last_perturbance; 1160 int task_nr = td->task_nr; 1093 int task_nr = td->task_nr; 1161 int details = g->p.show_details; 1094 int details = g->p.show_details; 1162 int first_task, last_task; 1095 int first_task, last_task; 1163 double convergence = 0; 1096 double convergence = 0; 1164 u64 val = td->val; 1097 u64 val = td->val; 1165 double runtime_ns_max; 1098 double runtime_ns_max; 1166 u8 *global_data; 1099 u8 *global_data; 1167 u8 *process_data; 1100 u8 *process_data; 1168 u8 *thread_data; 1101 u8 *thread_data; 1169 u64 bytes_done, secs; 1102 u64 bytes_done, secs; 1170 long work_done; 1103 long work_done; 1171 u32 l; 1104 u32 l; 1172 struct rusage rusage; 1105 struct rusage rusage; 1173 1106 1174 bind_to_cpumask(td->bind_cpumask); 1107 bind_to_cpumask(td->bind_cpumask); 1175 bind_to_memnode(td->bind_node); 1108 bind_to_memnode(td->bind_node); 1176 1109 1177 set_taskname("thread %d/%d", process_ 1110 set_taskname("thread %d/%d", process_nr, thread_nr); 1178 1111 1179 global_data = g->data; 1112 global_data = g->data; 1180 process_data = td->process_data; 1113 process_data = td->process_data; 1181 thread_data = setup_private_data(g->p 1114 thread_data = setup_private_data(g->p.bytes_thread); 1182 1115 1183 bytes_done = 0; 1116 bytes_done = 0; 1184 1117 1185 last_task = 0; 1118 last_task = 0; 1186 if (process_nr == g->p.nr_proc-1 && t 1119 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1187 last_task = 1; 1120 last_task = 1; 1188 1121 1189 first_task = 0; 1122 first_task = 0; 1190 if (process_nr == 0 && thread_nr == 0 1123 if (process_nr == 0 && thread_nr == 0) 1191 first_task = 1; 1124 first_task = 1; 1192 1125 1193 if (details >= 2) { 1126 if (details >= 2) { 1194 printf("# thread %2d / %2d g 1127 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1195 process_nr, thread_nr 1128 process_nr, thread_nr, global_data, process_data, thread_data); 1196 } 1129 } 1197 1130 1198 if (g->p.serialize_startup) { 1131 if (g->p.serialize_startup) { 1199 mutex_lock(&g->startup_mutex) !! 1132 pthread_mutex_lock(&g->startup_mutex); 1200 g->nr_tasks_started++; 1133 g->nr_tasks_started++; 1201 /* The last thread wakes the !! 1134 pthread_mutex_unlock(&g->startup_mutex); 1202 if (g->nr_tasks_started == g- << 1203 cond_signal(&g->start << 1204 << 1205 mutex_unlock(&g->startup_mute << 1206 1135 1207 /* Here we will wait for the 1136 /* Here we will wait for the main process to start us all at once: */ 1208 mutex_lock(&g->start_work_mut !! 1137 pthread_mutex_lock(&g->start_work_mutex); 1209 g->start_work = false; << 1210 g->nr_tasks_working++; 1138 g->nr_tasks_working++; 1211 while (!g->start_work) << 1212 cond_wait(&g->start_w << 1213 1139 1214 mutex_unlock(&g->start_work_m !! 1140 /* Last one wake the main process: */ >> 1141 if (g->nr_tasks_working == g->p.nr_tasks) >> 1142 pthread_mutex_unlock(&g->startup_done_mutex); >> 1143 >> 1144 pthread_mutex_unlock(&g->start_work_mutex); 1215 } 1145 } 1216 1146 1217 gettimeofday(&start0, NULL); 1147 gettimeofday(&start0, NULL); 1218 1148 1219 start = stop = start0; 1149 start = stop = start0; 1220 last_perturbance = start.tv_sec; 1150 last_perturbance = start.tv_sec; 1221 1151 1222 for (l = 0; l < g->p.nr_loops; l++) { 1152 for (l = 0; l < g->p.nr_loops; l++) { 1223 start = stop; 1153 start = stop; 1224 1154 1225 if (g->stop_work) 1155 if (g->stop_work) 1226 break; 1156 break; 1227 1157 1228 val += do_work(global_data, 1158 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1229 val += do_work(process_data, 1159 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1230 val += do_work(thread_data, 1160 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1231 1161 1232 if (g->p.sleep_usecs) { 1162 if (g->p.sleep_usecs) { 1233 mutex_lock(td->proces !! 1163 pthread_mutex_lock(td->process_lock); 1234 usleep(g->p.sleep_use 1164 usleep(g->p.sleep_usecs); 1235 mutex_unlock(td->proc !! 1165 pthread_mutex_unlock(td->process_lock); 1236 } 1166 } 1237 /* 1167 /* 1238 * Amount of work to be done 1168 * Amount of work to be done under a process-global lock: 1239 */ 1169 */ 1240 if (g->p.bytes_process_locked 1170 if (g->p.bytes_process_locked) { 1241 mutex_lock(td->proces !! 1171 pthread_mutex_lock(td->process_lock); 1242 val += do_work(proces 1172 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1243 mutex_unlock(td->proc !! 1173 pthread_mutex_unlock(td->process_lock); 1244 } 1174 } 1245 1175 1246 work_done = g->p.bytes_global 1176 work_done = g->p.bytes_global + g->p.bytes_process + 1247 g->p.bytes_proces 1177 g->p.bytes_process_locked + g->p.bytes_thread; 1248 1178 1249 update_curr_cpu(task_nr, work 1179 update_curr_cpu(task_nr, work_done); 1250 bytes_done += work_done; 1180 bytes_done += work_done; 1251 1181 1252 if (details < 0 && !g->p.pert 1182 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1253 continue; 1183 continue; 1254 1184 1255 td->loops_done = l; 1185 td->loops_done = l; 1256 1186 1257 gettimeofday(&stop, NULL); 1187 gettimeofday(&stop, NULL); 1258 1188 1259 /* Check whether our max runt 1189 /* Check whether our max runtime timed out: */ 1260 if (g->p.nr_secs) { 1190 if (g->p.nr_secs) { 1261 timersub(&stop, &star 1191 timersub(&stop, &start0, &diff); 1262 if ((u32)diff.tv_sec 1192 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1263 g->stop_work 1193 g->stop_work = true; 1264 break; 1194 break; 1265 } 1195 } 1266 } 1196 } 1267 1197 1268 /* Update the summary at most 1198 /* Update the summary at most once per second: */ 1269 if (start.tv_sec == stop.tv_s 1199 if (start.tv_sec == stop.tv_sec) 1270 continue; 1200 continue; 1271 1201 1272 /* 1202 /* 1273 * Perturb the first task's e 1203 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1274 * by migrating to CPU#0: 1204 * by migrating to CPU#0: 1275 */ 1205 */ 1276 if (first_task && g->p.pertur 1206 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1277 cpu_set_t *orig_mask; !! 1207 cpu_set_t orig_mask; 1278 int target_cpu; 1208 int target_cpu; 1279 int this_cpu; 1209 int this_cpu; 1280 1210 1281 last_perturbance = st 1211 last_perturbance = stop.tv_sec; 1282 1212 1283 /* 1213 /* 1284 * Depending on where 1214 * Depending on where we are running, move into 1285 * the other half of 1215 * the other half of the system, to create some 1286 * real disturbance: 1216 * real disturbance: 1287 */ 1217 */ 1288 this_cpu = g->threads 1218 this_cpu = g->threads[task_nr].curr_cpu; 1289 if (this_cpu < g->p.n 1219 if (this_cpu < g->p.nr_cpus/2) 1290 target_cpu = 1220 target_cpu = g->p.nr_cpus-1; 1291 else 1221 else 1292 target_cpu = 1222 target_cpu = 0; 1293 1223 1294 orig_mask = bind_to_c 1224 orig_mask = bind_to_cpu(target_cpu); 1295 1225 1296 /* Here we are runnin 1226 /* Here we are running on the target CPU already */ 1297 if (details >= 1) 1227 if (details >= 1) 1298 printf(" (inj 1228 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1299 1229 1300 bind_to_cpumask(orig_ 1230 bind_to_cpumask(orig_mask); 1301 CPU_FREE(orig_mask); << 1302 } 1231 } 1303 1232 1304 if (details >= 3) { 1233 if (details >= 3) { 1305 timersub(&stop, &star 1234 timersub(&stop, &start, &diff); 1306 runtime_ns_max = diff 1235 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1307 runtime_ns_max += dif 1236 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1308 1237 1309 if (details >= 0) { 1238 if (details >= 0) { 1310 printf(" #%2d 1239 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1311 proce 1240 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1312 } 1241 } 1313 fflush(stdout); 1242 fflush(stdout); 1314 } 1243 } 1315 if (!last_task) 1244 if (!last_task) 1316 continue; 1245 continue; 1317 1246 1318 timersub(&stop, &start0, &dif 1247 timersub(&stop, &start0, &diff); 1319 runtime_ns_max = diff.tv_sec 1248 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1320 runtime_ns_max += diff.tv_use 1249 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1321 1250 1322 show_summary(runtime_ns_max, 1251 show_summary(runtime_ns_max, l, &convergence); 1323 } 1252 } 1324 1253 1325 gettimeofday(&stop, NULL); 1254 gettimeofday(&stop, NULL); 1326 timersub(&stop, &start0, &diff); 1255 timersub(&stop, &start0, &diff); 1327 td->runtime_ns = diff.tv_sec * NSEC_P 1256 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1328 td->runtime_ns += diff.tv_usec * NSEC 1257 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1329 secs = td->runtime_ns / NSEC_PER_SEC; 1258 secs = td->runtime_ns / NSEC_PER_SEC; 1330 td->speed_gbs = secs ? bytes_done / s 1259 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1331 1260 1332 getrusage(RUSAGE_THREAD, &rusage); 1261 getrusage(RUSAGE_THREAD, &rusage); 1333 td->system_time_ns = rusage.ru_stime. 1262 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1334 td->system_time_ns += rusage.ru_stime 1263 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1335 td->user_time_ns = rusage.ru_utime.tv 1264 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1336 td->user_time_ns += rusage.ru_utime.t 1265 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1337 1266 1338 free_data(thread_data, g->p.bytes_thr 1267 free_data(thread_data, g->p.bytes_thread); 1339 1268 1340 mutex_lock(&g->stop_work_mutex); !! 1269 pthread_mutex_lock(&g->stop_work_mutex); 1341 g->bytes_done += bytes_done; 1270 g->bytes_done += bytes_done; 1342 mutex_unlock(&g->stop_work_mutex); !! 1271 pthread_mutex_unlock(&g->stop_work_mutex); 1343 1272 1344 return NULL; 1273 return NULL; 1345 } 1274 } 1346 1275 1347 /* 1276 /* 1348 * A worker process starts a couple of thread 1277 * A worker process starts a couple of threads: 1349 */ 1278 */ 1350 static void worker_process(int process_nr) 1279 static void worker_process(int process_nr) 1351 { 1280 { 1352 struct mutex process_lock; !! 1281 pthread_mutex_t process_lock; 1353 struct thread_data *td; 1282 struct thread_data *td; 1354 pthread_t *pthreads; 1283 pthread_t *pthreads; 1355 u8 *process_data; 1284 u8 *process_data; 1356 int task_nr; 1285 int task_nr; 1357 int ret; 1286 int ret; 1358 int t; 1287 int t; 1359 1288 1360 mutex_init(&process_lock); !! 1289 pthread_mutex_init(&process_lock, NULL); 1361 set_taskname("process %d", process_nr 1290 set_taskname("process %d", process_nr); 1362 1291 1363 /* 1292 /* 1364 * Pick up the memory policy and the 1293 * Pick up the memory policy and the CPU binding of our first thread, 1365 * so that we initialize memory accor 1294 * so that we initialize memory accordingly: 1366 */ 1295 */ 1367 task_nr = process_nr*g->p.nr_threads; 1296 task_nr = process_nr*g->p.nr_threads; 1368 td = g->threads + task_nr; 1297 td = g->threads + task_nr; 1369 1298 1370 bind_to_memnode(td->bind_node); 1299 bind_to_memnode(td->bind_node); 1371 bind_to_cpumask(td->bind_cpumask); 1300 bind_to_cpumask(td->bind_cpumask); 1372 1301 1373 pthreads = zalloc(g->p.nr_threads * s 1302 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1374 process_data = setup_private_data(g-> 1303 process_data = setup_private_data(g->p.bytes_process); 1375 1304 1376 if (g->p.show_details >= 3) { 1305 if (g->p.show_details >= 3) { 1377 printf(" # process %2d global 1306 printf(" # process %2d global mem: %p, process mem: %p\n", 1378 process_nr, g->data, 1307 process_nr, g->data, process_data); 1379 } 1308 } 1380 1309 1381 for (t = 0; t < g->p.nr_threads; t++) 1310 for (t = 0; t < g->p.nr_threads; t++) { 1382 task_nr = process_nr*g->p.nr_ 1311 task_nr = process_nr*g->p.nr_threads + t; 1383 td = g->threads + task_nr; 1312 td = g->threads + task_nr; 1384 1313 1385 td->process_data = process_da 1314 td->process_data = process_data; 1386 td->process_nr = process_nr 1315 td->process_nr = process_nr; 1387 td->thread_nr = t; 1316 td->thread_nr = t; 1388 td->task_nr = task_nr; 1317 td->task_nr = task_nr; 1389 td->val = rand(); 1318 td->val = rand(); 1390 td->curr_cpu = -1; 1319 td->curr_cpu = -1; 1391 td->process_lock = &process_l 1320 td->process_lock = &process_lock; 1392 1321 1393 ret = pthread_create(pthreads 1322 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1394 BUG_ON(ret); 1323 BUG_ON(ret); 1395 } 1324 } 1396 1325 1397 for (t = 0; t < g->p.nr_threads; t++) 1326 for (t = 0; t < g->p.nr_threads; t++) { 1398 ret = pthread_join(pthreads[t 1327 ret = pthread_join(pthreads[t], NULL); 1399 BUG_ON(ret); 1328 BUG_ON(ret); 1400 } 1329 } 1401 1330 1402 free_data(process_data, g->p.bytes_pr 1331 free_data(process_data, g->p.bytes_process); 1403 free(pthreads); 1332 free(pthreads); 1404 } 1333 } 1405 1334 1406 static void print_summary(void) 1335 static void print_summary(void) 1407 { 1336 { 1408 if (g->p.show_details < 0) 1337 if (g->p.show_details < 0) 1409 return; 1338 return; 1410 1339 1411 printf("\n ###\n"); 1340 printf("\n ###\n"); 1412 printf(" # %d %s will execute (on %d 1341 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1413 g->p.nr_tasks, g->p.nr_tasks 1342 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1414 printf(" # %5dx %5ldMB global s 1343 printf(" # %5dx %5ldMB global shared mem operations\n", 1415 g->p.nr_loops, g->p.b 1344 g->p.nr_loops, g->p.bytes_global/1024/1024); 1416 printf(" # %5dx %5ldMB process s 1345 printf(" # %5dx %5ldMB process shared mem operations\n", 1417 g->p.nr_loops, g->p.b 1346 g->p.nr_loops, g->p.bytes_process/1024/1024); 1418 printf(" # %5dx %5ldMB thread l 1347 printf(" # %5dx %5ldMB thread local mem operations\n", 1419 g->p.nr_loops, g->p.b 1348 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1420 1349 1421 printf(" ###\n"); 1350 printf(" ###\n"); 1422 1351 1423 printf("\n ###\n"); fflush(stdout); 1352 printf("\n ###\n"); fflush(stdout); 1424 } 1353 } 1425 1354 1426 static void init_thread_data(void) 1355 static void init_thread_data(void) 1427 { 1356 { 1428 ssize_t size = sizeof(*g->threads)*g- 1357 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1429 int t; 1358 int t; 1430 1359 1431 g->threads = zalloc_shared_data(size) 1360 g->threads = zalloc_shared_data(size); 1432 1361 1433 for (t = 0; t < g->p.nr_tasks; t++) { 1362 for (t = 0; t < g->p.nr_tasks; t++) { 1434 struct thread_data *td = g->t 1363 struct thread_data *td = g->threads + t; 1435 size_t cpuset_size = CPU_ALLO << 1436 int cpu; 1364 int cpu; 1437 1365 1438 /* Allow all nodes by default 1366 /* Allow all nodes by default: */ 1439 td->bind_node = NUMA_NO_NODE; !! 1367 td->bind_node = -1; 1440 1368 1441 /* Allow all CPUs by default: 1369 /* Allow all CPUs by default: */ 1442 td->bind_cpumask = CPU_ALLOC( !! 1370 CPU_ZERO(&td->bind_cpumask); 1443 BUG_ON(!td->bind_cpumask); << 1444 CPU_ZERO_S(cpuset_size, td->b << 1445 for (cpu = 0; cpu < g->p.nr_c 1371 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1446 CPU_SET_S(cpu, cpuset !! 1372 CPU_SET(cpu, &td->bind_cpumask); 1447 } 1373 } 1448 } 1374 } 1449 1375 1450 static void deinit_thread_data(void) 1376 static void deinit_thread_data(void) 1451 { 1377 { 1452 ssize_t size = sizeof(*g->threads)*g- 1378 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1453 int t; << 1454 << 1455 /* Free the bind_cpumask allocated fo << 1456 for (t = 0; t < g->p.nr_tasks; t++) { << 1457 struct thread_data *td = g->t << 1458 CPU_FREE(td->bind_cpumask); << 1459 } << 1460 1379 1461 free_data(g->threads, size); 1380 free_data(g->threads, size); 1462 } 1381 } 1463 1382 1464 static int init(void) 1383 static int init(void) 1465 { 1384 { 1466 g = (void *)alloc_data(sizeof(*g), MA 1385 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1467 1386 1468 /* Copy over options: */ 1387 /* Copy over options: */ 1469 g->p = p0; 1388 g->p = p0; 1470 1389 1471 g->p.nr_cpus = numa_num_configured_cp 1390 g->p.nr_cpus = numa_num_configured_cpus(); 1472 1391 1473 g->p.nr_nodes = numa_max_node() + 1; 1392 g->p.nr_nodes = numa_max_node() + 1; 1474 1393 1475 /* char array in count_process_nodes( 1394 /* char array in count_process_nodes(): */ 1476 BUG_ON(g->p.nr_nodes < 0); !! 1395 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1477 1396 1478 if (quiet && !g->p.show_details) !! 1397 if (g->p.show_quiet && !g->p.show_details) 1479 g->p.show_details = -1; 1398 g->p.show_details = -1; 1480 1399 1481 /* Some memory should be specified: * 1400 /* Some memory should be specified: */ 1482 if (!g->p.mb_global_str && !g->p.mb_p 1401 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1483 return -1; 1402 return -1; 1484 1403 1485 if (g->p.mb_global_str) { 1404 if (g->p.mb_global_str) { 1486 g->p.mb_global = atof(g->p.mb 1405 g->p.mb_global = atof(g->p.mb_global_str); 1487 BUG_ON(g->p.mb_global < 0); 1406 BUG_ON(g->p.mb_global < 0); 1488 } 1407 } 1489 1408 1490 if (g->p.mb_proc_str) { 1409 if (g->p.mb_proc_str) { 1491 g->p.mb_proc = atof(g->p.mb_p 1410 g->p.mb_proc = atof(g->p.mb_proc_str); 1492 BUG_ON(g->p.mb_proc < 0); 1411 BUG_ON(g->p.mb_proc < 0); 1493 } 1412 } 1494 1413 1495 if (g->p.mb_proc_locked_str) { 1414 if (g->p.mb_proc_locked_str) { 1496 g->p.mb_proc_locked = atof(g- 1415 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1497 BUG_ON(g->p.mb_proc_locked < 1416 BUG_ON(g->p.mb_proc_locked < 0); 1498 BUG_ON(g->p.mb_proc_locked > 1417 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1499 } 1418 } 1500 1419 1501 if (g->p.mb_thread_str) { 1420 if (g->p.mb_thread_str) { 1502 g->p.mb_thread = atof(g->p.mb 1421 g->p.mb_thread = atof(g->p.mb_thread_str); 1503 BUG_ON(g->p.mb_thread < 0); 1422 BUG_ON(g->p.mb_thread < 0); 1504 } 1423 } 1505 1424 1506 BUG_ON(g->p.nr_threads <= 0); 1425 BUG_ON(g->p.nr_threads <= 0); 1507 BUG_ON(g->p.nr_proc <= 0); 1426 BUG_ON(g->p.nr_proc <= 0); 1508 1427 1509 g->p.nr_tasks = g->p.nr_proc*g->p.nr_ 1428 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1510 1429 1511 g->p.bytes_global = g-> 1430 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1512 g->p.bytes_process = g-> 1431 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1513 g->p.bytes_process_locked = g-> 1432 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1514 g->p.bytes_thread = g-> 1433 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1515 1434 1516 g->data = setup_shared_data(g->p.byte 1435 g->data = setup_shared_data(g->p.bytes_global); 1517 1436 1518 /* Startup serialization: */ 1437 /* Startup serialization: */ 1519 mutex_init_pshared(&g->start_work_mut !! 1438 init_global_mutex(&g->start_work_mutex); 1520 cond_init_pshared(&g->start_work_cond !! 1439 init_global_mutex(&g->startup_mutex); 1521 mutex_init_pshared(&g->startup_mutex) !! 1440 init_global_mutex(&g->startup_done_mutex); 1522 cond_init_pshared(&g->startup_cond); !! 1441 init_global_mutex(&g->stop_work_mutex); 1523 mutex_init_pshared(&g->stop_work_mute << 1524 1442 1525 init_thread_data(); 1443 init_thread_data(); 1526 1444 1527 tprintf("#\n"); 1445 tprintf("#\n"); 1528 if (parse_setup_cpu_list() || parse_s 1446 if (parse_setup_cpu_list() || parse_setup_node_list()) 1529 return -1; 1447 return -1; 1530 tprintf("#\n"); 1448 tprintf("#\n"); 1531 1449 1532 print_summary(); 1450 print_summary(); 1533 1451 1534 return 0; 1452 return 0; 1535 } 1453 } 1536 1454 1537 static void deinit(void) 1455 static void deinit(void) 1538 { 1456 { 1539 free_data(g->data, g->p.bytes_global) 1457 free_data(g->data, g->p.bytes_global); 1540 g->data = NULL; 1458 g->data = NULL; 1541 1459 1542 deinit_thread_data(); 1460 deinit_thread_data(); 1543 1461 1544 free_data(g, sizeof(*g)); 1462 free_data(g, sizeof(*g)); 1545 g = NULL; 1463 g = NULL; 1546 } 1464 } 1547 1465 1548 /* 1466 /* 1549 * Print a short or long result, depending on 1467 * Print a short or long result, depending on the verbosity setting: 1550 */ 1468 */ 1551 static void print_res(const char *name, doubl 1469 static void print_res(const char *name, double val, 1552 const char *txt_unit, c 1470 const char *txt_unit, const char *txt_short, const char *txt_long) 1553 { 1471 { 1554 if (!name) 1472 if (!name) 1555 name = "main,"; 1473 name = "main,"; 1556 1474 1557 if (!quiet) !! 1475 if (!g->p.show_quiet) 1558 printf(" %-30s %15.3f, %-15s 1476 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1559 else 1477 else 1560 printf(" %14.3f %s\n", val, t 1478 printf(" %14.3f %s\n", val, txt_long); 1561 } 1479 } 1562 1480 1563 static int __bench_numa(const char *name) 1481 static int __bench_numa(const char *name) 1564 { 1482 { 1565 struct timeval start, stop, diff; 1483 struct timeval start, stop, diff; 1566 u64 runtime_ns_min, runtime_ns_sum; 1484 u64 runtime_ns_min, runtime_ns_sum; 1567 pid_t *pids, pid, wpid; 1485 pid_t *pids, pid, wpid; 1568 double delta_runtime; 1486 double delta_runtime; 1569 double runtime_avg; 1487 double runtime_avg; 1570 double runtime_sec_max; 1488 double runtime_sec_max; 1571 double runtime_sec_min; 1489 double runtime_sec_min; 1572 int wait_stat; 1490 int wait_stat; 1573 double bytes; 1491 double bytes; 1574 int i, t, p; 1492 int i, t, p; 1575 1493 1576 if (init()) 1494 if (init()) 1577 return -1; 1495 return -1; 1578 1496 1579 pids = zalloc(g->p.nr_proc * sizeof(* 1497 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1580 pid = -1; 1498 pid = -1; 1581 1499 >> 1500 /* All threads try to acquire it, this way we can wait for them to start up: */ >> 1501 pthread_mutex_lock(&g->start_work_mutex); >> 1502 1582 if (g->p.serialize_startup) { 1503 if (g->p.serialize_startup) { 1583 tprintf(" #\n"); 1504 tprintf(" #\n"); 1584 tprintf(" # Startup synchroni 1505 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1585 } 1506 } 1586 1507 1587 gettimeofday(&start, NULL); 1508 gettimeofday(&start, NULL); 1588 1509 1589 for (i = 0; i < g->p.nr_proc; i++) { 1510 for (i = 0; i < g->p.nr_proc; i++) { 1590 pid = fork(); 1511 pid = fork(); 1591 dprintf(" # process %2d: PID 1512 dprintf(" # process %2d: PID %d\n", i, pid); 1592 1513 1593 BUG_ON(pid < 0); 1514 BUG_ON(pid < 0); 1594 if (!pid) { 1515 if (!pid) { 1595 /* Child process: */ 1516 /* Child process: */ 1596 worker_process(i); 1517 worker_process(i); 1597 1518 1598 exit(0); 1519 exit(0); 1599 } 1520 } 1600 pids[i] = pid; 1521 pids[i] = pid; 1601 1522 1602 } 1523 } >> 1524 /* Wait for all the threads to start up: */ >> 1525 while (g->nr_tasks_started != g->p.nr_tasks) >> 1526 usleep(USEC_PER_MSEC); >> 1527 >> 1528 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1603 1529 1604 if (g->p.serialize_startup) { 1530 if (g->p.serialize_startup) { 1605 bool threads_ready = false; << 1606 double startup_sec; 1531 double startup_sec; 1607 1532 1608 /* !! 1533 pthread_mutex_lock(&g->startup_done_mutex); 1609 * Wait for all the threads t !! 1534 1610 * signal this process. !! 1535 /* This will start all threads: */ 1611 */ !! 1536 pthread_mutex_unlock(&g->start_work_mutex); 1612 mutex_lock(&g->startup_mutex) !! 1537 1613 while (g->nr_tasks_started != !! 1538 /* This mutex is locked - the last started thread will wake us: */ 1614 cond_wait(&g->startup !! 1539 pthread_mutex_lock(&g->startup_done_mutex); 1615 << 1616 mutex_unlock(&g->startup_mute << 1617 << 1618 /* Wait for all threads to be << 1619 while (!threads_ready) { << 1620 mutex_lock(&g->start_ << 1621 threads_ready = (g->n << 1622 mutex_unlock(&g->star << 1623 if (!threads_ready) << 1624 usleep(1); << 1625 } << 1626 1540 1627 gettimeofday(&stop, NULL); 1541 gettimeofday(&stop, NULL); 1628 1542 1629 timersub(&stop, &start, &diff 1543 timersub(&stop, &start, &diff); 1630 1544 1631 startup_sec = diff.tv_sec * N 1545 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1632 startup_sec += diff.tv_usec * 1546 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1633 startup_sec /= NSEC_PER_SEC; 1547 startup_sec /= NSEC_PER_SEC; 1634 1548 1635 tprintf(" threads initialized 1549 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1636 tprintf(" #\n"); 1550 tprintf(" #\n"); 1637 1551 1638 start = stop; 1552 start = stop; 1639 /* Start all threads running. !! 1553 pthread_mutex_unlock(&g->startup_done_mutex); 1640 mutex_lock(&g->start_work_mut << 1641 g->start_work = true; << 1642 mutex_unlock(&g->start_work_m << 1643 cond_broadcast(&g->start_work << 1644 } else { 1554 } else { 1645 gettimeofday(&start, NULL); 1555 gettimeofday(&start, NULL); 1646 } 1556 } 1647 1557 1648 /* Parent process: */ 1558 /* Parent process: */ 1649 1559 1650 1560 1651 for (i = 0; i < g->p.nr_proc; i++) { 1561 for (i = 0; i < g->p.nr_proc; i++) { 1652 wpid = waitpid(pids[i], &wait 1562 wpid = waitpid(pids[i], &wait_stat, 0); 1653 BUG_ON(wpid < 0); 1563 BUG_ON(wpid < 0); 1654 BUG_ON(!WIFEXITED(wait_stat)) 1564 BUG_ON(!WIFEXITED(wait_stat)); 1655 1565 1656 } 1566 } 1657 1567 1658 runtime_ns_sum = 0; 1568 runtime_ns_sum = 0; 1659 runtime_ns_min = -1LL; 1569 runtime_ns_min = -1LL; 1660 1570 1661 for (t = 0; t < g->p.nr_tasks; t++) { 1571 for (t = 0; t < g->p.nr_tasks; t++) { 1662 u64 thread_runtime_ns = g->th 1572 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1663 1573 1664 runtime_ns_sum += thread_runt 1574 runtime_ns_sum += thread_runtime_ns; 1665 runtime_ns_min = min(thread_r 1575 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1666 } 1576 } 1667 1577 1668 gettimeofday(&stop, NULL); 1578 gettimeofday(&stop, NULL); 1669 timersub(&stop, &start, &diff); 1579 timersub(&stop, &start, &diff); 1670 1580 1671 BUG_ON(bench_format != BENCH_FORMAT_D 1581 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1672 1582 1673 tprintf("\n ###\n"); 1583 tprintf("\n ###\n"); 1674 tprintf("\n"); 1584 tprintf("\n"); 1675 1585 1676 runtime_sec_max = diff.tv_sec * NSEC_ 1586 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1677 runtime_sec_max += diff.tv_usec * NSE 1587 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1678 runtime_sec_max /= NSEC_PER_SEC; 1588 runtime_sec_max /= NSEC_PER_SEC; 1679 1589 1680 runtime_sec_min = runtime_ns_min / NS 1590 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1681 1591 1682 bytes = g->bytes_done; 1592 bytes = g->bytes_done; 1683 runtime_avg = (double)runtime_ns_sum 1593 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1684 1594 1685 if (g->p.measure_convergence) { 1595 if (g->p.measure_convergence) { 1686 print_res(name, runtime_sec_m 1596 print_res(name, runtime_sec_max, 1687 "secs,", "NUMA-conver 1597 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1688 } 1598 } 1689 1599 1690 print_res(name, runtime_sec_max, 1600 print_res(name, runtime_sec_max, 1691 "secs,", "runtime-max/thread" 1601 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1692 1602 1693 print_res(name, runtime_sec_min, 1603 print_res(name, runtime_sec_min, 1694 "secs,", "runtime-min/thread" 1604 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1695 1605 1696 print_res(name, runtime_avg, 1606 print_res(name, runtime_avg, 1697 "secs,", "runtime-avg/thread" 1607 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1698 1608 1699 delta_runtime = (runtime_sec_max - ru 1609 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1700 print_res(name, delta_runtime / runti 1610 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1701 "%,", "spread-runtime/thread" 1611 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1702 1612 1703 print_res(name, bytes / g->p.nr_tasks 1613 print_res(name, bytes / g->p.nr_tasks / 1e9, 1704 "GB,", "data/thread", 1614 "GB,", "data/thread", "GB data processed, per thread"); 1705 1615 1706 print_res(name, bytes / 1e9, 1616 print_res(name, bytes / 1e9, 1707 "GB,", "data-total", 1617 "GB,", "data-total", "GB data processed, total"); 1708 1618 1709 print_res(name, runtime_sec_max * NSE 1619 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1710 "nsecs,", "runtime/byte/threa 1620 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1711 1621 1712 print_res(name, bytes / g->p.nr_tasks 1622 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1713 "GB/sec,", "thread-speed", 1623 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1714 1624 1715 print_res(name, bytes / runtime_sec_m 1625 print_res(name, bytes / runtime_sec_max / 1e9, 1716 "GB/sec,", "total-speed", 1626 "GB/sec,", "total-speed", "GB/sec total speed"); 1717 1627 1718 if (g->p.show_details >= 2) { 1628 if (g->p.show_details >= 2) { 1719 char tname[14 + 2 * 11 + 1]; 1629 char tname[14 + 2 * 11 + 1]; 1720 struct thread_data *td; 1630 struct thread_data *td; 1721 for (p = 0; p < g->p.nr_proc; 1631 for (p = 0; p < g->p.nr_proc; p++) { 1722 for (t = 0; t < g->p. 1632 for (t = 0; t < g->p.nr_threads; t++) { 1723 memset(tname, 1633 memset(tname, 0, sizeof(tname)); 1724 td = g->threa 1634 td = g->threads + p*g->p.nr_threads + t; 1725 snprintf(tnam 1635 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1726 print_res(tna 1636 print_res(tname, td->speed_gbs, 1727 "GB/s 1637 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1728 print_res(tna 1638 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1729 "secs 1639 "secs", "thread-system-time", "system CPU time/thread"); 1730 print_res(tna 1640 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1731 "secs 1641 "secs", "thread-user-time", "user CPU time/thread"); 1732 } 1642 } 1733 } 1643 } 1734 } 1644 } 1735 1645 1736 free(pids); 1646 free(pids); 1737 1647 1738 deinit(); 1648 deinit(); 1739 1649 1740 return 0; 1650 return 0; 1741 } 1651 } 1742 1652 1743 #define MAX_ARGS 50 1653 #define MAX_ARGS 50 1744 1654 1745 static int command_size(const char **argv) 1655 static int command_size(const char **argv) 1746 { 1656 { 1747 int size = 0; 1657 int size = 0; 1748 1658 1749 while (*argv) { 1659 while (*argv) { 1750 size++; 1660 size++; 1751 argv++; 1661 argv++; 1752 } 1662 } 1753 1663 1754 BUG_ON(size >= MAX_ARGS); 1664 BUG_ON(size >= MAX_ARGS); 1755 1665 1756 return size; 1666 return size; 1757 } 1667 } 1758 1668 1759 static void init_params(struct params *p, con 1669 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1760 { 1670 { 1761 int i; 1671 int i; 1762 1672 1763 printf("\n # Running %s \"perf bench 1673 printf("\n # Running %s \"perf bench numa", name); 1764 1674 1765 for (i = 0; i < argc; i++) 1675 for (i = 0; i < argc; i++) 1766 printf(" %s", argv[i]); 1676 printf(" %s", argv[i]); 1767 1677 1768 printf("\"\n"); 1678 printf("\"\n"); 1769 1679 1770 memset(p, 0, sizeof(*p)); 1680 memset(p, 0, sizeof(*p)); 1771 1681 1772 /* Initialize nonzero defaults: */ 1682 /* Initialize nonzero defaults: */ 1773 1683 1774 p->serialize_startup = 1; 1684 p->serialize_startup = 1; 1775 p->data_reads = tru 1685 p->data_reads = true; 1776 p->data_writes = tru 1686 p->data_writes = true; 1777 p->data_backwards = tru 1687 p->data_backwards = true; 1778 p->data_rand_walk = tru 1688 p->data_rand_walk = true; 1779 p->nr_loops = -1; 1689 p->nr_loops = -1; 1780 p->init_random = tru 1690 p->init_random = true; 1781 p->mb_global_str = "1" 1691 p->mb_global_str = "1"; 1782 p->nr_proc = 1; 1692 p->nr_proc = 1; 1783 p->nr_threads = 1; 1693 p->nr_threads = 1; 1784 p->nr_secs = 5; 1694 p->nr_secs = 5; 1785 p->run_all = arg 1695 p->run_all = argc == 1; 1786 } 1696 } 1787 1697 1788 static int run_bench_numa(const char *name, c 1698 static int run_bench_numa(const char *name, const char **argv) 1789 { 1699 { 1790 int argc = command_size(argv); 1700 int argc = command_size(argv); 1791 1701 1792 init_params(&p0, name, argc, argv); 1702 init_params(&p0, name, argc, argv); 1793 argc = parse_options(argc, argv, opti 1703 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1794 if (argc) 1704 if (argc) 1795 goto err; 1705 goto err; 1796 1706 1797 if (__bench_numa(name)) 1707 if (__bench_numa(name)) 1798 goto err; 1708 goto err; 1799 1709 1800 return 0; 1710 return 0; 1801 1711 1802 err: 1712 err: 1803 return -1; 1713 return -1; 1804 } 1714 } 1805 1715 1806 #define OPT_BW_RAM "-s", "20", 1716 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1807 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, 1717 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1808 1718 1809 #define OPT_CONV "-s", "100", 1719 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1810 #define OPT_CONV_NOTHP OPT_CONV, 1720 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1811 1721 1812 #define OPT_BW "-s", "20", 1722 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1813 #define OPT_BW_NOTHP OPT_BW, 1723 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1814 1724 1815 /* 1725 /* 1816 * The built-in test-suite executed by "perf 1726 * The built-in test-suite executed by "perf bench numa -a". 1817 * 1727 * 1818 * (A minimum of 4 nodes and 16 GB of RAM is 1728 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1819 */ 1729 */ 1820 static const char *tests[][MAX_ARGS] = { 1730 static const char *tests[][MAX_ARGS] = { 1821 /* Basic single-stream NUMA bandwidth meas 1731 /* Basic single-stream NUMA bandwidth measurements: */ 1822 { "RAM-bw-local,", "mem", "-p", "1", !! 1732 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1823 "-C" , "", "-M", 1733 "-C" , "", "-M", "", OPT_BW_RAM }, 1824 { "RAM-bw-local-NOTHP,", 1734 { "RAM-bw-local-NOTHP,", 1825 "mem", "-p", "1", 1735 "mem", "-p", "1", "-t", "1", "-P", "1024", 1826 "-C" , "", "-M", 1736 "-C" , "", "-M", "", OPT_BW_RAM_NOTHP }, 1827 { "RAM-bw-remote,", "mem", "-p", "1", !! 1737 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1828 "-C" , "", "-M", 1738 "-C" , "", "-M", "1", OPT_BW_RAM }, 1829 1739 1830 /* 2-stream NUMA bandwidth measurements: * 1740 /* 2-stream NUMA bandwidth measurements: */ 1831 { "RAM-bw-local-2x,", "mem", "-p", "2", 1741 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1832 "-C", "0,2", "-M", 1742 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1833 { "RAM-bw-remote-2x,", "mem", "-p", "2", 1743 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1834 "-C", "0,2", "-M", 1744 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1835 1745 1836 /* Cross-stream NUMA bandwidth measurement 1746 /* Cross-stream NUMA bandwidth measurement: */ 1837 { "RAM-bw-cross,", "mem", "-p", "2", 1747 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1838 "-C", "0,8", "-M", 1748 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1839 1749 1840 /* Convergence latency measurements: */ 1750 /* Convergence latency measurements: */ 1841 { " 1x3-convergence,", "mem", "-p", "1", 1751 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1842 { " 1x4-convergence,", "mem", "-p", "1", 1752 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1843 { " 1x6-convergence,", "mem", "-p", "1", 1753 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1844 { " 2x3-convergence,", "mem", "-p", "2", !! 1754 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1845 { " 3x3-convergence,", "mem", "-p", "3", 1755 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1846 { " 4x4-convergence,", "mem", "-p", "4", 1756 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1847 { " 4x4-convergence-NOTHP,", 1757 { " 4x4-convergence-NOTHP,", 1848 "mem", "-p", "4", 1758 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1849 { " 4x6-convergence,", "mem", "-p", "4", 1759 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1850 { " 4x8-convergence,", "mem", "-p", "4", 1760 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1851 { " 8x4-convergence,", "mem", "-p", "8", 1761 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1852 { " 8x4-convergence-NOTHP,", 1762 { " 8x4-convergence-NOTHP,", 1853 "mem", "-p", "8", 1763 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1854 { " 3x1-convergence,", "mem", "-p", "3", 1764 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1855 { " 4x1-convergence,", "mem", "-p", "4", 1765 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1856 { " 8x1-convergence,", "mem", "-p", "8", 1766 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1857 { "16x1-convergence,", "mem", "-p", "16", 1767 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1858 { "32x1-convergence,", "mem", "-p", "32", 1768 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1859 1769 1860 /* Various NUMA process/thread layout band 1770 /* Various NUMA process/thread layout bandwidth measurements: */ 1861 { " 2x1-bw-process,", "mem", "-p", "2", 1771 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1862 { " 3x1-bw-process,", "mem", "-p", "3", 1772 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1863 { " 4x1-bw-process,", "mem", "-p", "4", 1773 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1864 { " 8x1-bw-process,", "mem", "-p", "8", 1774 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1865 { " 8x1-bw-process-NOTHP,", 1775 { " 8x1-bw-process-NOTHP,", 1866 "mem", "-p", "8", 1776 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1867 { "16x1-bw-process,", "mem", "-p", "16", 1777 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1868 1778 1869 { " 1x4-bw-thread,", "mem", "-p", "1", !! 1779 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1870 { " 1x8-bw-thread,", "mem", "-p", "1", !! 1780 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1871 { "1x16-bw-thread,", "mem", "-p", "1", !! 1781 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1872 { "1x32-bw-thread,", "mem", "-p", "1", !! 1782 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1873 !! 1783 1874 { " 2x3-bw-process,", "mem", "-p", "2", !! 1784 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1875 { " 4x4-bw-process,", "mem", "-p", "4", !! 1785 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1876 { " 4x6-bw-process,", "mem", "-p", "4", !! 1786 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1877 { " 4x8-bw-process,", "mem", "-p", "4", !! 1787 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1878 { " 4x8-bw-process-NOTHP,", !! 1788 { " 4x8-bw-thread-NOTHP,", 1879 "mem", "-p", "4", 1789 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1880 { " 3x3-bw-process,", "mem", "-p", "3", !! 1790 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1881 { " 5x5-bw-process,", "mem", "-p", "5", !! 1791 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1882 1792 1883 { "2x16-bw-process,", "mem", "-p", "2", !! 1793 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1884 { "1x32-bw-process,", "mem", "-p", "1", !! 1794 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1885 1795 1886 { "numa02-bw,", "mem", "-p", "1", !! 1796 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1887 { "numa02-bw-NOTHP,", "mem", "-p", "1", 1797 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1888 { "numa01-bw-thread,", "mem", "-p", "2", 1798 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1889 { "numa01-bw-thread-NOTHP,", 1799 { "numa01-bw-thread-NOTHP,", 1890 "mem", "-p", "2", 1800 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1891 }; 1801 }; 1892 1802 1893 static int bench_all(void) 1803 static int bench_all(void) 1894 { 1804 { 1895 int nr = ARRAY_SIZE(tests); 1805 int nr = ARRAY_SIZE(tests); 1896 int ret; 1806 int ret; 1897 int i; 1807 int i; 1898 1808 1899 ret = system("echo ' #'; echo ' # Run 1809 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1900 BUG_ON(ret < 0); 1810 BUG_ON(ret < 0); 1901 1811 1902 for (i = 0; i < nr; i++) { 1812 for (i = 0; i < nr; i++) { 1903 run_bench_numa(tests[i][0], t 1813 run_bench_numa(tests[i][0], tests[i] + 1); 1904 } 1814 } 1905 1815 1906 printf("\n"); 1816 printf("\n"); 1907 1817 1908 return 0; 1818 return 0; 1909 } 1819 } 1910 1820 1911 int bench_numa(int argc, const char **argv) !! 1821 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1912 { 1822 { 1913 init_params(&p0, "main,", argc, argv) 1823 init_params(&p0, "main,", argc, argv); 1914 argc = parse_options(argc, argv, opti 1824 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1915 if (argc) 1825 if (argc) 1916 goto err; 1826 goto err; 1917 1827 1918 if (p0.run_all) 1828 if (p0.run_all) 1919 return bench_all(); 1829 return bench_all(); 1920 1830 1921 if (__bench_numa(NULL)) 1831 if (__bench_numa(NULL)) 1922 goto err; 1832 goto err; 1923 1833 1924 return 0; 1834 return 0; 1925 1835 1926 err: 1836 err: 1927 usage_with_options(numa_usage, option 1837 usage_with_options(numa_usage, options); 1928 return -1; 1838 return -1; 1929 } 1839 } 1930 1840
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.