1 /* SPDX-License-Identifier: GPL-2.0 */ 1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __PERF_CPUMAP_H 2 #ifndef __PERF_CPUMAP_H 3 #define __PERF_CPUMAP_H 3 #define __PERF_CPUMAP_H 4 4 5 #include <stdbool.h> << 6 #include <stdio.h> 5 #include <stdio.h> >> 6 #include <stdbool.h> >> 7 #include <internal/cpumap.h> 7 #include <perf/cpumap.h> 8 #include <perf/cpumap.h> 8 9 9 /** Identify where counts are aggregated, -1 i << 10 struct aggr_cpu_id { 10 struct aggr_cpu_id { 11 /** A value in the range 0 to number o !! 11 int thread; 12 int thread_idx; << 13 /** The numa node X as read from /sys/ << 14 int node; 12 int node; 15 /** << 16 * The socket number as read from << 17 * /sys/devices/system/cpu/cpuX/topolo << 18 */ << 19 int socket; 13 int socket; 20 /** The die id as read from /sys/devic << 21 int die; 14 int die; 22 /** The cluster id as read from /sys/d << 23 int cluster; << 24 /** The cache level as read from /sys/ << 25 int cache_lvl; << 26 /** << 27 * The cache instance ID, which is the << 28 * /sys/devices/system/cpu/cpuX/cache/ << 29 */ << 30 int cache; << 31 /** The core id as read from /sys/devi << 32 int core; 15 int core; 33 /** CPU aggregation, note there is one << 34 struct perf_cpu cpu; << 35 }; 16 }; 36 17 37 /** A collection of aggr_cpu_id values, the "b << 38 struct cpu_aggr_map { 18 struct cpu_aggr_map { 39 /** Number of valid entries. */ !! 19 refcount_t refcnt; 40 int nr; 20 int nr; 41 /** The entries. */ << 42 struct aggr_cpu_id map[]; 21 struct aggr_cpu_id map[]; 43 }; 22 }; 44 23 45 #define cpu_aggr_map__for_each_idx(idx, aggr_m << 46 for ((idx) = 0; (idx) < aggr_map->nr; << 47 << 48 struct perf_record_cpu_map_data; 24 struct perf_record_cpu_map_data; 49 25 50 bool perf_record_cpu_map_data__test_bit(int i, << 51 << 52 struct perf_cpu_map *perf_cpu_map__empty_new(i 26 struct perf_cpu_map *perf_cpu_map__empty_new(int nr); >> 27 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr); 53 28 54 struct perf_cpu_map *cpu_map__new_data(const s !! 29 struct perf_cpu_map *cpu_map__new_data(struct perf_record_cpu_map_data *data); 55 size_t cpu_map__snprint(struct perf_cpu_map *m 30 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size); 56 size_t cpu_map__snprint_mask(struct perf_cpu_m 31 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size); 57 size_t cpu_map__fprintf(struct perf_cpu_map *m 32 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp); 58 struct perf_cpu_map *cpu_map__online(void); /* !! 33 int cpu_map__get_socket_id(int cpu); 59 !! 34 struct aggr_cpu_id cpu_map__get_socket(struct perf_cpu_map *map, int idx, void *data); 60 int cpu__setup_cpunode_map(void); !! 35 int cpu_map__get_die_id(int cpu); 61 !! 36 struct aggr_cpu_id cpu_map__get_die(struct perf_cpu_map *map, int idx, void *data); 62 int cpu__max_node(void); !! 37 int cpu_map__get_core_id(int cpu); 63 struct perf_cpu cpu__max_cpu(void); !! 38 struct aggr_cpu_id cpu_map__get_core(struct perf_cpu_map *map, int idx, void *data); 64 struct perf_cpu cpu__max_present_cpu(void); !! 39 int cpu_map__get_node_id(int cpu); >> 40 struct aggr_cpu_id cpu_map__get_node(struct perf_cpu_map *map, int idx, void *data); >> 41 int cpu_map__build_socket_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **sockp); >> 42 int cpu_map__build_die_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **diep); >> 43 int cpu_map__build_core_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **corep); >> 44 int cpu_map__build_node_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **nodep); >> 45 const struct perf_cpu_map *cpu_map__online(void); /* thread unsafe */ 65 46 66 /** !! 47 static inline int cpu_map__socket(struct perf_cpu_map *sock, int s) 67 * cpu_map__is_dummy - Events associated with << 68 */ << 69 static inline bool cpu_map__is_dummy(const str << 70 { 48 { 71 return perf_cpu_map__nr(cpus) == 1 && !! 49 if (!sock || s > sock->nr || s < 0) >> 50 return 0; >> 51 return sock->map[s]; 72 } 52 } 73 53 74 /** !! 54 int cpu__setup_cpunode_map(void); 75 * cpu__get_node - Returns the numa node X as << 76 * /sys/devices/system/node/nodeX for the give << 77 */ << 78 int cpu__get_node(struct perf_cpu cpu); << 79 /** << 80 * cpu__get_socket_id - Returns the socket num << 81 * /sys/devices/system/cpu/cpuX/topology/physi << 82 */ << 83 int cpu__get_socket_id(struct perf_cpu cpu); << 84 /** << 85 * cpu__get_die_id - Returns the die id as rea << 86 * /sys/devices/system/cpu/cpuX/topology/die_i << 87 */ << 88 int cpu__get_die_id(struct perf_cpu cpu); << 89 /** << 90 * cpu__get_cluster_id - Returns the cluster i << 91 * /sys/devices/system/cpu/cpuX/topology/clust << 92 */ << 93 int cpu__get_cluster_id(struct perf_cpu cpu); << 94 /** << 95 * cpu__get_core_id - Returns the core id as r << 96 * /sys/devices/system/cpu/cpuX/topology/core_ << 97 */ << 98 int cpu__get_core_id(struct perf_cpu cpu); << 99 << 100 /** << 101 * cpu_aggr_map__empty_new - Create a cpu_aggr << 102 * being empty. << 103 */ << 104 struct cpu_aggr_map *cpu_aggr_map__empty_new(i << 105 55 106 typedef struct aggr_cpu_id (*aggr_cpu_id_get_t !! 56 int cpu__max_node(void); >> 57 int cpu__max_cpu(void); >> 58 int cpu__max_present_cpu(void); >> 59 int cpu__get_node(int cpu); >> 60 >> 61 int cpu_map__build_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **res, >> 62 struct aggr_cpu_id (*f)(struct perf_cpu_map *map, int cpu, void *data), >> 63 void *data); >> 64 >> 65 int cpu_map__cpu(struct perf_cpu_map *cpus, int idx); >> 66 bool cpu_map__has(struct perf_cpu_map *cpus, int cpu); >> 67 >> 68 bool cpu_map__compare_aggr_cpu_id(struct aggr_cpu_id a, struct aggr_cpu_id b); >> 69 bool cpu_map__aggr_cpu_id_is_empty(struct aggr_cpu_id a); >> 70 struct aggr_cpu_id cpu_map__empty_aggr_cpu_id(void); 107 71 108 /** << 109 * cpu_aggr_map__new - Create a cpu_aggr_map w << 110 * cpus. The aggr_cpu_id is created with 'get_ << 111 * passed to it. The cpu_aggr_map is sorted wi << 112 */ << 113 struct cpu_aggr_map *cpu_aggr_map__new(const s << 114 aggr_cp << 115 void *d << 116 << 117 bool aggr_cpu_id__equal(const struct aggr_cpu_ << 118 bool aggr_cpu_id__is_empty(const struct aggr_c << 119 struct aggr_cpu_id aggr_cpu_id__empty(void); << 120 << 121 << 122 /** << 123 * aggr_cpu_id__socket - Create an aggr_cpu_id << 124 * the socket for cpu. The function signature << 125 * aggr_cpu_id_get_t. << 126 */ << 127 struct aggr_cpu_id aggr_cpu_id__socket(struct << 128 /** << 129 * aggr_cpu_id__die - Create an aggr_cpu_id wi << 130 * with the die and socket for cpu. The functi << 131 * aggr_cpu_id_get_t. << 132 */ << 133 struct aggr_cpu_id aggr_cpu_id__die(struct per << 134 /** << 135 * aggr_cpu_id__cluster - Create an aggr_cpu_i << 136 * populated with the cluster, die and socket << 137 * is compatible with aggr_cpu_id_get_t. << 138 */ << 139 struct aggr_cpu_id aggr_cpu_id__cluster(struct << 140 /** << 141 * aggr_cpu_id__core - Create an aggr_cpu_id w << 142 * socket populated with the core, die and soc << 143 * signature is compatible with aggr_cpu_id_ge << 144 */ << 145 struct aggr_cpu_id aggr_cpu_id__core(struct pe << 146 /** << 147 * aggr_cpu_id__core - Create an aggr_cpu_id w << 148 * populated with the cpu, core, die and socke << 149 * is compatible with aggr_cpu_id_get_t. << 150 */ << 151 struct aggr_cpu_id aggr_cpu_id__cpu(struct per << 152 /** << 153 * aggr_cpu_id__node - Create an aggr_cpu_id w << 154 * cpu. The function signature is compatible w << 155 */ << 156 struct aggr_cpu_id aggr_cpu_id__node(struct pe << 157 /** << 158 * aggr_cpu_id__global - Create an aggr_cpu_id << 159 * The function signature is compatible with a << 160 */ << 161 struct aggr_cpu_id aggr_cpu_id__global(struct << 162 #endif /* __PERF_CPUMAP_H */ 72 #endif /* __PERF_CPUMAP_H */ 163 73
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.