~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/admin-guide/device-mapper/dm-crypt.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 ========
  2 dm-crypt
  3 ========
  4 
  5 Device-Mapper's "crypt" target provides transparent encryption of block devices
  6 using the kernel crypto API.
  7 
  8 For a more detailed description of supported parameters see:
  9 https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
 10 
 11 Parameters::
 12 
 13               <cipher> <key> <iv_offset> <device path> \
 14               <offset> [<#opt_params> <opt_params>]
 15 
 16 <cipher>
 17     Encryption cipher, encryption mode and Initial Vector (IV) generator.
 18 
 19     The cipher specifications format is::
 20 
 21        cipher[:keycount]-chainmode-ivmode[:ivopts]
 22 
 23     Examples::
 24 
 25        aes-cbc-essiv:sha256
 26        aes-xts-plain64
 27        serpent-xts-plain64
 28 
 29     Cipher format also supports direct specification with kernel crypt API
 30     format (selected by capi: prefix). The IV specification is the same
 31     as for the first format type.
 32     This format is mainly used for specification of authenticated modes.
 33 
 34     The crypto API cipher specifications format is::
 35 
 36         capi:cipher_api_spec-ivmode[:ivopts]
 37 
 38     Examples::
 39 
 40         capi:cbc(aes)-essiv:sha256
 41         capi:xts(aes)-plain64
 42 
 43     Examples of authenticated modes::
 44 
 45         capi:gcm(aes)-random
 46         capi:authenc(hmac(sha256),xts(aes))-random
 47         capi:rfc7539(chacha20,poly1305)-random
 48 
 49     The /proc/crypto contains a list of currently loaded crypto modes.
 50 
 51 <key>
 52     Key used for encryption. It is encoded either as a hexadecimal number
 53     or it can be passed as <key_string> prefixed with single colon
 54     character (':') for keys residing in kernel keyring service.
 55     You can only use key sizes that are valid for the selected cipher
 56     in combination with the selected iv mode.
 57     Note that for some iv modes the key string can contain additional
 58     keys (for example IV seed) so the key contains more parts concatenated
 59     into a single string.
 60 
 61 <key_string>
 62     The kernel keyring key is identified by string in following format:
 63     <key_size>:<key_type>:<key_description>.
 64 
 65 <key_size>
 66     The encryption key size in bytes. The kernel key payload size must match
 67     the value passed in <key_size>.
 68 
 69 <key_type>
 70     Either 'logon', 'user', 'encrypted' or 'trusted' kernel key type.
 71 
 72 <key_description>
 73     The kernel keyring key description crypt target should look for
 74     when loading key of <key_type>.
 75 
 76 <keycount>
 77     Multi-key compatibility mode. You can define <keycount> keys and
 78     then sectors are encrypted according to their offsets (sector 0 uses key0;
 79     sector 1 uses key1 etc.).  <keycount> must be a power of two.
 80 
 81 <iv_offset>
 82     The IV offset is a sector count that is added to the sector number
 83     before creating the IV.
 84 
 85 <device path>
 86     This is the device that is going to be used as backend and contains the
 87     encrypted data.  You can specify it as a path like /dev/xxx or a device
 88     number <major>:<minor>.
 89 
 90 <offset>
 91     Starting sector within the device where the encrypted data begins.
 92 
 93 <#opt_params>
 94     Number of optional parameters. If there are no optional parameters,
 95     the optional parameters section can be skipped or #opt_params can be zero.
 96     Otherwise #opt_params is the number of following arguments.
 97 
 98     Example of optional parameters section:
 99         3 allow_discards same_cpu_crypt submit_from_crypt_cpus
100 
101 allow_discards
102     Block discard requests (a.k.a. TRIM) are passed through the crypt device.
103     The default is to ignore discard requests.
104 
105     WARNING: Assess the specific security risks carefully before enabling this
106     option.  For example, allowing discards on encrypted devices may lead to
107     the leak of information about the ciphertext device (filesystem type,
108     used space etc.) if the discarded blocks can be located easily on the
109     device later.
110 
111 same_cpu_crypt
112     Perform encryption using the same cpu that IO was submitted on.
113     The default is to use an unbound workqueue so that encryption work
114     is automatically balanced between available CPUs.
115 
116 high_priority
117     Set dm-crypt workqueues and the writer thread to high priority. This
118     improves throughput and latency of dm-crypt while degrading general
119     responsiveness of the system.
120 
121 submit_from_crypt_cpus
122     Disable offloading writes to a separate thread after encryption.
123     There are some situations where offloading write bios from the
124     encryption threads to a single thread degrades performance
125     significantly.  The default is to offload write bios to the same
126     thread because it benefits CFQ to have writes submitted using the
127     same context.
128 
129 no_read_workqueue
130     Bypass dm-crypt internal workqueue and process read requests synchronously.
131 
132 no_write_workqueue
133     Bypass dm-crypt internal workqueue and process write requests synchronously.
134     This option is automatically enabled for host-managed zoned block devices
135     (e.g. host-managed SMR hard-disks).
136 
137 integrity:<bytes>:<type>
138     The device requires additional <bytes> metadata per-sector stored
139     in per-bio integrity structure. This metadata must by provided
140     by underlying dm-integrity target.
141 
142     The <type> can be "none" if metadata is used only for persistent IV.
143 
144     For Authenticated Encryption with Additional Data (AEAD)
145     the <type> is "aead". An AEAD mode additionally calculates and verifies
146     integrity for the encrypted device. The additional space is then
147     used for storing authentication tag (and persistent IV if needed).
148 
149 sector_size:<bytes>
150     Use <bytes> as the encryption unit instead of 512 bytes sectors.
151     This option can be in range 512 - 4096 bytes and must be power of two.
152     Virtual device will announce this size as a minimal IO and logical sector.
153 
154 iv_large_sectors
155    IV generators will use sector number counted in <sector_size> units
156    instead of default 512 bytes sectors.
157 
158    For example, if <sector_size> is 4096 bytes, plain64 IV for the second
159    sector will be 8 (without flag) and 1 if iv_large_sectors is present.
160    The <iv_offset> must be multiple of <sector_size> (in 512 bytes units)
161    if this flag is specified.
162 
163 integrity_key_size:<bytes>
164    Use an integrity key of <bytes> size instead of using an integrity key size
165    of the digest size of the used HMAC algorithm.
166 
167 
168 Module parameters::
169    max_read_size
170       Maximum size of read requests. When a request larger than this size
171       is received, dm-crypt will split the request. The splitting improves
172       concurrency (the split requests could be encrypted in parallel by multiple
173       cores), but it also causes overhead. The user should tune this parameters to
174       fit the actual workload.
175 
176    max_write_size
177       Maximum size of write requests. When a request larger than this size
178       is received, dm-crypt will split the request. The splitting improves
179       concurrency (the split requests could be encrypted in parallel by multiple
180       cores), but it also causes overhead. The user should tune this parameters to
181       fit the actual workload.
182 
183 
184 Example scripts
185 ===============
186 LUKS (Linux Unified Key Setup) is now the preferred way to set up disk
187 encryption with dm-crypt using the 'cryptsetup' utility, see
188 https://gitlab.com/cryptsetup/cryptsetup
189 
190 ::
191 
192         #!/bin/sh
193         # Create a crypt device using dmsetup
194         dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
195 
196 ::
197 
198         #!/bin/sh
199         # Create a crypt device using dmsetup when encryption key is stored in keyring service
200         dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
201 
202 ::
203 
204         #!/bin/sh
205         # Create a crypt device using cryptsetup and LUKS header with default cipher
206         cryptsetup luksFormat $1
207         cryptsetup luksOpen $1 crypt1

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php