1 .. SPDX-License-Identifier: GPL-2.0 2 3 ==================================== 4 Nested KVM on POWER 5 ==================================== 6 7 Introduction 8 ============ 9 10 This document explains how a guest operating system can act as a 11 hypervisor and run nested guests through the use of hypercalls, if the 12 hypervisor has implemented them. The terms L0, L1, and L2 are used to 13 refer to different software entities. L0 is the hypervisor mode entity 14 that would normally be called the "host" or "hypervisor". L1 is a 15 guest virtual machine that is directly run under L0 and is initiated 16 and controlled by L0. L2 is a guest virtual machine that is initiated 17 and controlled by L1 acting as a hypervisor. 18 19 Existing API 20 ============ 21 22 Linux/KVM has had support for Nesting as an L0 or L1 since 2018 23 24 The L0 code was added:: 25 26 commit 8e3f5fc1045dc49fd175b978c5457f5f51e7a2ce 27 Author: Paul Mackerras <paulus@ozlabs.org> 28 Date: Mon Oct 8 16:31:03 2018 +1100 29 KVM: PPC: Book3S HV: Framework and hcall stubs for nested virtualization 30 31 The L1 code was added:: 32 33 commit 360cae313702cdd0b90f82c261a8302fecef030a 34 Author: Paul Mackerras <paulus@ozlabs.org> 35 Date: Mon Oct 8 16:31:04 2018 +1100 36 KVM: PPC: Book3S HV: Nested guest entry via hypercall 37 38 This API works primarily using a single hcall h_enter_nested(). This 39 call made by the L1 to tell the L0 to start an L2 vCPU with the given 40 state. The L0 then starts this L2 and runs until an L2 exit condition 41 is reached. Once the L2 exits, the state of the L2 is given back to 42 the L1 by the L0. The full L2 vCPU state is always transferred from 43 and to L1 when the L2 is run. The L0 doesn't keep any state on the L2 44 vCPU (except in the short sequence in the L0 on L1 -> L2 entry and L2 45 -> L1 exit). 46 47 The only state kept by the L0 is the partition table. The L1 registers 48 it's partition table using the h_set_partition_table() hcall. All 49 other state held by the L0 about the L2s is cached state (such as 50 shadow page tables). 51 52 The L1 may run any L2 or vCPU without first informing the L0. It 53 simply starts the vCPU using h_enter_nested(). The creation of L2s and 54 vCPUs is done implicitly whenever h_enter_nested() is called. 55 56 In this document, we call this existing API the v1 API. 57 58 New PAPR API 59 =============== 60 61 The new PAPR API changes from the v1 API such that the creating L2 and 62 associated vCPUs is explicit. In this document, we call this the v2 63 API. 64 65 h_enter_nested() is replaced with H_GUEST_VCPU_RUN(). Before this can 66 be called the L1 must explicitly create the L2 using h_guest_create() 67 and any associated vCPUs() created with h_guest_create_vCPU(). Getting 68 and setting vCPU state can also be performed using h_guest_{g|s}et 69 hcall. 70 71 The basic execution flow is for an L1 to create an L2, run it, and 72 delete it is: 73 74 - L1 and L0 negotiate capabilities with H_GUEST_{G,S}ET_CAPABILITIES() 75 (normally at L1 boot time). 76 77 - L1 requests the L0 create an L2 with H_GUEST_CREATE() and receives a token 78 79 - L1 requests the L0 create an L2 vCPU with H_GUEST_CREATE_VCPU() 80 81 - L1 and L0 communicate the vCPU state using the H_GUEST_{G,S}ET() hcall 82 83 - L1 requests the L0 runs the vCPU running H_GUEST_VCPU_RUN() hcall 84 85 - L1 deletes L2 with H_GUEST_DELETE() 86 87 More details of the individual hcalls follows: 88 89 HCALL Details 90 ============= 91 92 This documentation is provided to give an overall understating of the 93 API. It doesn't aim to provide all the details required to implement 94 an L1 or L0. Latest version of PAPR can be referred to for more details. 95 96 All these HCALLs are made by the L1 to the L0. 97 98 H_GUEST_GET_CAPABILITIES() 99 -------------------------- 100 101 This is called to get the capabilities of the L0 nested 102 hypervisor. This includes capabilities such the CPU versions (eg 103 POWER9, POWER10) that are supported as L2s:: 104 105 H_GUEST_GET_CAPABILITIES(uint64 flags) 106 107 Parameters: 108 Input: 109 flags: Reserved 110 Output: 111 R3: Return code 112 R4: Hypervisor Supported Capabilities bitmap 1 113 114 H_GUEST_SET_CAPABILITIES() 115 -------------------------- 116 117 This is called to inform the L0 of the capabilities of the L1 118 hypervisor. The set of flags passed here are the same as 119 H_GUEST_GET_CAPABILITIES() 120 121 Typically, GET will be called first and then SET will be called with a 122 subset of the flags returned from GET. This process allows the L0 and 123 L1 to negotiate an agreed set of capabilities:: 124 125 H_GUEST_SET_CAPABILITIES(uint64 flags, 126 uint64 capabilitiesBitmap1) 127 Parameters: 128 Input: 129 flags: Reserved 130 capabilitiesBitmap1: Only capabilities advertised through 131 H_GUEST_GET_CAPABILITIES 132 Output: 133 R3: Return code 134 R4: If R3 = H_P2: The number of invalid bitmaps 135 R5: If R3 = H_P2: The index of first invalid bitmap 136 137 H_GUEST_CREATE() 138 ---------------- 139 140 This is called to create an L2. A unique ID of the L2 created 141 (similar to an LPID) is returned, which can be used on subsequent HCALLs to 142 identify the L2:: 143 144 H_GUEST_CREATE(uint64 flags, 145 uint64 continueToken); 146 Parameters: 147 Input: 148 flags: Reserved 149 continueToken: Initial call set to -1. Subsequent calls, 150 after H_Busy or H_LongBusyOrder has been 151 returned, value that was returned in R4. 152 Output: 153 R3: Return code. Notable: 154 H_Not_Enough_Resources: Unable to create Guest VCPU due to not 155 enough Hypervisor memory. See H_GUEST_CREATE_GET_STATE(flags = 156 takeOwnershipOfVcpuState) 157 R4: If R3 = H_Busy or_H_LongBusyOrder -> continueToken 158 159 H_GUEST_CREATE_VCPU() 160 --------------------- 161 162 This is called to create a vCPU associated with an L2. The L2 id 163 (returned from H_GUEST_CREATE()) should be passed it. Also passed in 164 is a unique (for this L2) vCPUid. This vCPUid is allocated by the 165 L1:: 166 167 H_GUEST_CREATE_VCPU(uint64 flags, 168 uint64 guestId, 169 uint64 vcpuId); 170 Parameters: 171 Input: 172 flags: Reserved 173 guestId: ID obtained from H_GUEST_CREATE 174 vcpuId: ID of the vCPU to be created. This must be within the 175 range of 0 to 2047 176 Output: 177 R3: Return code. Notable: 178 H_Not_Enough_Resources: Unable to create Guest VCPU due to not 179 enough Hypervisor memory. See H_GUEST_CREATE_GET_STATE(flags = 180 takeOwnershipOfVcpuState) 181 182 H_GUEST_GET_STATE() 183 ------------------- 184 185 This is called to get state associated with an L2 (Guest-wide or vCPU specific). 186 This info is passed via the Guest State Buffer (GSB), a standard format as 187 explained later in this doc, necessary details below: 188 189 This can get either L2 wide or vcpu specific information. Examples of 190 L2 wide is the timebase offset or process scoped page table 191 info. Examples of vCPU specific are GPRs or VSRs. A bit in the flags 192 parameter specifies if this call is L2 wide or vCPU specific and the 193 IDs in the GSB must match this. 194 195 The L1 provides a pointer to the GSB as a parameter to this call. Also 196 provided is the L2 and vCPU IDs associated with the state to set. 197 198 The L1 writes only the IDs and sizes in the GSB. L0 writes the 199 associated values for each ID in the GSB:: 200 201 H_GUEST_GET_STATE(uint64 flags, 202 uint64 guestId, 203 uint64 vcpuId, 204 uint64 dataBuffer, 205 uint64 dataBufferSizeInBytes); 206 Parameters: 207 Input: 208 flags: 209 Bit 0: getGuestWideState: Request state of the Guest instead 210 of an individual VCPU. 211 Bit 1: takeOwnershipOfVcpuState Indicate the L1 is taking 212 over ownership of the VCPU state and that the L0 can free 213 the storage holding the state. The VCPU state will need to 214 be returned to the Hypervisor via H_GUEST_SET_STATE prior 215 to H_GUEST_RUN_VCPU being called for this VCPU. The data 216 returned in the dataBuffer is in a Hypervisor internal 217 format. 218 Bits 2-63: Reserved 219 guestId: ID obtained from H_GUEST_CREATE 220 vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU 221 dataBuffer: A L1 real address of the GSB. 222 If takeOwnershipOfVcpuState, size must be at least the size 223 returned by ID=0x0001 224 dataBufferSizeInBytes: Size of dataBuffer 225 Output: 226 R3: Return code 227 R4: If R3 = H_Invalid_Element_Id: The array index of the bad 228 element ID. 229 If R3 = H_Invalid_Element_Size: The array index of the bad 230 element size. 231 If R3 = H_Invalid_Element_Value: The array index of the bad 232 element value. 233 234 H_GUEST_SET_STATE() 235 ------------------- 236 237 This is called to set L2 wide or vCPU specific L2 state. This info is 238 passed via the Guest State Buffer (GSB), necessary details below: 239 240 This can set either L2 wide or vcpu specific information. Examples of 241 L2 wide is the timebase offset or process scoped page table 242 info. Examples of vCPU specific are GPRs or VSRs. A bit in the flags 243 parameter specifies if this call is L2 wide or vCPU specific and the 244 IDs in the GSB must match this. 245 246 The L1 provides a pointer to the GSB as a parameter to this call. Also 247 provided is the L2 and vCPU IDs associated with the state to set. 248 249 The L1 writes all values in the GSB and the L0 only reads the GSB for 250 this call:: 251 252 H_GUEST_SET_STATE(uint64 flags, 253 uint64 guestId, 254 uint64 vcpuId, 255 uint64 dataBuffer, 256 uint64 dataBufferSizeInBytes); 257 Parameters: 258 Input: 259 flags: 260 Bit 0: getGuestWideState: Request state of the Guest instead 261 of an individual VCPU. 262 Bit 1: returnOwnershipOfVcpuState Return Guest VCPU state. See 263 GET_STATE takeOwnershipOfVcpuState 264 Bits 2-63: Reserved 265 guestId: ID obtained from H_GUEST_CREATE 266 vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU 267 dataBuffer: A L1 real address of the GSB. 268 If takeOwnershipOfVcpuState, size must be at least the size 269 returned by ID=0x0001 270 dataBufferSizeInBytes: Size of dataBuffer 271 Output: 272 R3: Return code 273 R4: If R3 = H_Invalid_Element_Id: The array index of the bad 274 element ID. 275 If R3 = H_Invalid_Element_Size: The array index of the bad 276 element size. 277 If R3 = H_Invalid_Element_Value: The array index of the bad 278 element value. 279 280 H_GUEST_RUN_VCPU() 281 ------------------ 282 283 This is called to run an L2 vCPU. The L2 and vCPU IDs are passed in as 284 parameters. The vCPU runs with the state set previously using 285 H_GUEST_SET_STATE(). When the L2 exits, the L1 will resume from this 286 hcall. 287 288 This hcall also has associated input and output GSBs. Unlike 289 H_GUEST_{S,G}ET_STATE(), these GSB pointers are not passed in as 290 parameters to the hcall (This was done in the interest of 291 performance). The locations of these GSBs must be preregistered using 292 the H_GUEST_SET_STATE() call with ID 0x0c00 and 0x0c01 (see table 293 below). 294 295 The input GSB may contain only VCPU specific elements to be set. This 296 GSB may also contain zero elements (ie 0 in the first 4 bytes of the 297 GSB) if nothing needs to be set. 298 299 On exit from the hcall, the output buffer is filled with elements 300 determined by the L0. The reason for the exit is contained in GPR4 (ie 301 NIP is put in GPR4). The elements returned depend on the exit 302 type. For example, if the exit reason is the L2 doing a hcall (GPR4 = 303 0xc00), then GPR3-12 are provided in the output GSB as this is the 304 state likely needed to service the hcall. If additional state is 305 needed, H_GUEST_GET_STATE() may be called by the L1. 306 307 To synthesize interrupts in the L2, when calling H_GUEST_RUN_VCPU() 308 the L1 may set a flag (as a hcall parameter) and the L0 will 309 synthesize the interrupt in the L2. Alternatively, the L1 may 310 synthesize the interrupt itself using H_GUEST_SET_STATE() or the 311 H_GUEST_RUN_VCPU() input GSB to set the state appropriately:: 312 313 H_GUEST_RUN_VCPU(uint64 flags, 314 uint64 guestId, 315 uint64 vcpuId, 316 uint64 dataBuffer, 317 uint64 dataBufferSizeInBytes); 318 Parameters: 319 Input: 320 flags: 321 Bit 0: generateExternalInterrupt: Generate an external interrupt 322 Bit 1: generatePrivilegedDoorbell: Generate a Privileged Doorbell 323 Bit 2: sendToSystemResetâ: Generate a System Reset Interrupt 324 Bits 3-63: Reserved 325 guestId: ID obtained from H_GUEST_CREATE 326 vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU 327 Output: 328 R3: Return code 329 R4: If R3 = H_Success: The reason L1 VCPU exited (ie. NIA) 330 0x000: The VCPU stopped running for an unspecified reason. An 331 example of this is the Hypervisor stopping a VCPU running 332 due to an outstanding interrupt for the Host Partition. 333 0x980: HDEC 334 0xC00: HCALL 335 0xE00: HDSI 336 0xE20: HISI 337 0xE40: HEA 338 0xF80: HV Fac Unavail 339 If R3 = H_Invalid_Element_Id, H_Invalid_Element_Size, or 340 H_Invalid_Element_Value: R4 is offset of the invalid element 341 in the input buffer. 342 343 H_GUEST_DELETE() 344 ---------------- 345 346 This is called to delete an L2. All associated vCPUs are also 347 deleted. No specific vCPU delete call is provided. 348 349 A flag may be provided to delete all guests. This is used to reset the 350 L0 in the case of kdump/kexec:: 351 352 H_GUEST_DELETE(uint64 flags, 353 uint64 guestId) 354 Parameters: 355 Input: 356 flags: 357 Bit 0: deleteAllGuests: deletes all guests 358 Bits 1-63: Reserved 359 guestId: ID obtained from H_GUEST_CREATE 360 Output: 361 R3: Return code 362 363 Guest State Buffer 364 ================== 365 366 The Guest State Buffer (GSB) is the main method of communicating state 367 about the L2 between the L1 and L0 via H_GUEST_{G,S}ET() and 368 H_GUEST_VCPU_RUN() calls. 369 370 State may be associated with a whole L2 (eg timebase offset) or a 371 specific L2 vCPU (eg. GPR state). Only L2 VCPU state maybe be set by 372 H_GUEST_VCPU_RUN(). 373 374 All data in the GSB is big endian (as is standard in PAPR) 375 376 The Guest state buffer has a header which gives the number of 377 elements, followed by the GSB elements themselves. 378 379 GSB header: 380 381 +----------+----------+-------------------------------------------+ 382 | Offset | Size | Purpose | 383 | Bytes | Bytes | | 384 +==========+==========+===========================================+ 385 | 0 | 4 | Number of elements | 386 +----------+----------+-------------------------------------------+ 387 | 4 | | Guest state buffer elements | 388 +----------+----------+-------------------------------------------+ 389 390 GSB element: 391 392 +----------+----------+-------------------------------------------+ 393 | Offset | Size | Purpose | 394 | Bytes | Bytes | | 395 +==========+==========+===========================================+ 396 | 0 | 2 | ID | 397 +----------+----------+-------------------------------------------+ 398 | 2 | 2 | Size of Value | 399 +----------+----------+-------------------------------------------+ 400 | 4 | As above | Value | 401 +----------+----------+-------------------------------------------+ 402 403 The ID in the GSB element specifies what is to be set. This includes 404 archtected state like GPRs, VSRs, SPRs, plus also some meta data about 405 the partition like the timebase offset and partition scoped page 406 table information. 407 408 +--------+-------+----+--------+----------------------------------+ 409 | ID | Size | RW | Thread | Details | 410 | | Bytes | | Guest | | 411 | | | | Scope | | 412 +========+=======+====+========+==================================+ 413 | 0x0000 | | RW | TG | NOP element | 414 +--------+-------+----+--------+----------------------------------+ 415 | 0x0001 | 0x08 | R | G | Size of L0 vCPU state. See: | 416 | | | | | H_GUEST_GET_STATE: | 417 | | | | | flags = takeOwnershipOfVcpuState | 418 +--------+-------+----+--------+----------------------------------+ 419 | 0x0002 | 0x08 | R | G | Size Run vCPU out buffer | 420 +--------+-------+----+--------+----------------------------------+ 421 | 0x0003 | 0x04 | RW | G | Logical PVR | 422 +--------+-------+----+--------+----------------------------------+ 423 | 0x0004 | 0x08 | RW | G | TB Offset (L1 relative) | 424 +--------+-------+----+--------+----------------------------------+ 425 | 0x0005 | 0x18 | RW | G |Partition scoped page tbl info: | 426 | | | | | | 427 | | | | |- 0x00 Addr part scope table | 428 | | | | |- 0x08 Num addr bits | 429 | | | | |- 0x10 Size root dir | 430 +--------+-------+----+--------+----------------------------------+ 431 | 0x0006 | 0x10 | RW | G |Process Table Information: | 432 | | | | | | 433 | | | | |- 0x0 Addr proc scope table | 434 | | | | |- 0x8 Table size. | 435 +--------+-------+----+--------+----------------------------------+ 436 | 0x0007-| | | | Reserved | 437 | 0x0BFF | | | | | 438 +--------+-------+----+--------+----------------------------------+ 439 | 0x0C00 | 0x10 | RW | T |Run vCPU Input Buffer: | 440 | | | | | | 441 | | | | |- 0x0 Addr of buffer | 442 | | | | |- 0x8 Buffer Size. | 443 +--------+-------+----+--------+----------------------------------+ 444 | 0x0C01 | 0x10 | RW | T |Run vCPU Output Buffer: | 445 | | | | | | 446 | | | | |- 0x0 Addr of buffer | 447 | | | | |- 0x8 Buffer Size. | 448 +--------+-------+----+--------+----------------------------------+ 449 | 0x0C02 | 0x08 | RW | T | vCPU VPA Address | 450 +--------+-------+----+--------+----------------------------------+ 451 | 0x0C03-| | | | Reserved | 452 | 0x0FFF | | | | | 453 +--------+-------+----+--------+----------------------------------+ 454 | 0x1000-| 0x08 | RW | T | GPR 0-31 | 455 | 0x101F | | | | | 456 +--------+-------+----+--------+----------------------------------+ 457 | 0x1020 | 0x08 | T | T | HDEC expiry TB | 458 +--------+-------+----+--------+----------------------------------+ 459 | 0x1021 | 0x08 | RW | T | NIA | 460 +--------+-------+----+--------+----------------------------------+ 461 | 0x1022 | 0x08 | RW | T | MSR | 462 +--------+-------+----+--------+----------------------------------+ 463 | 0x1023 | 0x08 | RW | T | LR | 464 +--------+-------+----+--------+----------------------------------+ 465 | 0x1024 | 0x08 | RW | T | XER | 466 +--------+-------+----+--------+----------------------------------+ 467 | 0x1025 | 0x08 | RW | T | CTR | 468 +--------+-------+----+--------+----------------------------------+ 469 | 0x1026 | 0x08 | RW | T | CFAR | 470 +--------+-------+----+--------+----------------------------------+ 471 | 0x1027 | 0x08 | RW | T | SRR0 | 472 +--------+-------+----+--------+----------------------------------+ 473 | 0x1028 | 0x08 | RW | T | SRR1 | 474 +--------+-------+----+--------+----------------------------------+ 475 | 0x1029 | 0x08 | RW | T | DAR | 476 +--------+-------+----+--------+----------------------------------+ 477 | 0x102A | 0x08 | RW | T | DEC expiry TB | 478 +--------+-------+----+--------+----------------------------------+ 479 | 0x102B | 0x08 | RW | T | VTB | 480 +--------+-------+----+--------+----------------------------------+ 481 | 0x102C | 0x08 | RW | T | LPCR | 482 +--------+-------+----+--------+----------------------------------+ 483 | 0x102D | 0x08 | RW | T | HFSCR | 484 +--------+-------+----+--------+----------------------------------+ 485 | 0x102E | 0x08 | RW | T | FSCR | 486 +--------+-------+----+--------+----------------------------------+ 487 | 0x102F | 0x08 | RW | T | FPSCR | 488 +--------+-------+----+--------+----------------------------------+ 489 | 0x1030 | 0x08 | RW | T | DAWR0 | 490 +--------+-------+----+--------+----------------------------------+ 491 | 0x1031 | 0x08 | RW | T | DAWR1 | 492 +--------+-------+----+--------+----------------------------------+ 493 | 0x1032 | 0x08 | RW | T | CIABR | 494 +--------+-------+----+--------+----------------------------------+ 495 | 0x1033 | 0x08 | RW | T | PURR | 496 +--------+-------+----+--------+----------------------------------+ 497 | 0x1034 | 0x08 | RW | T | SPURR | 498 +--------+-------+----+--------+----------------------------------+ 499 | 0x1035 | 0x08 | RW | T | IC | 500 +--------+-------+----+--------+----------------------------------+ 501 | 0x1036-| 0x08 | RW | T | SPRG 0-3 | 502 | 0x1039 | | | | | 503 +--------+-------+----+--------+----------------------------------+ 504 | 0x103A | 0x08 | W | T | PPR | 505 +--------+-------+----+--------+----------------------------------+ 506 | 0x103B | 0x08 | RW | T | MMCR 0-3 | 507 | 0x103E | | | | | 508 +--------+-------+----+--------+----------------------------------+ 509 | 0x103F | 0x08 | RW | T | MMCRA | 510 +--------+-------+----+--------+----------------------------------+ 511 | 0x1040 | 0x08 | RW | T | SIER | 512 +--------+-------+----+--------+----------------------------------+ 513 | 0x1041 | 0x08 | RW | T | SIER 2 | 514 +--------+-------+----+--------+----------------------------------+ 515 | 0x1042 | 0x08 | RW | T | SIER 3 | 516 +--------+-------+----+--------+----------------------------------+ 517 | 0x1043 | 0x08 | RW | T | BESCR | 518 +--------+-------+----+--------+----------------------------------+ 519 | 0x1044 | 0x08 | RW | T | EBBHR | 520 +--------+-------+----+--------+----------------------------------+ 521 | 0x1045 | 0x08 | RW | T | EBBRR | 522 +--------+-------+----+--------+----------------------------------+ 523 | 0x1046 | 0x08 | RW | T | AMR | 524 +--------+-------+----+--------+----------------------------------+ 525 | 0x1047 | 0x08 | RW | T | IAMR | 526 +--------+-------+----+--------+----------------------------------+ 527 | 0x1048 | 0x08 | RW | T | AMOR | 528 +--------+-------+----+--------+----------------------------------+ 529 | 0x1049 | 0x08 | RW | T | UAMOR | 530 +--------+-------+----+--------+----------------------------------+ 531 | 0x104A | 0x08 | RW | T | SDAR | 532 +--------+-------+----+--------+----------------------------------+ 533 | 0x104B | 0x08 | RW | T | SIAR | 534 +--------+-------+----+--------+----------------------------------+ 535 | 0x104C | 0x08 | RW | T | DSCR | 536 +--------+-------+----+--------+----------------------------------+ 537 | 0x104D | 0x08 | RW | T | TAR | 538 +--------+-------+----+--------+----------------------------------+ 539 | 0x104E | 0x08 | RW | T | DEXCR | 540 +--------+-------+----+--------+----------------------------------+ 541 | 0x104F | 0x08 | RW | T | HDEXCR | 542 +--------+-------+----+--------+----------------------------------+ 543 | 0x1050 | 0x08 | RW | T | HASHKEYR | 544 +--------+-------+----+--------+----------------------------------+ 545 | 0x1051 | 0x08 | RW | T | HASHPKEYR | 546 +--------+-------+----+--------+----------------------------------+ 547 | 0x1052 | 0x08 | RW | T | CTRL | 548 +--------+-------+----+--------+----------------------------------+ 549 | 0x1053 | 0x08 | RW | T | DPDES | 550 +--------+-------+----+--------+----------------------------------+ 551 | 0x1054-| | | | Reserved | 552 | 0x1FFF | | | | | 553 +--------+-------+----+--------+----------------------------------+ 554 | 0x2000 | 0x04 | RW | T | CR | 555 +--------+-------+----+--------+----------------------------------+ 556 | 0x2001 | 0x04 | RW | T | PIDR | 557 +--------+-------+----+--------+----------------------------------+ 558 | 0x2002 | 0x04 | RW | T | DSISR | 559 +--------+-------+----+--------+----------------------------------+ 560 | 0x2003 | 0x04 | RW | T | VSCR | 561 +--------+-------+----+--------+----------------------------------+ 562 | 0x2004 | 0x04 | RW | T | VRSAVE | 563 +--------+-------+----+--------+----------------------------------+ 564 | 0x2005 | 0x04 | RW | T | DAWRX0 | 565 +--------+-------+----+--------+----------------------------------+ 566 | 0x2006 | 0x04 | RW | T | DAWRX1 | 567 +--------+-------+----+--------+----------------------------------+ 568 | 0x2007-| 0x04 | RW | T | PMC 1-6 | 569 | 0x200c | | | | | 570 +--------+-------+----+--------+----------------------------------+ 571 | 0x200D | 0x04 | RW | T | WORT | 572 +--------+-------+----+--------+----------------------------------+ 573 | 0x200E | 0x04 | RW | T | PSPB | 574 +--------+-------+----+--------+----------------------------------+ 575 | 0x200F-| | | | Reserved | 576 | 0x2FFF | | | | | 577 +--------+-------+----+--------+----------------------------------+ 578 | 0x3000-| 0x10 | RW | T | VSR 0-63 | 579 | 0x303F | | | | | 580 +--------+-------+----+--------+----------------------------------+ 581 | 0x3040-| | | | Reserved | 582 | 0xEFFF | | | | | 583 +--------+-------+----+--------+----------------------------------+ 584 | 0xF000 | 0x08 | R | T | HDAR | 585 +--------+-------+----+--------+----------------------------------+ 586 | 0xF001 | 0x04 | R | T | HDSISR | 587 +--------+-------+----+--------+----------------------------------+ 588 | 0xF002 | 0x04 | R | T | HEIR | 589 +--------+-------+----+--------+----------------------------------+ 590 | 0xF003 | 0x08 | R | T | ASDR | 591 +--------+-------+----+--------+----------------------------------+ 592 593 594 Miscellaneous info 595 ================== 596 597 State not in ptregs/hvregs 598 -------------------------- 599 600 In the v1 API, some state is not in the ptregs/hvstate. This includes 601 the vector register and some SPRs. For the L1 to set this state for 602 the L2, the L1 loads up these hardware registers before the 603 h_enter_nested() call and the L0 ensures they end up as the L2 state 604 (by not touching them). 605 606 The v2 API removes this and explicitly sets this state via the GSB. 607 608 L1 Implementation details: Caching state 609 ---------------------------------------- 610 611 In the v1 API, all state is sent from the L1 to the L0 and vice versa 612 on every h_enter_nested() hcall. If the L0 is not currently running 613 any L2s, the L0 has no state information about them. The only 614 exception to this is the location of the partition table, registered 615 via h_set_partition_table(). 616 617 The v2 API changes this so that the L0 retains the L2 state even when 618 it's vCPUs are no longer running. This means that the L1 only needs to 619 communicate with the L0 about L2 state when it needs to modify the L2 620 state, or when it's value is out of date. This provides an opportunity 621 for performance optimisation. 622 623 When a vCPU exits from a H_GUEST_RUN_VCPU() call, the L1 internally 624 marks all L2 state as invalid. This means that if the L1 wants to know 625 the L2 state (say via a kvm_get_one_reg() call), it needs call 626 H_GUEST_GET_STATE() to get that state. Once it's read, it's marked as 627 valid in L1 until the L2 is run again. 628 629 Also, when an L1 modifies L2 vcpu state, it doesn't need to write it 630 to the L0 until that L2 vcpu runs again. Hence when the L1 updates 631 state (say via a kvm_set_one_reg() call), it writes to an internal L1 632 copy and only flushes this copy to the L0 when the L2 runs again via 633 the H_GUEST_VCPU_RUN() input buffer. 634 635 This lazy updating of state by the L1 avoids unnecessary 636 H_GUEST_{G|S}ET_STATE() calls.
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.