~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/arch/sparc/adi.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 ================================
  2 Application Data Integrity (ADI)
  3 ================================
  4 
  5 SPARC M7 processor adds the Application Data Integrity (ADI) feature.
  6 ADI allows a task to set version tags on any subset of its address
  7 space. Once ADI is enabled and version tags are set for ranges of
  8 address space of a task, the processor will compare the tag in pointers
  9 to memory in these ranges to the version set by the application
 10 previously. Access to memory is granted only if the tag in given pointer
 11 matches the tag set by the application. In case of mismatch, processor
 12 raises an exception.
 13 
 14 Following steps must be taken by a task to enable ADI fully:
 15 
 16 1. Set the user mode PSTATE.mcde bit. This acts as master switch for
 17    the task's entire address space to enable/disable ADI for the task.
 18 
 19 2. Set TTE.mcd bit on any TLB entries that correspond to the range of
 20    addresses ADI is being enabled on. MMU checks the version tag only
 21    on the pages that have TTE.mcd bit set.
 22 
 23 3. Set the version tag for virtual addresses using stxa instruction
 24    and one of the MCD specific ASIs. Each stxa instruction sets the
 25    given tag for one ADI block size number of bytes. This step must
 26    be repeated for entire page to set tags for entire page.
 27 
 28 ADI block size for the platform is provided by the hypervisor to kernel
 29 in machine description tables. Hypervisor also provides the number of
 30 top bits in the virtual address that specify the version tag.  Once
 31 version tag has been set for a memory location, the tag is stored in the
 32 physical memory and the same tag must be present in the ADI version tag
 33 bits of the virtual address being presented to the MMU. For example on
 34 SPARC M7 processor, MMU uses bits 63-60 for version tags and ADI block
 35 size is same as cacheline size which is 64 bytes. A task that sets ADI
 36 version to, say 10, on a range of memory, must access that memory using
 37 virtual addresses that contain 0xa in bits 63-60.
 38 
 39 ADI is enabled on a set of pages using mprotect() with PROT_ADI flag.
 40 When ADI is enabled on a set of pages by a task for the first time,
 41 kernel sets the PSTATE.mcde bit for the task. Version tags for memory
 42 addresses are set with an stxa instruction on the addresses using
 43 ASI_MCD_PRIMARY or ASI_MCD_ST_BLKINIT_PRIMARY. ADI block size is
 44 provided by the hypervisor to the kernel.  Kernel returns the value of
 45 ADI block size to userspace using auxiliary vector along with other ADI
 46 info. Following auxiliary vectors are provided by the kernel:
 47 
 48         ============    ===========================================
 49         AT_ADI_BLKSZ    ADI block size. This is the granularity and
 50                         alignment, in bytes, of ADI versioning.
 51         AT_ADI_NBITS    Number of ADI version bits in the VA
 52         ============    ===========================================
 53 
 54 
 55 IMPORTANT NOTES
 56 ===============
 57 
 58 - Version tag values of 0x0 and 0xf are reserved. These values match any
 59   tag in virtual address and never generate a mismatch exception.
 60 
 61 - Version tags are set on virtual addresses from userspace even though
 62   tags are stored in physical memory. Tags are set on a physical page
 63   after it has been allocated to a task and a pte has been created for
 64   it.
 65 
 66 - When a task frees a memory page it had set version tags on, the page
 67   goes back to free page pool. When this page is re-allocated to a task,
 68   kernel clears the page using block initialization ASI which clears the
 69   version tags as well for the page. If a page allocated to a task is
 70   freed and allocated back to the same task, old version tags set by the
 71   task on that page will no longer be present.
 72 
 73 - ADI tag mismatches are not detected for non-faulting loads.
 74 
 75 - Kernel does not set any tags for user pages and it is entirely a
 76   task's responsibility to set any version tags. Kernel does ensure the
 77   version tags are preserved if a page is swapped out to the disk and
 78   swapped back in. It also preserves that version tags if a page is
 79   migrated.
 80 
 81 - ADI works for any size pages. A userspace task need not be aware of
 82   page size when using ADI. It can simply select a virtual address
 83   range, enable ADI on the range using mprotect() and set version tags
 84   for the entire range. mprotect() ensures range is aligned to page size
 85   and is a multiple of page size.
 86 
 87 - ADI tags can only be set on writable memory. For example, ADI tags can
 88   not be set on read-only mappings.
 89 
 90 
 91 
 92 ADI related traps
 93 =================
 94 
 95 With ADI enabled, following new traps may occur:
 96 
 97 Disrupting memory corruption
 98 ----------------------------
 99 
100         When a store accesses a memory location that has TTE.mcd=1,
101         the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
102         tag in the address used (bits 63:60) does not match the tag set on
103         the corresponding cacheline, a memory corruption trap occurs. By
104         default, it is a disrupting trap and is sent to the hypervisor
105         first. Hypervisor creates a sun4v error report and sends a
106         resumable error (TT=0x7e) trap to the kernel. The kernel sends
107         a SIGSEGV to the task that resulted in this trap with the following
108         info::
109 
110                 siginfo.si_signo = SIGSEGV;
111                 siginfo.errno = 0;
112                 siginfo.si_code = SEGV_ADIDERR;
113                 siginfo.si_addr = addr; /* PC where first mismatch occurred */
114                 siginfo.si_trapno = 0;
115 
116 
117 Precise memory corruption
118 -------------------------
119 
120         When a store accesses a memory location that has TTE.mcd=1,
121         the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
122         tag in the address used (bits 63:60) does not match the tag set on
123         the corresponding cacheline, a memory corruption trap occurs. If
124         MCD precise exception is enabled (MCDPERR=1), a precise
125         exception is sent to the kernel with TT=0x1a. The kernel sends
126         a SIGSEGV to the task that resulted in this trap with the following
127         info::
128 
129                 siginfo.si_signo = SIGSEGV;
130                 siginfo.errno = 0;
131                 siginfo.si_code = SEGV_ADIPERR;
132                 siginfo.si_addr = addr; /* address that caused trap */
133                 siginfo.si_trapno = 0;
134 
135         NOTE:
136                 ADI tag mismatch on a load always results in precise trap.
137 
138 
139 MCD disabled
140 ------------
141 
142         When a task has not enabled ADI and attempts to set ADI version
143         on a memory address, processor sends an MCD disabled trap. This
144         trap is handled by hypervisor first and the hypervisor vectors this
145         trap through to the kernel as Data Access Exception trap with
146         fault type set to 0xa (invalid ASI). When this occurs, the kernel
147         sends the task SIGSEGV signal with following info::
148 
149                 siginfo.si_signo = SIGSEGV;
150                 siginfo.errno = 0;
151                 siginfo.si_code = SEGV_ACCADI;
152                 siginfo.si_addr = addr; /* address that caused trap */
153                 siginfo.si_trapno = 0;
154 
155 
156 Sample program to use ADI
157 -------------------------
158 
159 Following sample program is meant to illustrate how to use the ADI
160 functionality::
161 
162   #include <unistd.h>
163   #include <stdio.h>
164   #include <stdlib.h>
165   #include <elf.h>
166   #include <sys/ipc.h>
167   #include <sys/shm.h>
168   #include <sys/mman.h>
169   #include <asm/asi.h>
170 
171   #ifndef AT_ADI_BLKSZ
172   #define AT_ADI_BLKSZ  48
173   #endif
174   #ifndef AT_ADI_NBITS
175   #define AT_ADI_NBITS  49
176   #endif
177 
178   #ifndef PROT_ADI
179   #define PROT_ADI      0x10
180   #endif
181 
182   #define BUFFER_SIZE     32*1024*1024UL
183 
184   main(int argc, char* argv[], char* envp[])
185   {
186           unsigned long i, mcde, adi_blksz, adi_nbits;
187           char *shmaddr, *tmp_addr, *end, *veraddr, *clraddr;
188           int shmid, version;
189         Elf64_auxv_t *auxv;
190 
191         adi_blksz = 0;
192 
193         while(*envp++ != NULL);
194         for (auxv = (Elf64_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) {
195                 switch (auxv->a_type) {
196                 case AT_ADI_BLKSZ:
197                         adi_blksz = auxv->a_un.a_val;
198                         break;
199                 case AT_ADI_NBITS:
200                         adi_nbits = auxv->a_un.a_val;
201                         break;
202                 }
203         }
204         if (adi_blksz == 0) {
205                 fprintf(stderr, "Oops! ADI is not supported\n");
206                 exit(1);
207         }
208 
209         printf("ADI capabilities:\n");
210         printf("\tBlock size = %ld\n", adi_blksz);
211         printf("\tNumber of bits = %ld\n", adi_nbits);
212 
213           if ((shmid = shmget(2, BUFFER_SIZE,
214                                   IPC_CREAT | SHM_R | SHM_W)) < 0) {
215                   perror("shmget failed");
216                   exit(1);
217           }
218 
219           shmaddr = shmat(shmid, NULL, 0);
220           if (shmaddr == (char *)-1) {
221                   perror("shm attach failed");
222                   shmctl(shmid, IPC_RMID, NULL);
223                   exit(1);
224           }
225 
226         if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE|PROT_ADI)) {
227                 perror("mprotect failed");
228                 goto err_out;
229         }
230 
231           /* Set the ADI version tag on the shm segment
232            */
233           version = 10;
234           tmp_addr = shmaddr;
235           end = shmaddr + BUFFER_SIZE;
236           while (tmp_addr < end) {
237                   asm volatile(
238                           "stxa %1, [%0]0x90\n\t"
239                           :
240                           : "r" (tmp_addr), "r" (version));
241                   tmp_addr += adi_blksz;
242           }
243         asm volatile("membar #Sync\n\t");
244 
245           /* Create a versioned address from the normal address by placing
246          * version tag in the upper adi_nbits bits
247            */
248           tmp_addr = (void *) ((unsigned long)shmaddr << adi_nbits);
249           tmp_addr = (void *) ((unsigned long)tmp_addr >> adi_nbits);
250           veraddr = (void *) (((unsigned long)version << (64-adi_nbits))
251                           | (unsigned long)tmp_addr);
252 
253           printf("Starting the writes:\n");
254           for (i = 0; i < BUFFER_SIZE; i++) {
255                   veraddr[i] = (char)(i);
256                   if (!(i % (1024 * 1024)))
257                           printf(".");
258           }
259           printf("\n");
260 
261           printf("Verifying data...");
262         fflush(stdout);
263           for (i = 0; i < BUFFER_SIZE; i++)
264                   if (veraddr[i] != (char)i)
265                           printf("\nIndex %lu mismatched\n", i);
266           printf("Done.\n");
267 
268           /* Disable ADI and clean up
269            */
270         if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE)) {
271                 perror("mprotect failed");
272                 goto err_out;
273         }
274 
275           if (shmdt((const void *)shmaddr) != 0)
276                   perror("Detach failure");
277           shmctl(shmid, IPC_RMID, NULL);
278 
279           exit(0);
280 
281   err_out:
282           if (shmdt((const void *)shmaddr) != 0)
283                   perror("Detach failure");
284           shmctl(shmid, IPC_RMID, NULL);
285           exit(1);
286   }

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php