1 .. SPDX-License-Identifier: GPL-2.0 2 3 =============================== 4 Kernel level exception handling 5 =============================== 6 7 Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com> 8 9 When a process runs in kernel mode, it often has to access user 10 mode memory whose address has been passed by an untrusted program. 11 To protect itself the kernel has to verify this address. 12 13 In older versions of Linux this was done with the 14 int verify_area(int type, const void * addr, unsigned long size) 15 function (which has since been replaced by access_ok()). 16 17 This function verified that the memory area starting at address 18 'addr' and of size 'size' was accessible for the operation specified 19 in type (read or write). To do this, verify_read had to look up the 20 virtual memory area (vma) that contained the address addr. In the 21 normal case (correctly working program), this test was successful. 22 It only failed for a few buggy programs. In some kernel profiling 23 tests, this normally unneeded verification used up a considerable 24 amount of time. 25 26 To overcome this situation, Linus decided to let the virtual memory 27 hardware present in every Linux-capable CPU handle this test. 28 29 How does this work? 30 31 Whenever the kernel tries to access an address that is currently not 32 accessible, the CPU generates a page fault exception and calls the 33 page fault handler:: 34 35 void exc_page_fault(struct pt_regs *regs, unsigned long error_code) 36 37 in arch/x86/mm/fault.c. The parameters on the stack are set up by 38 the low level assembly glue in arch/x86/entry/entry_32.S. The parameter 39 regs is a pointer to the saved registers on the stack, error_code 40 contains a reason code for the exception. 41 42 exc_page_fault() first obtains the inaccessible address from the CPU 43 control register CR2. If the address is within the virtual address 44 space of the process, the fault probably occurred, because the page 45 was not swapped in, write protected or something similar. However, 46 we are interested in the other case: the address is not valid, there 47 is no vma that contains this address. In this case, the kernel jumps 48 to the bad_area label. 49 50 There it uses the address of the instruction that caused the exception 51 (i.e. regs->eip) to find an address where the execution can continue 52 (fixup). If this search is successful, the fault handler modifies the 53 return address (again regs->eip) and returns. The execution will 54 continue at the address in fixup. 55 56 Where does fixup point to? 57 58 Since we jump to the contents of fixup, fixup obviously points 59 to executable code. This code is hidden inside the user access macros. 60 I have picked the get_user() macro defined in arch/x86/include/asm/uaccess.h 61 as an example. The definition is somewhat hard to follow, so let's peek at 62 the code generated by the preprocessor and the compiler. I selected 63 the get_user() call in drivers/char/sysrq.c for a detailed examination. 64 65 The original code in sysrq.c line 587:: 66 67 get_user(c, buf); 68 69 The preprocessor output (edited to become somewhat readable):: 70 71 ( 72 { 73 long __gu_err = - 14 , __gu_val = 0; 74 const __typeof__(*( ( buf ) )) *__gu_addr = ((buf)); 75 if (((((0 + current_set[0])->tss.segment) == 0x18 ) || 76 (((sizeof(*(buf))) <= 0xC0000000UL) && 77 ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf))))))) 78 do { 79 __gu_err = 0; 80 switch ((sizeof(*(buf)))) { 81 case 1: 82 __asm__ __volatile__( 83 "1: mov" "b" " %2,%" "b" "1\n" 84 "2:\n" 85 ".section .fixup,\"ax\"\n" 86 "3: movl %3,%0\n" 87 " xor" "b" " %" "b" "1,%" "b" "1\n" 88 " jmp 2b\n" 89 ".section __ex_table,\"a\"\n" 90 " .align 4\n" 91 " .long 1b,3b\n" 92 ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *) 93 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ; 94 break; 95 case 2: 96 __asm__ __volatile__( 97 "1: mov" "w" " %2,%" "w" "1\n" 98 "2:\n" 99 ".section .fixup,\"ax\"\n" 100 "3: movl %3,%0\n" 101 " xor" "w" " %" "w" "1,%" "w" "1\n" 102 " jmp 2b\n" 103 ".section __ex_table,\"a\"\n" 104 " .align 4\n" 105 " .long 1b,3b\n" 106 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) 107 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )); 108 break; 109 case 4: 110 __asm__ __volatile__( 111 "1: mov" "l" " %2,%" "" "1\n" 112 "2:\n" 113 ".section .fixup,\"ax\"\n" 114 "3: movl %3,%0\n" 115 " xor" "l" " %" "" "1,%" "" "1\n" 116 " jmp 2b\n" 117 ".section __ex_table,\"a\"\n" 118 " .align 4\n" " .long 1b,3b\n" 119 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) 120 ( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err)); 121 break; 122 default: 123 (__gu_val) = __get_user_bad(); 124 } 125 } while (0) ; 126 ((c)) = (__typeof__(*((buf))))__gu_val; 127 __gu_err; 128 } 129 ); 130 131 WOW! Black GCC/assembly magic. This is impossible to follow, so let's 132 see what code gcc generates:: 133 134 > xorl %edx,%edx 135 > movl current_set,%eax 136 > cmpl $24,788(%eax) 137 > je .L1424 138 > cmpl $-1073741825,64(%esp) 139 > ja .L1423 140 > .L1424: 141 > movl %edx,%eax 142 > movl 64(%esp),%ebx 143 > #APP 144 > 1: movb (%ebx),%dl /* this is the actual user access */ 145 > 2: 146 > .section .fixup,"ax" 147 > 3: movl $-14,%eax 148 > xorb %dl,%dl 149 > jmp 2b 150 > .section __ex_table,"a" 151 > .align 4 152 > .long 1b,3b 153 > .text 154 > #NO_APP 155 > .L1423: 156 > movzbl %dl,%esi 157 158 The optimizer does a good job and gives us something we can actually 159 understand. Can we? The actual user access is quite obvious. Thanks 160 to the unified address space we can just access the address in user 161 memory. But what does the .section stuff do????? 162 163 To understand this we have to look at the final kernel:: 164 165 > objdump --section-headers vmlinux 166 > 167 > vmlinux: file format elf32-i386 168 > 169 > Sections: 170 > Idx Name Size VMA LMA File off Algn 171 > 0 .text 00098f40 c0100000 c0100000 00001000 2**4 172 > CONTENTS, ALLOC, LOAD, READONLY, CODE 173 > 1 .fixup 000016bc c0198f40 c0198f40 00099f40 2**0 174 > CONTENTS, ALLOC, LOAD, READONLY, CODE 175 > 2 .rodata 0000f127 c019a5fc c019a5fc 0009b5fc 2**2 176 > CONTENTS, ALLOC, LOAD, READONLY, DATA 177 > 3 __ex_table 000015c0 c01a9724 c01a9724 000aa724 2**2 178 > CONTENTS, ALLOC, LOAD, READONLY, DATA 179 > 4 .data 0000ea58 c01abcf0 c01abcf0 000abcf0 2**4 180 > CONTENTS, ALLOC, LOAD, DATA 181 > 5 .bss 00018e21 c01ba748 c01ba748 000ba748 2**2 182 > ALLOC 183 > 6 .comment 00000ec4 00000000 00000000 000ba748 2**0 184 > CONTENTS, READONLY 185 > 7 .note 00001068 00000ec4 00000ec4 000bb60c 2**0 186 > CONTENTS, READONLY 187 188 There are obviously 2 non standard ELF sections in the generated object 189 file. But first we want to find out what happened to our code in the 190 final kernel executable:: 191 192 > objdump --disassemble --section=.text vmlinux 193 > 194 > c017e785 <do_con_write+c1> xorl %edx,%edx 195 > c017e787 <do_con_write+c3> movl 0xc01c7bec,%eax 196 > c017e78c <do_con_write+c8> cmpl $0x18,0x314(%eax) 197 > c017e793 <do_con_write+cf> je c017e79f <do_con_write+db> 198 > c017e795 <do_con_write+d1> cmpl $0xbfffffff,0x40(%esp,1) 199 > c017e79d <do_con_write+d9> ja c017e7a7 <do_con_write+e3> 200 > c017e79f <do_con_write+db> movl %edx,%eax 201 > c017e7a1 <do_con_write+dd> movl 0x40(%esp,1),%ebx 202 > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 203 > c017e7a7 <do_con_write+e3> movzbl %dl,%esi 204 205 The whole user memory access is reduced to 10 x86 machine instructions. 206 The instructions bracketed in the .section directives are no longer 207 in the normal execution path. They are located in a different section 208 of the executable file:: 209 210 > objdump --disassemble --section=.fixup vmlinux 211 > 212 > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax 213 > c0199ffa <.fixup+10ba> xorb %dl,%dl 214 > c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3> 215 216 And finally:: 217 218 > objdump --full-contents --section=__ex_table vmlinux 219 > 220 > c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................ 221 > c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................ 222 > c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................ 223 224 or in human readable byte order:: 225 226 > c01aa7c4 c017c093 c0199fe0 c017c097 c017c099 ................ 227 > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ 228 ^^^^^^^^^^^^^^^^^ 229 this is the interesting part! 230 > c01aa7e4 c0180a08 c019a001 c0180a0a c019a004 ................ 231 232 What happened? The assembly directives:: 233 234 .section .fixup,"ax" 235 .section __ex_table,"a" 236 237 told the assembler to move the following code to the specified 238 sections in the ELF object file. So the instructions:: 239 240 3: movl $-14,%eax 241 xorb %dl,%dl 242 jmp 2b 243 244 ended up in the .fixup section of the object file and the addresses:: 245 246 .long 1b,3b 247 248 ended up in the __ex_table section of the object file. 1b and 3b 249 are local labels. The local label 1b (1b stands for next label 1 250 backward) is the address of the instruction that might fault, i.e. 251 in our case the address of the label 1 is c017e7a5: 252 the original assembly code: > 1: movb (%ebx),%dl 253 and linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 254 255 The local label 3 (backwards again) is the address of the code to handle 256 the fault, in our case the actual value is c0199ff5: 257 the original assembly code: > 3: movl $-14,%eax 258 and linked in vmlinux : > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax 259 260 If the fixup was able to handle the exception, control flow may be returned 261 to the instruction after the one that triggered the fault, ie. local label 2b. 262 263 The assembly code:: 264 265 > .section __ex_table,"a" 266 > .align 4 267 > .long 1b,3b 268 269 becomes the value pair:: 270 271 > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ 272 ^this is ^this is 273 1b 3b 274 275 c017e7a5,c0199ff5 in the exception table of the kernel. 276 277 So, what actually happens if a fault from kernel mode with no suitable 278 vma occurs? 279 280 #. access to invalid address:: 281 282 > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 283 #. MMU generates exception 284 #. CPU calls exc_page_fault() 285 #. exc_page_fault() calls do_user_addr_fault() 286 #. do_user_addr_fault() calls kernelmode_fixup_or_oops() 287 #. kernelmode_fixup_or_oops() calls fixup_exception() (regs->eip == c017e7a5); 288 #. fixup_exception() calls search_exception_tables() 289 #. search_exception_tables() looks up the address c017e7a5 in the 290 exception table (i.e. the contents of the ELF section __ex_table) 291 and returns the address of the associated fault handle code c0199ff5. 292 #. fixup_exception() modifies its own return address to point to the fault 293 handle code and returns. 294 #. execution continues in the fault handling code. 295 #. a) EAX becomes -EFAULT (== -14) 296 b) DL becomes zero (the value we "read" from user space) 297 c) execution continues at local label 2 (address of the 298 instruction immediately after the faulting user access). 299 300 The steps a to c above in a certain way emulate the faulting instruction. 301 302 That's it, mostly. If you look at our example, you might ask why 303 we set EAX to -EFAULT in the exception handler code. Well, the 304 get_user() macro actually returns a value: 0, if the user access was 305 successful, -EFAULT on failure. Our original code did not test this 306 return value, however the inline assembly code in get_user() tries to 307 return -EFAULT. GCC selected EAX to return this value. 308 309 NOTE: 310 Due to the way that the exception table is built and needs to be ordered, 311 only use exceptions for code in the .text section. Any other section 312 will cause the exception table to not be sorted correctly, and the 313 exceptions will fail. 314 315 Things changed when 64-bit support was added to x86 Linux. Rather than 316 double the size of the exception table by expanding the two entries 317 from 32-bits to 64 bits, a clever trick was used to store addresses 318 as relative offsets from the table itself. The assembly code changed 319 from:: 320 321 .long 1b,3b 322 to: 323 .long (from) - . 324 .long (to) - . 325 326 and the C-code that uses these values converts back to absolute addresses 327 like this:: 328 329 ex_insn_addr(const struct exception_table_entry *x) 330 { 331 return (unsigned long)&x->insn + x->insn; 332 } 333 334 In v4.6 the exception table entry was expanded with a new field "handler". 335 This is also 32-bits wide and contains a third relative function 336 pointer which points to one of: 337 338 1) ``int ex_handler_default(const struct exception_table_entry *fixup)`` 339 This is legacy case that just jumps to the fixup code 340 341 2) ``int ex_handler_fault(const struct exception_table_entry *fixup)`` 342 This case provides the fault number of the trap that occurred at 343 entry->insn. It is used to distinguish page faults from machine 344 check. 345 346 More functions can easily be added. 347 348 CONFIG_BUILDTIME_TABLE_SORT allows the __ex_table section to be sorted post 349 link of the kernel image, via a host utility scripts/sorttable. It will set the 350 symbol main_extable_sort_needed to 0, avoiding sorting the __ex_table section 351 at boot time. With the exception table sorted, at runtime when an exception 352 occurs we can quickly lookup the __ex_table entry via binary search. 353 354 This is not just a boot time optimization, some architectures require this 355 table to be sorted in order to handle exceptions relatively early in the boot 356 process. For example, i386 makes use of this form of exception handling before 357 paging support is even enabled!
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.