~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/bpf/btf.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 =====================
  2 BPF Type Format (BTF)
  3 =====================
  4 
  5 1. Introduction
  6 ===============
  7 
  8 BTF (BPF Type Format) is the metadata format which encodes the debug info
  9 related to BPF program/map. The name BTF was used initially to describe data
 10 types. The BTF was later extended to include function info for defined
 11 subroutines, and line info for source/line information.
 12 
 13 The debug info is used for map pretty print, function signature, etc. The
 14 function signature enables better bpf program/function kernel symbol. The line
 15 info helps generate source annotated translated byte code, jited code and
 16 verifier log.
 17 
 18 The BTF specification contains two parts,
 19   * BTF kernel API
 20   * BTF ELF file format
 21 
 22 The kernel API is the contract between user space and kernel. The kernel
 23 verifies the BTF info before using it. The ELF file format is a user space
 24 contract between ELF file and libbpf loader.
 25 
 26 The type and string sections are part of the BTF kernel API, describing the
 27 debug info (mostly types related) referenced by the bpf program. These two
 28 sections are discussed in details in :ref:`BTF_Type_String`.
 29 
 30 .. _BTF_Type_String:
 31 
 32 2. BTF Type and String Encoding
 33 ===============================
 34 
 35 The file ``include/uapi/linux/btf.h`` provides high-level definition of how
 36 types/strings are encoded.
 37 
 38 The beginning of data blob must be::
 39 
 40     struct btf_header {
 41         __u16   magic;
 42         __u8    version;
 43         __u8    flags;
 44         __u32   hdr_len;
 45 
 46         /* All offsets are in bytes relative to the end of this header */
 47         __u32   type_off;       /* offset of type section       */
 48         __u32   type_len;       /* length of type section       */
 49         __u32   str_off;        /* offset of string section     */
 50         __u32   str_len;        /* length of string section     */
 51     };
 52 
 53 The magic is ``0xeB9F``, which has different encoding for big and little
 54 endian systems, and can be used to test whether BTF is generated for big- or
 55 little-endian target. The ``btf_header`` is designed to be extensible with
 56 ``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
 57 generated.
 58 
 59 2.1 String Encoding
 60 -------------------
 61 
 62 The first string in the string section must be a null string. The rest of
 63 string table is a concatenation of other null-terminated strings.
 64 
 65 2.2 Type Encoding
 66 -----------------
 67 
 68 The type id ``0`` is reserved for ``void`` type. The type section is parsed
 69 sequentially and type id is assigned to each recognized type starting from id
 70 ``1``. Currently, the following types are supported::
 71 
 72     #define BTF_KIND_INT            1       /* Integer      */
 73     #define BTF_KIND_PTR            2       /* Pointer      */
 74     #define BTF_KIND_ARRAY          3       /* Array        */
 75     #define BTF_KIND_STRUCT         4       /* Struct       */
 76     #define BTF_KIND_UNION          5       /* Union        */
 77     #define BTF_KIND_ENUM           6       /* Enumeration up to 32-bit values */
 78     #define BTF_KIND_FWD            7       /* Forward      */
 79     #define BTF_KIND_TYPEDEF        8       /* Typedef      */
 80     #define BTF_KIND_VOLATILE       9       /* Volatile     */
 81     #define BTF_KIND_CONST          10      /* Const        */
 82     #define BTF_KIND_RESTRICT       11      /* Restrict     */
 83     #define BTF_KIND_FUNC           12      /* Function     */
 84     #define BTF_KIND_FUNC_PROTO     13      /* Function Proto       */
 85     #define BTF_KIND_VAR            14      /* Variable     */
 86     #define BTF_KIND_DATASEC        15      /* Section      */
 87     #define BTF_KIND_FLOAT          16      /* Floating point       */
 88     #define BTF_KIND_DECL_TAG       17      /* Decl Tag     */
 89     #define BTF_KIND_TYPE_TAG       18      /* Type Tag     */
 90     #define BTF_KIND_ENUM64         19      /* Enumeration up to 64-bit values */
 91 
 92 Note that the type section encodes debug info, not just pure types.
 93 ``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
 94 
 95 Each type contains the following common data::
 96 
 97     struct btf_type {
 98         __u32 name_off;
 99         /* "info" bits arrangement
100          * bits  0-15: vlen (e.g. # of struct's members)
101          * bits 16-23: unused
102          * bits 24-28: kind (e.g. int, ptr, array...etc)
103          * bits 29-30: unused
104          * bit     31: kind_flag, currently used by
105          *             struct, union, fwd, enum and enum64.
106          */
107         __u32 info;
108         /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64.
109          * "size" tells the size of the type it is describing.
110          *
111          * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
112          * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG.
113          * "type" is a type_id referring to another type.
114          */
115         union {
116                 __u32 size;
117                 __u32 type;
118         };
119     };
120 
121 For certain kinds, the common data are followed by kind-specific data. The
122 ``name_off`` in ``struct btf_type`` specifies the offset in the string table.
123 The following sections detail encoding of each kind.
124 
125 2.2.1 BTF_KIND_INT
126 ~~~~~~~~~~~~~~~~~~
127 
128 ``struct btf_type`` encoding requirement:
129  * ``name_off``: any valid offset
130  * ``info.kind_flag``: 0
131  * ``info.kind``: BTF_KIND_INT
132  * ``info.vlen``: 0
133  * ``size``: the size of the int type in bytes.
134 
135 ``btf_type`` is followed by a ``u32`` with the following bits arrangement::
136 
137   #define BTF_INT_ENCODING(VAL)   (((VAL) & 0x0f000000) >> 24)
138   #define BTF_INT_OFFSET(VAL)     (((VAL) & 0x00ff0000) >> 16)
139   #define BTF_INT_BITS(VAL)       ((VAL)  & 0x000000ff)
140 
141 The ``BTF_INT_ENCODING`` has the following attributes::
142 
143   #define BTF_INT_SIGNED  (1 << 0)
144   #define BTF_INT_CHAR    (1 << 1)
145   #define BTF_INT_BOOL    (1 << 2)
146 
147 The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
148 bool, for the int type. The char and bool encoding are mostly useful for
149 pretty print. At most one encoding can be specified for the int type.
150 
151 The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
152 type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
153 The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
154 for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
155 
156 The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
157 for this int. For example, a bitfield struct member has:
158 
159  * btf member bit offset 100 from the start of the structure,
160  * btf member pointing to an int type,
161  * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
162 
163 Then in the struct memory layout, this member will occupy ``4`` bits starting
164 from bits ``100 + 2 = 102``.
165 
166 Alternatively, the bitfield struct member can be the following to access the
167 same bits as the above:
168 
169  * btf member bit offset 102,
170  * btf member pointing to an int type,
171  * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
172 
173 The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
174 bitfield encoding. Currently, both llvm and pahole generate
175 ``BTF_INT_OFFSET() = 0`` for all int types.
176 
177 2.2.2 BTF_KIND_PTR
178 ~~~~~~~~~~~~~~~~~~
179 
180 ``struct btf_type`` encoding requirement:
181   * ``name_off``: 0
182   * ``info.kind_flag``: 0
183   * ``info.kind``: BTF_KIND_PTR
184   * ``info.vlen``: 0
185   * ``type``: the pointee type of the pointer
186 
187 No additional type data follow ``btf_type``.
188 
189 2.2.3 BTF_KIND_ARRAY
190 ~~~~~~~~~~~~~~~~~~~~
191 
192 ``struct btf_type`` encoding requirement:
193   * ``name_off``: 0
194   * ``info.kind_flag``: 0
195   * ``info.kind``: BTF_KIND_ARRAY
196   * ``info.vlen``: 0
197   * ``size/type``: 0, not used
198 
199 ``btf_type`` is followed by one ``struct btf_array``::
200 
201     struct btf_array {
202         __u32   type;
203         __u32   index_type;
204         __u32   nelems;
205     };
206 
207 The ``struct btf_array`` encoding:
208   * ``type``: the element type
209   * ``index_type``: the index type
210   * ``nelems``: the number of elements for this array (``0`` is also allowed).
211 
212 The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
213 ``u64``, ``unsigned __int128``). The original design of including
214 ``index_type`` follows DWARF, which has an ``index_type`` for its array type.
215 Currently in BTF, beyond type verification, the ``index_type`` is not used.
216 
217 The ``struct btf_array`` allows chaining through element type to represent
218 multidimensional arrays. For example, for ``int a[5][6]``, the following type
219 information illustrates the chaining:
220 
221   * [1]: int
222   * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
223   * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
224 
225 Currently, both pahole and llvm collapse multidimensional array into
226 one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
227 equal to ``30``. This is because the original use case is map pretty print
228 where the whole array is dumped out so one-dimensional array is enough. As
229 more BTF usage is explored, pahole and llvm can be changed to generate proper
230 chained representation for multidimensional arrays.
231 
232 2.2.4 BTF_KIND_STRUCT
233 ~~~~~~~~~~~~~~~~~~~~~
234 2.2.5 BTF_KIND_UNION
235 ~~~~~~~~~~~~~~~~~~~~
236 
237 ``struct btf_type`` encoding requirement:
238   * ``name_off``: 0 or offset to a valid C identifier
239   * ``info.kind_flag``: 0 or 1
240   * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
241   * ``info.vlen``: the number of struct/union members
242   * ``info.size``: the size of the struct/union in bytes
243 
244 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
245 
246     struct btf_member {
247         __u32   name_off;
248         __u32   type;
249         __u32   offset;
250     };
251 
252 ``struct btf_member`` encoding:
253   * ``name_off``: offset to a valid C identifier
254   * ``type``: the member type
255   * ``offset``: <see below>
256 
257 If the type info ``kind_flag`` is not set, the offset contains only bit offset
258 of the member. Note that the base type of the bitfield can only be int or enum
259 type. If the bitfield size is 32, the base type can be either int or enum
260 type. If the bitfield size is not 32, the base type must be int, and int type
261 ``BTF_INT_BITS()`` encodes the bitfield size.
262 
263 If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
264 bitfield size and bit offset. The bitfield size and bit offset are calculated
265 as below.::
266 
267   #define BTF_MEMBER_BITFIELD_SIZE(val)   ((val) >> 24)
268   #define BTF_MEMBER_BIT_OFFSET(val)      ((val) & 0xffffff)
269 
270 In this case, if the base type is an int type, it must be a regular int type:
271 
272   * ``BTF_INT_OFFSET()`` must be 0.
273   * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
274 
275 Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes
276 exist.
277 
278 2.2.6 BTF_KIND_ENUM
279 ~~~~~~~~~~~~~~~~~~~
280 
281 ``struct btf_type`` encoding requirement:
282   * ``name_off``: 0 or offset to a valid C identifier
283   * ``info.kind_flag``: 0 for unsigned, 1 for signed
284   * ``info.kind``: BTF_KIND_ENUM
285   * ``info.vlen``: number of enum values
286   * ``size``: 1/2/4/8
287 
288 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
289 
290     struct btf_enum {
291         __u32   name_off;
292         __s32   val;
293     };
294 
295 The ``btf_enum`` encoding:
296   * ``name_off``: offset to a valid C identifier
297   * ``val``: any value
298 
299 If the original enum value is signed and the size is less than 4,
300 that value will be sign extended into 4 bytes. If the size is 8,
301 the value will be truncated into 4 bytes.
302 
303 2.2.7 BTF_KIND_FWD
304 ~~~~~~~~~~~~~~~~~~
305 
306 ``struct btf_type`` encoding requirement:
307   * ``name_off``: offset to a valid C identifier
308   * ``info.kind_flag``: 0 for struct, 1 for union
309   * ``info.kind``: BTF_KIND_FWD
310   * ``info.vlen``: 0
311   * ``type``: 0
312 
313 No additional type data follow ``btf_type``.
314 
315 2.2.8 BTF_KIND_TYPEDEF
316 ~~~~~~~~~~~~~~~~~~~~~~
317 
318 ``struct btf_type`` encoding requirement:
319   * ``name_off``: offset to a valid C identifier
320   * ``info.kind_flag``: 0
321   * ``info.kind``: BTF_KIND_TYPEDEF
322   * ``info.vlen``: 0
323   * ``type``: the type which can be referred by name at ``name_off``
324 
325 No additional type data follow ``btf_type``.
326 
327 2.2.9 BTF_KIND_VOLATILE
328 ~~~~~~~~~~~~~~~~~~~~~~~
329 
330 ``struct btf_type`` encoding requirement:
331   * ``name_off``: 0
332   * ``info.kind_flag``: 0
333   * ``info.kind``: BTF_KIND_VOLATILE
334   * ``info.vlen``: 0
335   * ``type``: the type with ``volatile`` qualifier
336 
337 No additional type data follow ``btf_type``.
338 
339 2.2.10 BTF_KIND_CONST
340 ~~~~~~~~~~~~~~~~~~~~~
341 
342 ``struct btf_type`` encoding requirement:
343   * ``name_off``: 0
344   * ``info.kind_flag``: 0
345   * ``info.kind``: BTF_KIND_CONST
346   * ``info.vlen``: 0
347   * ``type``: the type with ``const`` qualifier
348 
349 No additional type data follow ``btf_type``.
350 
351 2.2.11 BTF_KIND_RESTRICT
352 ~~~~~~~~~~~~~~~~~~~~~~~~
353 
354 ``struct btf_type`` encoding requirement:
355   * ``name_off``: 0
356   * ``info.kind_flag``: 0
357   * ``info.kind``: BTF_KIND_RESTRICT
358   * ``info.vlen``: 0
359   * ``type``: the type with ``restrict`` qualifier
360 
361 No additional type data follow ``btf_type``.
362 
363 2.2.12 BTF_KIND_FUNC
364 ~~~~~~~~~~~~~~~~~~~~
365 
366 ``struct btf_type`` encoding requirement:
367   * ``name_off``: offset to a valid C identifier
368   * ``info.kind_flag``: 0
369   * ``info.kind``: BTF_KIND_FUNC
370   * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
371                    or BTF_FUNC_EXTERN - see :ref:`BTF_Function_Linkage_Constants`)
372   * ``type``: a BTF_KIND_FUNC_PROTO type
373 
374 No additional type data follow ``btf_type``.
375 
376 A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
377 signature is defined by ``type``. The subprogram is thus an instance of that
378 type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
379 :ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
380 (ABI).
381 
382 Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are
383 supported in the kernel.
384 
385 2.2.13 BTF_KIND_FUNC_PROTO
386 ~~~~~~~~~~~~~~~~~~~~~~~~~~
387 
388 ``struct btf_type`` encoding requirement:
389   * ``name_off``: 0
390   * ``info.kind_flag``: 0
391   * ``info.kind``: BTF_KIND_FUNC_PROTO
392   * ``info.vlen``: # of parameters
393   * ``type``: the return type
394 
395 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
396 
397     struct btf_param {
398         __u32   name_off;
399         __u32   type;
400     };
401 
402 If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
403 ``btf_param.name_off`` must point to a valid C identifier except for the
404 possible last argument representing the variable argument. The btf_param.type
405 refers to parameter type.
406 
407 If the function has variable arguments, the last parameter is encoded with
408 ``name_off = 0`` and ``type = 0``.
409 
410 2.2.14 BTF_KIND_VAR
411 ~~~~~~~~~~~~~~~~~~~
412 
413 ``struct btf_type`` encoding requirement:
414   * ``name_off``: offset to a valid C identifier
415   * ``info.kind_flag``: 0
416   * ``info.kind``: BTF_KIND_VAR
417   * ``info.vlen``: 0
418   * ``type``: the type of the variable
419 
420 ``btf_type`` is followed by a single ``struct btf_variable`` with the
421 following data::
422 
423     struct btf_var {
424         __u32   linkage;
425     };
426 
427 ``btf_var.linkage`` may take the values: BTF_VAR_STATIC, BTF_VAR_GLOBAL_ALLOCATED or BTF_VAR_GLOBAL_EXTERN -
428 see :ref:`BTF_Var_Linkage_Constants`.
429 
430 Not all type of global variables are supported by LLVM at this point.
431 The following is currently available:
432 
433   * static variables with or without section attributes
434   * global variables with section attributes
435 
436 The latter is for future extraction of map key/value type id's from a
437 map definition.
438 
439 2.2.15 BTF_KIND_DATASEC
440 ~~~~~~~~~~~~~~~~~~~~~~~
441 
442 ``struct btf_type`` encoding requirement:
443   * ``name_off``: offset to a valid name associated with a variable or
444                   one of .data/.bss/.rodata
445   * ``info.kind_flag``: 0
446   * ``info.kind``: BTF_KIND_DATASEC
447   * ``info.vlen``: # of variables
448   * ``size``: total section size in bytes (0 at compilation time, patched
449               to actual size by BPF loaders such as libbpf)
450 
451 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
452 
453     struct btf_var_secinfo {
454         __u32   type;
455         __u32   offset;
456         __u32   size;
457     };
458 
459 ``struct btf_var_secinfo`` encoding:
460   * ``type``: the type of the BTF_KIND_VAR variable
461   * ``offset``: the in-section offset of the variable
462   * ``size``: the size of the variable in bytes
463 
464 2.2.16 BTF_KIND_FLOAT
465 ~~~~~~~~~~~~~~~~~~~~~
466 
467 ``struct btf_type`` encoding requirement:
468  * ``name_off``: any valid offset
469  * ``info.kind_flag``: 0
470  * ``info.kind``: BTF_KIND_FLOAT
471  * ``info.vlen``: 0
472  * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
473 
474 No additional type data follow ``btf_type``.
475 
476 2.2.17 BTF_KIND_DECL_TAG
477 ~~~~~~~~~~~~~~~~~~~~~~~~
478 
479 ``struct btf_type`` encoding requirement:
480  * ``name_off``: offset to a non-empty string
481  * ``info.kind_flag``: 0
482  * ``info.kind``: BTF_KIND_DECL_TAG
483  * ``info.vlen``: 0
484  * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef``
485 
486 ``btf_type`` is followed by ``struct btf_decl_tag``.::
487 
488     struct btf_decl_tag {
489         __u32   component_idx;
490     };
491 
492 The ``name_off`` encodes btf_decl_tag attribute string.
493 The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``.
494 For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``.
495 For the other three types, if the btf_decl_tag attribute is
496 applied to the ``struct``, ``union`` or ``func`` itself,
497 ``btf_decl_tag.component_idx`` must be ``-1``. Otherwise,
498 the attribute is applied to a ``struct``/``union`` member or
499 a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a
500 valid index (starting from 0) pointing to a member or an argument.
501 
502 2.2.18 BTF_KIND_TYPE_TAG
503 ~~~~~~~~~~~~~~~~~~~~~~~~
504 
505 ``struct btf_type`` encoding requirement:
506  * ``name_off``: offset to a non-empty string
507  * ``info.kind_flag``: 0
508  * ``info.kind``: BTF_KIND_TYPE_TAG
509  * ``info.vlen``: 0
510  * ``type``: the type with ``btf_type_tag`` attribute
511 
512 Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types.
513 It has the following btf type chain:
514 ::
515 
516   ptr -> [type_tag]*
517       -> [const | volatile | restrict | typedef]*
518       -> base_type
519 
520 Basically, a pointer type points to zero or more
521 type_tag, then zero or more const/volatile/restrict/typedef
522 and finally the base type. The base type is one of
523 int, ptr, array, struct, union, enum, func_proto and float types.
524 
525 2.2.19 BTF_KIND_ENUM64
526 ~~~~~~~~~~~~~~~~~~~~~~
527 
528 ``struct btf_type`` encoding requirement:
529   * ``name_off``: 0 or offset to a valid C identifier
530   * ``info.kind_flag``: 0 for unsigned, 1 for signed
531   * ``info.kind``: BTF_KIND_ENUM64
532   * ``info.vlen``: number of enum values
533   * ``size``: 1/2/4/8
534 
535 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.::
536 
537     struct btf_enum64 {
538         __u32   name_off;
539         __u32   val_lo32;
540         __u32   val_hi32;
541     };
542 
543 The ``btf_enum64`` encoding:
544   * ``name_off``: offset to a valid C identifier
545   * ``val_lo32``: lower 32-bit value for a 64-bit value
546   * ``val_hi32``: high 32-bit value for a 64-bit value
547 
548 If the original enum value is signed and the size is less than 8,
549 that value will be sign extended into 8 bytes.
550 
551 2.3 Constant Values
552 -------------------
553 
554 .. _BTF_Function_Linkage_Constants:
555 
556 2.3.1 Function Linkage Constant Values
557 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
558 .. table:: Function Linkage Values and Meanings
559 
560   ===================  =====  ===========
561   kind                 value  description
562   ===================  =====  ===========
563   ``BTF_FUNC_STATIC``  0x0    definition of subprogram not visible outside containing compilation unit
564   ``BTF_FUNC_GLOBAL``  0x1    definition of subprogram visible outside containing compilation unit
565   ``BTF_FUNC_EXTERN``  0x2    declaration of a subprogram whose definition is outside the containing compilation unit
566   ===================  =====  ===========
567 
568 
569 .. _BTF_Var_Linkage_Constants:
570 
571 2.3.2 Variable Linkage Constant Values
572 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
573 .. table:: Variable Linkage Values and Meanings
574 
575   ============================  =====  ===========
576   kind                          value  description
577   ============================  =====  ===========
578   ``BTF_VAR_STATIC``            0x0    definition of global variable not visible outside containing compilation unit
579   ``BTF_VAR_GLOBAL_ALLOCATED``  0x1    definition of global variable visible outside containing compilation unit
580   ``BTF_VAR_GLOBAL_EXTERN``     0x2    declaration of global variable whose definition is outside the containing compilation unit
581   ============================  =====  ===========
582 
583 3. BTF Kernel API
584 =================
585 
586 The following bpf syscall command involves BTF:
587    * BPF_BTF_LOAD: load a blob of BTF data into kernel
588    * BPF_MAP_CREATE: map creation with btf key and value type info.
589    * BPF_PROG_LOAD: prog load with btf function and line info.
590    * BPF_BTF_GET_FD_BY_ID: get a btf fd
591    * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
592      and other btf related info are returned.
593 
594 The workflow typically looks like:
595 ::
596 
597   Application:
598       BPF_BTF_LOAD
599           |
600           v
601       BPF_MAP_CREATE and BPF_PROG_LOAD
602           |
603           V
604       ......
605 
606   Introspection tool:
607       ......
608       BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
609           |
610           V
611       BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
612           |
613           V
614       BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
615           |                                     |
616           V                                     |
617       BPF_BTF_GET_FD_BY_ID (get btf_fd)         |
618           |                                     |
619           V                                     |
620       BPF_OBJ_GET_INFO_BY_FD (get btf)          |
621           |                                     |
622           V                                     V
623       pretty print types, dump func signatures and line info, etc.
624 
625 
626 3.1 BPF_BTF_LOAD
627 ----------------
628 
629 Load a blob of BTF data into kernel. A blob of data, described in
630 :ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
631 is returned to a userspace.
632 
633 3.2 BPF_MAP_CREATE
634 ------------------
635 
636 A map can be created with ``btf_fd`` and specified key/value type id.::
637 
638     __u32   btf_fd;         /* fd pointing to a BTF type data */
639     __u32   btf_key_type_id;        /* BTF type_id of the key */
640     __u32   btf_value_type_id;      /* BTF type_id of the value */
641 
642 In libbpf, the map can be defined with extra annotation like below:
643 ::
644 
645     struct {
646         __uint(type, BPF_MAP_TYPE_ARRAY);
647         __type(key, int);
648         __type(value, struct ipv_counts);
649         __uint(max_entries, 4);
650     } btf_map SEC(".maps");
651 
652 During ELF parsing, libbpf is able to extract key/value type_id's and assign
653 them to BPF_MAP_CREATE attributes automatically.
654 
655 .. _BPF_Prog_Load:
656 
657 3.3 BPF_PROG_LOAD
658 -----------------
659 
660 During prog_load, func_info and line_info can be passed to kernel with proper
661 values for the following attributes:
662 ::
663 
664     __u32           insn_cnt;
665     __aligned_u64   insns;
666     ......
667     __u32           prog_btf_fd;    /* fd pointing to BTF type data */
668     __u32           func_info_rec_size;     /* userspace bpf_func_info size */
669     __aligned_u64   func_info;      /* func info */
670     __u32           func_info_cnt;  /* number of bpf_func_info records */
671     __u32           line_info_rec_size;     /* userspace bpf_line_info size */
672     __aligned_u64   line_info;      /* line info */
673     __u32           line_info_cnt;  /* number of bpf_line_info records */
674 
675 The func_info and line_info are an array of below, respectively.::
676 
677     struct bpf_func_info {
678         __u32   insn_off; /* [0, insn_cnt - 1] */
679         __u32   type_id;  /* pointing to a BTF_KIND_FUNC type */
680     };
681     struct bpf_line_info {
682         __u32   insn_off; /* [0, insn_cnt - 1] */
683         __u32   file_name_off; /* offset to string table for the filename */
684         __u32   line_off; /* offset to string table for the source line */
685         __u32   line_col; /* line number and column number */
686     };
687 
688 func_info_rec_size is the size of each func_info record, and
689 line_info_rec_size is the size of each line_info record. Passing the record
690 size to kernel make it possible to extend the record itself in the future.
691 
692 Below are requirements for func_info:
693   * func_info[0].insn_off must be 0.
694   * the func_info insn_off is in strictly increasing order and matches
695     bpf func boundaries.
696 
697 Below are requirements for line_info:
698   * the first insn in each func must have a line_info record pointing to it.
699   * the line_info insn_off is in strictly increasing order.
700 
701 For line_info, the line number and column number are defined as below:
702 ::
703 
704     #define BPF_LINE_INFO_LINE_NUM(line_col)        ((line_col) >> 10)
705     #define BPF_LINE_INFO_LINE_COL(line_col)        ((line_col) & 0x3ff)
706 
707 3.4 BPF_{PROG,MAP}_GET_NEXT_ID
708 ------------------------------
709 
710 In kernel, every loaded program, map or btf has a unique id. The id won't
711 change during the lifetime of a program, map, or btf.
712 
713 The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
714 each command, to user space, for bpf program or maps, respectively, so an
715 inspection tool can inspect all programs and maps.
716 
717 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID
718 -------------------------------
719 
720 An introspection tool cannot use id to get details about program or maps.
721 A file descriptor needs to be obtained first for reference-counting purpose.
722 
723 3.6 BPF_OBJ_GET_INFO_BY_FD
724 --------------------------
725 
726 Once a program/map fd is acquired, an introspection tool can get the detailed
727 information from kernel about this fd, some of which are BTF-related. For
728 example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
729 ``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
730 bpf byte codes, and jited_line_info.
731 
732 3.7 BPF_BTF_GET_FD_BY_ID
733 ------------------------
734 
735 With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
736 syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
737 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
738 kernel with BPF_BTF_LOAD, can be retrieved.
739 
740 With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
741 tool has full btf knowledge and is able to pretty print map key/values, dump
742 func signatures and line info, along with byte/jit codes.
743 
744 4. ELF File Format Interface
745 ============================
746 
747 4.1 .BTF section
748 ----------------
749 
750 The .BTF section contains type and string data. The format of this section is
751 same as the one describe in :ref:`BTF_Type_String`.
752 
753 .. _BTF_Ext_Section:
754 
755 4.2 .BTF.ext section
756 --------------------
757 
758 The .BTF.ext section encodes func_info, line_info and CO-RE relocations
759 which needs loader manipulation before loading into the kernel.
760 
761 The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
762 and ``tools/lib/bpf/btf.c``.
763 
764 The current header of .BTF.ext section::
765 
766     struct btf_ext_header {
767         __u16   magic;
768         __u8    version;
769         __u8    flags;
770         __u32   hdr_len;
771 
772         /* All offsets are in bytes relative to the end of this header */
773         __u32   func_info_off;
774         __u32   func_info_len;
775         __u32   line_info_off;
776         __u32   line_info_len;
777 
778         /* optional part of .BTF.ext header */
779         __u32   core_relo_off;
780         __u32   core_relo_len;
781     };
782 
783 It is very similar to .BTF section. Instead of type/string section, it
784 contains func_info, line_info and core_relo sub-sections.
785 See :ref:`BPF_Prog_Load` for details about func_info and line_info
786 record format.
787 
788 The func_info is organized as below.::
789 
790      func_info_rec_size              /* __u32 value */
791      btf_ext_info_sec for section #1 /* func_info for section #1 */
792      btf_ext_info_sec for section #2 /* func_info for section #2 */
793      ...
794 
795 ``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
796 .BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
797 func_info for each specific ELF section.::
798 
799      struct btf_ext_info_sec {
800         __u32   sec_name_off; /* offset to section name */
801         __u32   num_info;
802         /* Followed by num_info * record_size number of bytes */
803         __u8    data[0];
804      };
805 
806 Here, num_info must be greater than 0.
807 
808 The line_info is organized as below.::
809 
810      line_info_rec_size              /* __u32 value */
811      btf_ext_info_sec for section #1 /* line_info for section #1 */
812      btf_ext_info_sec for section #2 /* line_info for section #2 */
813      ...
814 
815 ``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
816 .BTF.ext is generated.
817 
818 The interpretation of ``bpf_func_info->insn_off`` and
819 ``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
820 kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
821 bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
822 beginning of section (``btf_ext_info_sec->sec_name_off``).
823 
824 The core_relo is organized as below.::
825 
826      core_relo_rec_size              /* __u32 value */
827      btf_ext_info_sec for section #1 /* core_relo for section #1 */
828      btf_ext_info_sec for section #2 /* core_relo for section #2 */
829 
830 ``core_relo_rec_size`` specifies the size of ``bpf_core_relo``
831 structure when .BTF.ext is generated. All ``bpf_core_relo`` structures
832 within a single ``btf_ext_info_sec`` describe relocations applied to
833 section named by ``btf_ext_info_sec->sec_name_off``.
834 
835 See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>`
836 for more information on CO-RE relocations.
837 
838 4.2 .BTF_ids section
839 --------------------
840 
841 The .BTF_ids section encodes BTF ID values that are used within the kernel.
842 
843 This section is created during the kernel compilation with the help of
844 macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
845 use them to create lists and sets (sorted lists) of BTF ID values.
846 
847 The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
848 with following syntax::
849 
850   BTF_ID_LIST(list)
851   BTF_ID(type1, name1)
852   BTF_ID(type2, name2)
853 
854 resulting in following layout in .BTF_ids section::
855 
856   __BTF_ID__type1__name1__1:
857   .zero 4
858   __BTF_ID__type2__name2__2:
859   .zero 4
860 
861 The ``u32 list[];`` variable is defined to access the list.
862 
863 The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
864 want to define unused entry in BTF_ID_LIST, like::
865 
866       BTF_ID_LIST(bpf_skb_output_btf_ids)
867       BTF_ID(struct, sk_buff)
868       BTF_ID_UNUSED
869       BTF_ID(struct, task_struct)
870 
871 The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
872 and their count, with following syntax::
873 
874   BTF_SET_START(set)
875   BTF_ID(type1, name1)
876   BTF_ID(type2, name2)
877   BTF_SET_END(set)
878 
879 resulting in following layout in .BTF_ids section::
880 
881   __BTF_ID__set__set:
882   .zero 4
883   __BTF_ID__type1__name1__3:
884   .zero 4
885   __BTF_ID__type2__name2__4:
886   .zero 4
887 
888 The ``struct btf_id_set set;`` variable is defined to access the list.
889 
890 The ``typeX`` name can be one of following::
891 
892    struct, union, typedef, func
893 
894 and is used as a filter when resolving the BTF ID value.
895 
896 All the BTF ID lists and sets are compiled in the .BTF_ids section and
897 resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
898 
899 5. Using BTF
900 ============
901 
902 5.1 bpftool map pretty print
903 ----------------------------
904 
905 With BTF, the map key/value can be printed based on fields rather than simply
906 raw bytes. This is especially valuable for large structure or if your data
907 structure has bitfields. For example, for the following map,::
908 
909       enum A { A1, A2, A3, A4, A5 };
910       typedef enum A ___A;
911       struct tmp_t {
912            char a1:4;
913            int  a2:4;
914            int  :4;
915            __u32 a3:4;
916            int b;
917            ___A b1:4;
918            enum A b2:4;
919       };
920       struct {
921            __uint(type, BPF_MAP_TYPE_ARRAY);
922            __type(key, int);
923            __type(value, struct tmp_t);
924            __uint(max_entries, 1);
925       } tmpmap SEC(".maps");
926 
927 bpftool is able to pretty print like below:
928 ::
929 
930       [{
931             "key": 0,
932             "value": {
933                 "a1": 0x2,
934                 "a2": 0x4,
935                 "a3": 0x6,
936                 "b": 7,
937                 "b1": 0x8,
938                 "b2": 0xa
939             }
940         }
941       ]
942 
943 5.2 bpftool prog dump
944 ---------------------
945 
946 The following is an example showing how func_info and line_info can help prog
947 dump with better kernel symbol names, function prototypes and line
948 information.::
949 
950     $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
951     [...]
952     int test_long_fname_2(struct dummy_tracepoint_args * arg):
953     bpf_prog_44a040bf25481309_test_long_fname_2:
954     ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
955        0:   push   %rbp
956        1:   mov    %rsp,%rbp
957        4:   sub    $0x30,%rsp
958        b:   sub    $0x28,%rbp
959        f:   mov    %rbx,0x0(%rbp)
960       13:   mov    %r13,0x8(%rbp)
961       17:   mov    %r14,0x10(%rbp)
962       1b:   mov    %r15,0x18(%rbp)
963       1f:   xor    %eax,%eax
964       21:   mov    %rax,0x20(%rbp)
965       25:   xor    %esi,%esi
966     ; int key = 0;
967       27:   mov    %esi,-0x4(%rbp)
968     ; if (!arg->sock)
969       2a:   mov    0x8(%rdi),%rdi
970     ; if (!arg->sock)
971       2e:   cmp    $0x0,%rdi
972       32:   je     0x0000000000000070
973       34:   mov    %rbp,%rsi
974     ; counts = bpf_map_lookup_elem(&btf_map, &key);
975     [...]
976 
977 5.3 Verifier Log
978 ----------------
979 
980 The following is an example of how line_info can help debugging verification
981 failure.::
982 
983        /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
984         * is modified as below.
985         */
986        data = (void *)(long)xdp->data;
987        data_end = (void *)(long)xdp->data_end;
988        /*
989        if (data + 4 > data_end)
990                return XDP_DROP;
991        */
992        *(u32 *)data = dst->dst;
993 
994     $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
995         ; data = (void *)(long)xdp->data;
996         224: (79) r2 = *(u64 *)(r10 -112)
997         225: (61) r2 = *(u32 *)(r2 +0)
998         ; *(u32 *)data = dst->dst;
999         226: (63) *(u32 *)(r2 +0) = r1
1000         invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
1001         R2 offset is outside of the packet
1002 
1003 6. BTF Generation
1004 =================
1005 
1006 You need latest pahole
1007 
1008   https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
1009 
1010 or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
1011 support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
1012 
1013       -bash-4.4$ cat t.c
1014       struct t {
1015         int a:2;
1016         int b:3;
1017         int c:2;
1018       } g;
1019       -bash-4.4$ gcc -c -O2 -g t.c
1020       -bash-4.4$ pahole -JV t.o
1021       File t.o:
1022       [1] STRUCT t kind_flag=1 size=4 vlen=3
1023               a type_id=2 bitfield_size=2 bits_offset=0
1024               b type_id=2 bitfield_size=3 bits_offset=2
1025               c type_id=2 bitfield_size=2 bits_offset=5
1026       [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
1027 
1028 The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
1029 only. The assembly code (-S) is able to show the BTF encoding in assembly
1030 format.::
1031 
1032     -bash-4.4$ cat t2.c
1033     typedef int __int32;
1034     struct t2 {
1035       int a2;
1036       int (*f2)(char q1, __int32 q2, ...);
1037       int (*f3)();
1038     } g2;
1039     int main() { return 0; }
1040     int test() { return 0; }
1041     -bash-4.4$ clang -c -g -O2 --target=bpf t2.c
1042     -bash-4.4$ readelf -S t2.o
1043       ......
1044       [ 8] .BTF              PROGBITS         0000000000000000  00000247
1045            000000000000016e  0000000000000000           0     0     1
1046       [ 9] .BTF.ext          PROGBITS         0000000000000000  000003b5
1047            0000000000000060  0000000000000000           0     0     1
1048       [10] .rel.BTF.ext      REL              0000000000000000  000007e0
1049            0000000000000040  0000000000000010          16     9     8
1050       ......
1051     -bash-4.4$ clang -S -g -O2 --target=bpf t2.c
1052     -bash-4.4$ cat t2.s
1053       ......
1054             .section        .BTF,"",@progbits
1055             .short  60319                   # 0xeb9f
1056             .byte   1
1057             .byte   0
1058             .long   24
1059             .long   0
1060             .long   220
1061             .long   220
1062             .long   122
1063             .long   0                       # BTF_KIND_FUNC_PROTO(id = 1)
1064             .long   218103808               # 0xd000000
1065             .long   2
1066             .long   83                      # BTF_KIND_INT(id = 2)
1067             .long   16777216                # 0x1000000
1068             .long   4
1069             .long   16777248                # 0x1000020
1070       ......
1071             .byte   0                       # string offset=0
1072             .ascii  ".text"                 # string offset=1
1073             .byte   0
1074             .ascii  "/home/yhs/tmp-pahole/t2.c" # string offset=7
1075             .byte   0
1076             .ascii  "int main() { return 0; }" # string offset=33
1077             .byte   0
1078             .ascii  "int test() { return 0; }" # string offset=58
1079             .byte   0
1080             .ascii  "int"                   # string offset=83
1081       ......
1082             .section        .BTF.ext,"",@progbits
1083             .short  60319                   # 0xeb9f
1084             .byte   1
1085             .byte   0
1086             .long   24
1087             .long   0
1088             .long   28
1089             .long   28
1090             .long   44
1091             .long   8                       # FuncInfo
1092             .long   1                       # FuncInfo section string offset=1
1093             .long   2
1094             .long   .Lfunc_begin0
1095             .long   3
1096             .long   .Lfunc_begin1
1097             .long   5
1098             .long   16                      # LineInfo
1099             .long   1                       # LineInfo section string offset=1
1100             .long   2
1101             .long   .Ltmp0
1102             .long   7
1103             .long   33
1104             .long   7182                    # Line 7 Col 14
1105             .long   .Ltmp3
1106             .long   7
1107             .long   58
1108             .long   8206                    # Line 8 Col 14
1109 
1110 7. Testing
1111 ==========
1112 
1113 The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_
1114 provides an extensive set of BTF-related tests.
1115 
1116 .. Links
1117 .. _tools/testing/selftests/bpf/prog_tests/btf.c:
1118    https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php