1 ===================== 2 BPF Type Format (BTF) 3 ===================== 4 5 1. Introduction 6 =============== 7 8 BTF (BPF Type Format) is the metadata format which encodes the debug info 9 related to BPF program/map. The name BTF was used initially to describe data 10 types. The BTF was later extended to include function info for defined 11 subroutines, and line info for source/line information. 12 13 The debug info is used for map pretty print, function signature, etc. The 14 function signature enables better bpf program/function kernel symbol. The line 15 info helps generate source annotated translated byte code, jited code and 16 verifier log. 17 18 The BTF specification contains two parts, 19 * BTF kernel API 20 * BTF ELF file format 21 22 The kernel API is the contract between user space and kernel. The kernel 23 verifies the BTF info before using it. The ELF file format is a user space 24 contract between ELF file and libbpf loader. 25 26 The type and string sections are part of the BTF kernel API, describing the 27 debug info (mostly types related) referenced by the bpf program. These two 28 sections are discussed in details in :ref:`BTF_Type_String`. 29 30 .. _BTF_Type_String: 31 32 2. BTF Type and String Encoding 33 =============================== 34 35 The file ``include/uapi/linux/btf.h`` provides high-level definition of how 36 types/strings are encoded. 37 38 The beginning of data blob must be:: 39 40 struct btf_header { 41 __u16 magic; 42 __u8 version; 43 __u8 flags; 44 __u32 hdr_len; 45 46 /* All offsets are in bytes relative to the end of this header */ 47 __u32 type_off; /* offset of type section */ 48 __u32 type_len; /* length of type section */ 49 __u32 str_off; /* offset of string section */ 50 __u32 str_len; /* length of string section */ 51 }; 52 53 The magic is ``0xeB9F``, which has different encoding for big and little 54 endian systems, and can be used to test whether BTF is generated for big- or 55 little-endian target. The ``btf_header`` is designed to be extensible with 56 ``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is 57 generated. 58 59 2.1 String Encoding 60 ------------------- 61 62 The first string in the string section must be a null string. The rest of 63 string table is a concatenation of other null-terminated strings. 64 65 2.2 Type Encoding 66 ----------------- 67 68 The type id ``0`` is reserved for ``void`` type. The type section is parsed 69 sequentially and type id is assigned to each recognized type starting from id 70 ``1``. Currently, the following types are supported:: 71 72 #define BTF_KIND_INT 1 /* Integer */ 73 #define BTF_KIND_PTR 2 /* Pointer */ 74 #define BTF_KIND_ARRAY 3 /* Array */ 75 #define BTF_KIND_STRUCT 4 /* Struct */ 76 #define BTF_KIND_UNION 5 /* Union */ 77 #define BTF_KIND_ENUM 6 /* Enumeration up to 32-bit values */ 78 #define BTF_KIND_FWD 7 /* Forward */ 79 #define BTF_KIND_TYPEDEF 8 /* Typedef */ 80 #define BTF_KIND_VOLATILE 9 /* Volatile */ 81 #define BTF_KIND_CONST 10 /* Const */ 82 #define BTF_KIND_RESTRICT 11 /* Restrict */ 83 #define BTF_KIND_FUNC 12 /* Function */ 84 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */ 85 #define BTF_KIND_VAR 14 /* Variable */ 86 #define BTF_KIND_DATASEC 15 /* Section */ 87 #define BTF_KIND_FLOAT 16 /* Floating point */ 88 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */ 89 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */ 90 #define BTF_KIND_ENUM64 19 /* Enumeration up to 64-bit values */ 91 92 Note that the type section encodes debug info, not just pure types. 93 ``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram. 94 95 Each type contains the following common data:: 96 97 struct btf_type { 98 __u32 name_off; 99 /* "info" bits arrangement 100 * bits 0-15: vlen (e.g. # of struct's members) 101 * bits 16-23: unused 102 * bits 24-28: kind (e.g. int, ptr, array...etc) 103 * bits 29-30: unused 104 * bit 31: kind_flag, currently used by 105 * struct, union, fwd, enum and enum64. 106 */ 107 __u32 info; 108 /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64. 109 * "size" tells the size of the type it is describing. 110 * 111 * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT, 112 * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG. 113 * "type" is a type_id referring to another type. 114 */ 115 union { 116 __u32 size; 117 __u32 type; 118 }; 119 }; 120 121 For certain kinds, the common data are followed by kind-specific data. The 122 ``name_off`` in ``struct btf_type`` specifies the offset in the string table. 123 The following sections detail encoding of each kind. 124 125 2.2.1 BTF_KIND_INT 126 ~~~~~~~~~~~~~~~~~~ 127 128 ``struct btf_type`` encoding requirement: 129 * ``name_off``: any valid offset 130 * ``info.kind_flag``: 0 131 * ``info.kind``: BTF_KIND_INT 132 * ``info.vlen``: 0 133 * ``size``: the size of the int type in bytes. 134 135 ``btf_type`` is followed by a ``u32`` with the following bits arrangement:: 136 137 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x0f000000) >> 24) 138 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x00ff0000) >> 16) 139 #define BTF_INT_BITS(VAL) ((VAL) & 0x000000ff) 140 141 The ``BTF_INT_ENCODING`` has the following attributes:: 142 143 #define BTF_INT_SIGNED (1 << 0) 144 #define BTF_INT_CHAR (1 << 1) 145 #define BTF_INT_BOOL (1 << 2) 146 147 The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or 148 bool, for the int type. The char and bool encoding are mostly useful for 149 pretty print. At most one encoding can be specified for the int type. 150 151 The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int 152 type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4. 153 The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()`` 154 for the type. The maximum value of ``BTF_INT_BITS()`` is 128. 155 156 The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values 157 for this int. For example, a bitfield struct member has: 158 159 * btf member bit offset 100 from the start of the structure, 160 * btf member pointing to an int type, 161 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4`` 162 163 Then in the struct memory layout, this member will occupy ``4`` bits starting 164 from bits ``100 + 2 = 102``. 165 166 Alternatively, the bitfield struct member can be the following to access the 167 same bits as the above: 168 169 * btf member bit offset 102, 170 * btf member pointing to an int type, 171 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4`` 172 173 The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of 174 bitfield encoding. Currently, both llvm and pahole generate 175 ``BTF_INT_OFFSET() = 0`` for all int types. 176 177 2.2.2 BTF_KIND_PTR 178 ~~~~~~~~~~~~~~~~~~ 179 180 ``struct btf_type`` encoding requirement: 181 * ``name_off``: 0 182 * ``info.kind_flag``: 0 183 * ``info.kind``: BTF_KIND_PTR 184 * ``info.vlen``: 0 185 * ``type``: the pointee type of the pointer 186 187 No additional type data follow ``btf_type``. 188 189 2.2.3 BTF_KIND_ARRAY 190 ~~~~~~~~~~~~~~~~~~~~ 191 192 ``struct btf_type`` encoding requirement: 193 * ``name_off``: 0 194 * ``info.kind_flag``: 0 195 * ``info.kind``: BTF_KIND_ARRAY 196 * ``info.vlen``: 0 197 * ``size/type``: 0, not used 198 199 ``btf_type`` is followed by one ``struct btf_array``:: 200 201 struct btf_array { 202 __u32 type; 203 __u32 index_type; 204 __u32 nelems; 205 }; 206 207 The ``struct btf_array`` encoding: 208 * ``type``: the element type 209 * ``index_type``: the index type 210 * ``nelems``: the number of elements for this array (``0`` is also allowed). 211 212 The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``, 213 ``u64``, ``unsigned __int128``). The original design of including 214 ``index_type`` follows DWARF, which has an ``index_type`` for its array type. 215 Currently in BTF, beyond type verification, the ``index_type`` is not used. 216 217 The ``struct btf_array`` allows chaining through element type to represent 218 multidimensional arrays. For example, for ``int a[5][6]``, the following type 219 information illustrates the chaining: 220 221 * [1]: int 222 * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6`` 223 * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5`` 224 225 Currently, both pahole and llvm collapse multidimensional array into 226 one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is 227 equal to ``30``. This is because the original use case is map pretty print 228 where the whole array is dumped out so one-dimensional array is enough. As 229 more BTF usage is explored, pahole and llvm can be changed to generate proper 230 chained representation for multidimensional arrays. 231 232 2.2.4 BTF_KIND_STRUCT 233 ~~~~~~~~~~~~~~~~~~~~~ 234 2.2.5 BTF_KIND_UNION 235 ~~~~~~~~~~~~~~~~~~~~ 236 237 ``struct btf_type`` encoding requirement: 238 * ``name_off``: 0 or offset to a valid C identifier 239 * ``info.kind_flag``: 0 or 1 240 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION 241 * ``info.vlen``: the number of struct/union members 242 * ``info.size``: the size of the struct/union in bytes 243 244 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.:: 245 246 struct btf_member { 247 __u32 name_off; 248 __u32 type; 249 __u32 offset; 250 }; 251 252 ``struct btf_member`` encoding: 253 * ``name_off``: offset to a valid C identifier 254 * ``type``: the member type 255 * ``offset``: <see below> 256 257 If the type info ``kind_flag`` is not set, the offset contains only bit offset 258 of the member. Note that the base type of the bitfield can only be int or enum 259 type. If the bitfield size is 32, the base type can be either int or enum 260 type. If the bitfield size is not 32, the base type must be int, and int type 261 ``BTF_INT_BITS()`` encodes the bitfield size. 262 263 If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member 264 bitfield size and bit offset. The bitfield size and bit offset are calculated 265 as below.:: 266 267 #define BTF_MEMBER_BITFIELD_SIZE(val) ((val) >> 24) 268 #define BTF_MEMBER_BIT_OFFSET(val) ((val) & 0xffffff) 269 270 In this case, if the base type is an int type, it must be a regular int type: 271 272 * ``BTF_INT_OFFSET()`` must be 0. 273 * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``. 274 275 Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes 276 exist. 277 278 2.2.6 BTF_KIND_ENUM 279 ~~~~~~~~~~~~~~~~~~~ 280 281 ``struct btf_type`` encoding requirement: 282 * ``name_off``: 0 or offset to a valid C identifier 283 * ``info.kind_flag``: 0 for unsigned, 1 for signed 284 * ``info.kind``: BTF_KIND_ENUM 285 * ``info.vlen``: number of enum values 286 * ``size``: 1/2/4/8 287 288 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.:: 289 290 struct btf_enum { 291 __u32 name_off; 292 __s32 val; 293 }; 294 295 The ``btf_enum`` encoding: 296 * ``name_off``: offset to a valid C identifier 297 * ``val``: any value 298 299 If the original enum value is signed and the size is less than 4, 300 that value will be sign extended into 4 bytes. If the size is 8, 301 the value will be truncated into 4 bytes. 302 303 2.2.7 BTF_KIND_FWD 304 ~~~~~~~~~~~~~~~~~~ 305 306 ``struct btf_type`` encoding requirement: 307 * ``name_off``: offset to a valid C identifier 308 * ``info.kind_flag``: 0 for struct, 1 for union 309 * ``info.kind``: BTF_KIND_FWD 310 * ``info.vlen``: 0 311 * ``type``: 0 312 313 No additional type data follow ``btf_type``. 314 315 2.2.8 BTF_KIND_TYPEDEF 316 ~~~~~~~~~~~~~~~~~~~~~~ 317 318 ``struct btf_type`` encoding requirement: 319 * ``name_off``: offset to a valid C identifier 320 * ``info.kind_flag``: 0 321 * ``info.kind``: BTF_KIND_TYPEDEF 322 * ``info.vlen``: 0 323 * ``type``: the type which can be referred by name at ``name_off`` 324 325 No additional type data follow ``btf_type``. 326 327 2.2.9 BTF_KIND_VOLATILE 328 ~~~~~~~~~~~~~~~~~~~~~~~ 329 330 ``struct btf_type`` encoding requirement: 331 * ``name_off``: 0 332 * ``info.kind_flag``: 0 333 * ``info.kind``: BTF_KIND_VOLATILE 334 * ``info.vlen``: 0 335 * ``type``: the type with ``volatile`` qualifier 336 337 No additional type data follow ``btf_type``. 338 339 2.2.10 BTF_KIND_CONST 340 ~~~~~~~~~~~~~~~~~~~~~ 341 342 ``struct btf_type`` encoding requirement: 343 * ``name_off``: 0 344 * ``info.kind_flag``: 0 345 * ``info.kind``: BTF_KIND_CONST 346 * ``info.vlen``: 0 347 * ``type``: the type with ``const`` qualifier 348 349 No additional type data follow ``btf_type``. 350 351 2.2.11 BTF_KIND_RESTRICT 352 ~~~~~~~~~~~~~~~~~~~~~~~~ 353 354 ``struct btf_type`` encoding requirement: 355 * ``name_off``: 0 356 * ``info.kind_flag``: 0 357 * ``info.kind``: BTF_KIND_RESTRICT 358 * ``info.vlen``: 0 359 * ``type``: the type with ``restrict`` qualifier 360 361 No additional type data follow ``btf_type``. 362 363 2.2.12 BTF_KIND_FUNC 364 ~~~~~~~~~~~~~~~~~~~~ 365 366 ``struct btf_type`` encoding requirement: 367 * ``name_off``: offset to a valid C identifier 368 * ``info.kind_flag``: 0 369 * ``info.kind``: BTF_KIND_FUNC 370 * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL 371 or BTF_FUNC_EXTERN - see :ref:`BTF_Function_Linkage_Constants`) 372 * ``type``: a BTF_KIND_FUNC_PROTO type 373 374 No additional type data follow ``btf_type``. 375 376 A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose 377 signature is defined by ``type``. The subprogram is thus an instance of that 378 type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the 379 :ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load` 380 (ABI). 381 382 Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are 383 supported in the kernel. 384 385 2.2.13 BTF_KIND_FUNC_PROTO 386 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 387 388 ``struct btf_type`` encoding requirement: 389 * ``name_off``: 0 390 * ``info.kind_flag``: 0 391 * ``info.kind``: BTF_KIND_FUNC_PROTO 392 * ``info.vlen``: # of parameters 393 * ``type``: the return type 394 395 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.:: 396 397 struct btf_param { 398 __u32 name_off; 399 __u32 type; 400 }; 401 402 If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then 403 ``btf_param.name_off`` must point to a valid C identifier except for the 404 possible last argument representing the variable argument. The btf_param.type 405 refers to parameter type. 406 407 If the function has variable arguments, the last parameter is encoded with 408 ``name_off = 0`` and ``type = 0``. 409 410 2.2.14 BTF_KIND_VAR 411 ~~~~~~~~~~~~~~~~~~~ 412 413 ``struct btf_type`` encoding requirement: 414 * ``name_off``: offset to a valid C identifier 415 * ``info.kind_flag``: 0 416 * ``info.kind``: BTF_KIND_VAR 417 * ``info.vlen``: 0 418 * ``type``: the type of the variable 419 420 ``btf_type`` is followed by a single ``struct btf_variable`` with the 421 following data:: 422 423 struct btf_var { 424 __u32 linkage; 425 }; 426 427 ``btf_var.linkage`` may take the values: BTF_VAR_STATIC, BTF_VAR_GLOBAL_ALLOCATED or BTF_VAR_GLOBAL_EXTERN - 428 see :ref:`BTF_Var_Linkage_Constants`. 429 430 Not all type of global variables are supported by LLVM at this point. 431 The following is currently available: 432 433 * static variables with or without section attributes 434 * global variables with section attributes 435 436 The latter is for future extraction of map key/value type id's from a 437 map definition. 438 439 2.2.15 BTF_KIND_DATASEC 440 ~~~~~~~~~~~~~~~~~~~~~~~ 441 442 ``struct btf_type`` encoding requirement: 443 * ``name_off``: offset to a valid name associated with a variable or 444 one of .data/.bss/.rodata 445 * ``info.kind_flag``: 0 446 * ``info.kind``: BTF_KIND_DATASEC 447 * ``info.vlen``: # of variables 448 * ``size``: total section size in bytes (0 at compilation time, patched 449 to actual size by BPF loaders such as libbpf) 450 451 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.:: 452 453 struct btf_var_secinfo { 454 __u32 type; 455 __u32 offset; 456 __u32 size; 457 }; 458 459 ``struct btf_var_secinfo`` encoding: 460 * ``type``: the type of the BTF_KIND_VAR variable 461 * ``offset``: the in-section offset of the variable 462 * ``size``: the size of the variable in bytes 463 464 2.2.16 BTF_KIND_FLOAT 465 ~~~~~~~~~~~~~~~~~~~~~ 466 467 ``struct btf_type`` encoding requirement: 468 * ``name_off``: any valid offset 469 * ``info.kind_flag``: 0 470 * ``info.kind``: BTF_KIND_FLOAT 471 * ``info.vlen``: 0 472 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16. 473 474 No additional type data follow ``btf_type``. 475 476 2.2.17 BTF_KIND_DECL_TAG 477 ~~~~~~~~~~~~~~~~~~~~~~~~ 478 479 ``struct btf_type`` encoding requirement: 480 * ``name_off``: offset to a non-empty string 481 * ``info.kind_flag``: 0 482 * ``info.kind``: BTF_KIND_DECL_TAG 483 * ``info.vlen``: 0 484 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef`` 485 486 ``btf_type`` is followed by ``struct btf_decl_tag``.:: 487 488 struct btf_decl_tag { 489 __u32 component_idx; 490 }; 491 492 The ``name_off`` encodes btf_decl_tag attribute string. 493 The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``. 494 For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``. 495 For the other three types, if the btf_decl_tag attribute is 496 applied to the ``struct``, ``union`` or ``func`` itself, 497 ``btf_decl_tag.component_idx`` must be ``-1``. Otherwise, 498 the attribute is applied to a ``struct``/``union`` member or 499 a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a 500 valid index (starting from 0) pointing to a member or an argument. 501 502 2.2.18 BTF_KIND_TYPE_TAG 503 ~~~~~~~~~~~~~~~~~~~~~~~~ 504 505 ``struct btf_type`` encoding requirement: 506 * ``name_off``: offset to a non-empty string 507 * ``info.kind_flag``: 0 508 * ``info.kind``: BTF_KIND_TYPE_TAG 509 * ``info.vlen``: 0 510 * ``type``: the type with ``btf_type_tag`` attribute 511 512 Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types. 513 It has the following btf type chain: 514 :: 515 516 ptr -> [type_tag]* 517 -> [const | volatile | restrict | typedef]* 518 -> base_type 519 520 Basically, a pointer type points to zero or more 521 type_tag, then zero or more const/volatile/restrict/typedef 522 and finally the base type. The base type is one of 523 int, ptr, array, struct, union, enum, func_proto and float types. 524 525 2.2.19 BTF_KIND_ENUM64 526 ~~~~~~~~~~~~~~~~~~~~~~ 527 528 ``struct btf_type`` encoding requirement: 529 * ``name_off``: 0 or offset to a valid C identifier 530 * ``info.kind_flag``: 0 for unsigned, 1 for signed 531 * ``info.kind``: BTF_KIND_ENUM64 532 * ``info.vlen``: number of enum values 533 * ``size``: 1/2/4/8 534 535 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.:: 536 537 struct btf_enum64 { 538 __u32 name_off; 539 __u32 val_lo32; 540 __u32 val_hi32; 541 }; 542 543 The ``btf_enum64`` encoding: 544 * ``name_off``: offset to a valid C identifier 545 * ``val_lo32``: lower 32-bit value for a 64-bit value 546 * ``val_hi32``: high 32-bit value for a 64-bit value 547 548 If the original enum value is signed and the size is less than 8, 549 that value will be sign extended into 8 bytes. 550 551 2.3 Constant Values 552 ------------------- 553 554 .. _BTF_Function_Linkage_Constants: 555 556 2.3.1 Function Linkage Constant Values 557 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 558 .. table:: Function Linkage Values and Meanings 559 560 =================== ===== =========== 561 kind value description 562 =================== ===== =========== 563 ``BTF_FUNC_STATIC`` 0x0 definition of subprogram not visible outside containing compilation unit 564 ``BTF_FUNC_GLOBAL`` 0x1 definition of subprogram visible outside containing compilation unit 565 ``BTF_FUNC_EXTERN`` 0x2 declaration of a subprogram whose definition is outside the containing compilation unit 566 =================== ===== =========== 567 568 569 .. _BTF_Var_Linkage_Constants: 570 571 2.3.2 Variable Linkage Constant Values 572 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 573 .. table:: Variable Linkage Values and Meanings 574 575 ============================ ===== =========== 576 kind value description 577 ============================ ===== =========== 578 ``BTF_VAR_STATIC`` 0x0 definition of global variable not visible outside containing compilation unit 579 ``BTF_VAR_GLOBAL_ALLOCATED`` 0x1 definition of global variable visible outside containing compilation unit 580 ``BTF_VAR_GLOBAL_EXTERN`` 0x2 declaration of global variable whose definition is outside the containing compilation unit 581 ============================ ===== =========== 582 583 3. BTF Kernel API 584 ================= 585 586 The following bpf syscall command involves BTF: 587 * BPF_BTF_LOAD: load a blob of BTF data into kernel 588 * BPF_MAP_CREATE: map creation with btf key and value type info. 589 * BPF_PROG_LOAD: prog load with btf function and line info. 590 * BPF_BTF_GET_FD_BY_ID: get a btf fd 591 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info 592 and other btf related info are returned. 593 594 The workflow typically looks like: 595 :: 596 597 Application: 598 BPF_BTF_LOAD 599 | 600 v 601 BPF_MAP_CREATE and BPF_PROG_LOAD 602 | 603 V 604 ...... 605 606 Introspection tool: 607 ...... 608 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's) 609 | 610 V 611 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd) 612 | 613 V 614 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id) 615 | | 616 V | 617 BPF_BTF_GET_FD_BY_ID (get btf_fd) | 618 | | 619 V | 620 BPF_OBJ_GET_INFO_BY_FD (get btf) | 621 | | 622 V V 623 pretty print types, dump func signatures and line info, etc. 624 625 626 3.1 BPF_BTF_LOAD 627 ---------------- 628 629 Load a blob of BTF data into kernel. A blob of data, described in 630 :ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd`` 631 is returned to a userspace. 632 633 3.2 BPF_MAP_CREATE 634 ------------------ 635 636 A map can be created with ``btf_fd`` and specified key/value type id.:: 637 638 __u32 btf_fd; /* fd pointing to a BTF type data */ 639 __u32 btf_key_type_id; /* BTF type_id of the key */ 640 __u32 btf_value_type_id; /* BTF type_id of the value */ 641 642 In libbpf, the map can be defined with extra annotation like below: 643 :: 644 645 struct { 646 __uint(type, BPF_MAP_TYPE_ARRAY); 647 __type(key, int); 648 __type(value, struct ipv_counts); 649 __uint(max_entries, 4); 650 } btf_map SEC(".maps"); 651 652 During ELF parsing, libbpf is able to extract key/value type_id's and assign 653 them to BPF_MAP_CREATE attributes automatically. 654 655 .. _BPF_Prog_Load: 656 657 3.3 BPF_PROG_LOAD 658 ----------------- 659 660 During prog_load, func_info and line_info can be passed to kernel with proper 661 values for the following attributes: 662 :: 663 664 __u32 insn_cnt; 665 __aligned_u64 insns; 666 ...... 667 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 668 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 669 __aligned_u64 func_info; /* func info */ 670 __u32 func_info_cnt; /* number of bpf_func_info records */ 671 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 672 __aligned_u64 line_info; /* line info */ 673 __u32 line_info_cnt; /* number of bpf_line_info records */ 674 675 The func_info and line_info are an array of below, respectively.:: 676 677 struct bpf_func_info { 678 __u32 insn_off; /* [0, insn_cnt - 1] */ 679 __u32 type_id; /* pointing to a BTF_KIND_FUNC type */ 680 }; 681 struct bpf_line_info { 682 __u32 insn_off; /* [0, insn_cnt - 1] */ 683 __u32 file_name_off; /* offset to string table for the filename */ 684 __u32 line_off; /* offset to string table for the source line */ 685 __u32 line_col; /* line number and column number */ 686 }; 687 688 func_info_rec_size is the size of each func_info record, and 689 line_info_rec_size is the size of each line_info record. Passing the record 690 size to kernel make it possible to extend the record itself in the future. 691 692 Below are requirements for func_info: 693 * func_info[0].insn_off must be 0. 694 * the func_info insn_off is in strictly increasing order and matches 695 bpf func boundaries. 696 697 Below are requirements for line_info: 698 * the first insn in each func must have a line_info record pointing to it. 699 * the line_info insn_off is in strictly increasing order. 700 701 For line_info, the line number and column number are defined as below: 702 :: 703 704 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 705 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 706 707 3.4 BPF_{PROG,MAP}_GET_NEXT_ID 708 ------------------------------ 709 710 In kernel, every loaded program, map or btf has a unique id. The id won't 711 change during the lifetime of a program, map, or btf. 712 713 The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for 714 each command, to user space, for bpf program or maps, respectively, so an 715 inspection tool can inspect all programs and maps. 716 717 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID 718 ------------------------------- 719 720 An introspection tool cannot use id to get details about program or maps. 721 A file descriptor needs to be obtained first for reference-counting purpose. 722 723 3.6 BPF_OBJ_GET_INFO_BY_FD 724 -------------------------- 725 726 Once a program/map fd is acquired, an introspection tool can get the detailed 727 information from kernel about this fd, some of which are BTF-related. For 728 example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids. 729 ``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated 730 bpf byte codes, and jited_line_info. 731 732 3.7 BPF_BTF_GET_FD_BY_ID 733 ------------------------ 734 735 With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf 736 syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with 737 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the 738 kernel with BPF_BTF_LOAD, can be retrieved. 739 740 With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection 741 tool has full btf knowledge and is able to pretty print map key/values, dump 742 func signatures and line info, along with byte/jit codes. 743 744 4. ELF File Format Interface 745 ============================ 746 747 4.1 .BTF section 748 ---------------- 749 750 The .BTF section contains type and string data. The format of this section is 751 same as the one describe in :ref:`BTF_Type_String`. 752 753 .. _BTF_Ext_Section: 754 755 4.2 .BTF.ext section 756 -------------------- 757 758 The .BTF.ext section encodes func_info, line_info and CO-RE relocations 759 which needs loader manipulation before loading into the kernel. 760 761 The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h`` 762 and ``tools/lib/bpf/btf.c``. 763 764 The current header of .BTF.ext section:: 765 766 struct btf_ext_header { 767 __u16 magic; 768 __u8 version; 769 __u8 flags; 770 __u32 hdr_len; 771 772 /* All offsets are in bytes relative to the end of this header */ 773 __u32 func_info_off; 774 __u32 func_info_len; 775 __u32 line_info_off; 776 __u32 line_info_len; 777 778 /* optional part of .BTF.ext header */ 779 __u32 core_relo_off; 780 __u32 core_relo_len; 781 }; 782 783 It is very similar to .BTF section. Instead of type/string section, it 784 contains func_info, line_info and core_relo sub-sections. 785 See :ref:`BPF_Prog_Load` for details about func_info and line_info 786 record format. 787 788 The func_info is organized as below.:: 789 790 func_info_rec_size /* __u32 value */ 791 btf_ext_info_sec for section #1 /* func_info for section #1 */ 792 btf_ext_info_sec for section #2 /* func_info for section #2 */ 793 ... 794 795 ``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when 796 .BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of 797 func_info for each specific ELF section.:: 798 799 struct btf_ext_info_sec { 800 __u32 sec_name_off; /* offset to section name */ 801 __u32 num_info; 802 /* Followed by num_info * record_size number of bytes */ 803 __u8 data[0]; 804 }; 805 806 Here, num_info must be greater than 0. 807 808 The line_info is organized as below.:: 809 810 line_info_rec_size /* __u32 value */ 811 btf_ext_info_sec for section #1 /* line_info for section #1 */ 812 btf_ext_info_sec for section #2 /* line_info for section #2 */ 813 ... 814 815 ``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when 816 .BTF.ext is generated. 817 818 The interpretation of ``bpf_func_info->insn_off`` and 819 ``bpf_line_info->insn_off`` is different between kernel API and ELF API. For 820 kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct 821 bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the 822 beginning of section (``btf_ext_info_sec->sec_name_off``). 823 824 The core_relo is organized as below.:: 825 826 core_relo_rec_size /* __u32 value */ 827 btf_ext_info_sec for section #1 /* core_relo for section #1 */ 828 btf_ext_info_sec for section #2 /* core_relo for section #2 */ 829 830 ``core_relo_rec_size`` specifies the size of ``bpf_core_relo`` 831 structure when .BTF.ext is generated. All ``bpf_core_relo`` structures 832 within a single ``btf_ext_info_sec`` describe relocations applied to 833 section named by ``btf_ext_info_sec->sec_name_off``. 834 835 See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>` 836 for more information on CO-RE relocations. 837 838 4.2 .BTF_ids section 839 -------------------- 840 841 The .BTF_ids section encodes BTF ID values that are used within the kernel. 842 843 This section is created during the kernel compilation with the help of 844 macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can 845 use them to create lists and sets (sorted lists) of BTF ID values. 846 847 The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values, 848 with following syntax:: 849 850 BTF_ID_LIST(list) 851 BTF_ID(type1, name1) 852 BTF_ID(type2, name2) 853 854 resulting in following layout in .BTF_ids section:: 855 856 __BTF_ID__type1__name1__1: 857 .zero 4 858 __BTF_ID__type2__name2__2: 859 .zero 4 860 861 The ``u32 list[];`` variable is defined to access the list. 862 863 The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we 864 want to define unused entry in BTF_ID_LIST, like:: 865 866 BTF_ID_LIST(bpf_skb_output_btf_ids) 867 BTF_ID(struct, sk_buff) 868 BTF_ID_UNUSED 869 BTF_ID(struct, task_struct) 870 871 The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values 872 and their count, with following syntax:: 873 874 BTF_SET_START(set) 875 BTF_ID(type1, name1) 876 BTF_ID(type2, name2) 877 BTF_SET_END(set) 878 879 resulting in following layout in .BTF_ids section:: 880 881 __BTF_ID__set__set: 882 .zero 4 883 __BTF_ID__type1__name1__3: 884 .zero 4 885 __BTF_ID__type2__name2__4: 886 .zero 4 887 888 The ``struct btf_id_set set;`` variable is defined to access the list. 889 890 The ``typeX`` name can be one of following:: 891 892 struct, union, typedef, func 893 894 and is used as a filter when resolving the BTF ID value. 895 896 All the BTF ID lists and sets are compiled in the .BTF_ids section and 897 resolved during the linking phase of kernel build by ``resolve_btfids`` tool. 898 899 5. Using BTF 900 ============ 901 902 5.1 bpftool map pretty print 903 ---------------------------- 904 905 With BTF, the map key/value can be printed based on fields rather than simply 906 raw bytes. This is especially valuable for large structure or if your data 907 structure has bitfields. For example, for the following map,:: 908 909 enum A { A1, A2, A3, A4, A5 }; 910 typedef enum A ___A; 911 struct tmp_t { 912 char a1:4; 913 int a2:4; 914 int :4; 915 __u32 a3:4; 916 int b; 917 ___A b1:4; 918 enum A b2:4; 919 }; 920 struct { 921 __uint(type, BPF_MAP_TYPE_ARRAY); 922 __type(key, int); 923 __type(value, struct tmp_t); 924 __uint(max_entries, 1); 925 } tmpmap SEC(".maps"); 926 927 bpftool is able to pretty print like below: 928 :: 929 930 [{ 931 "key": 0, 932 "value": { 933 "a1": 0x2, 934 "a2": 0x4, 935 "a3": 0x6, 936 "b": 7, 937 "b1": 0x8, 938 "b2": 0xa 939 } 940 } 941 ] 942 943 5.2 bpftool prog dump 944 --------------------- 945 946 The following is an example showing how func_info and line_info can help prog 947 dump with better kernel symbol names, function prototypes and line 948 information.:: 949 950 $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv 951 [...] 952 int test_long_fname_2(struct dummy_tracepoint_args * arg): 953 bpf_prog_44a040bf25481309_test_long_fname_2: 954 ; static int test_long_fname_2(struct dummy_tracepoint_args *arg) 955 0: push %rbp 956 1: mov %rsp,%rbp 957 4: sub $0x30,%rsp 958 b: sub $0x28,%rbp 959 f: mov %rbx,0x0(%rbp) 960 13: mov %r13,0x8(%rbp) 961 17: mov %r14,0x10(%rbp) 962 1b: mov %r15,0x18(%rbp) 963 1f: xor %eax,%eax 964 21: mov %rax,0x20(%rbp) 965 25: xor %esi,%esi 966 ; int key = 0; 967 27: mov %esi,-0x4(%rbp) 968 ; if (!arg->sock) 969 2a: mov 0x8(%rdi),%rdi 970 ; if (!arg->sock) 971 2e: cmp $0x0,%rdi 972 32: je 0x0000000000000070 973 34: mov %rbp,%rsi 974 ; counts = bpf_map_lookup_elem(&btf_map, &key); 975 [...] 976 977 5.3 Verifier Log 978 ---------------- 979 980 The following is an example of how line_info can help debugging verification 981 failure.:: 982 983 /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c 984 * is modified as below. 985 */ 986 data = (void *)(long)xdp->data; 987 data_end = (void *)(long)xdp->data_end; 988 /* 989 if (data + 4 > data_end) 990 return XDP_DROP; 991 */ 992 *(u32 *)data = dst->dst; 993 994 $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp 995 ; data = (void *)(long)xdp->data; 996 224: (79) r2 = *(u64 *)(r10 -112) 997 225: (61) r2 = *(u32 *)(r2 +0) 998 ; *(u32 *)data = dst->dst; 999 226: (63) *(u32 *)(r2 +0) = r1 1000 invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0) 1001 R2 offset is outside of the packet 1002 1003 6. BTF Generation 1004 ================= 1005 1006 You need latest pahole 1007 1008 https://git.kernel.org/pub/scm/devel/pahole/pahole.git/ 1009 1010 or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't 1011 support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,:: 1012 1013 -bash-4.4$ cat t.c 1014 struct t { 1015 int a:2; 1016 int b:3; 1017 int c:2; 1018 } g; 1019 -bash-4.4$ gcc -c -O2 -g t.c 1020 -bash-4.4$ pahole -JV t.o 1021 File t.o: 1022 [1] STRUCT t kind_flag=1 size=4 vlen=3 1023 a type_id=2 bitfield_size=2 bits_offset=0 1024 b type_id=2 bitfield_size=3 bits_offset=2 1025 c type_id=2 bitfield_size=2 bits_offset=5 1026 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED 1027 1028 The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target 1029 only. The assembly code (-S) is able to show the BTF encoding in assembly 1030 format.:: 1031 1032 -bash-4.4$ cat t2.c 1033 typedef int __int32; 1034 struct t2 { 1035 int a2; 1036 int (*f2)(char q1, __int32 q2, ...); 1037 int (*f3)(); 1038 } g2; 1039 int main() { return 0; } 1040 int test() { return 0; } 1041 -bash-4.4$ clang -c -g -O2 --target=bpf t2.c 1042 -bash-4.4$ readelf -S t2.o 1043 ...... 1044 [ 8] .BTF PROGBITS 0000000000000000 00000247 1045 000000000000016e 0000000000000000 0 0 1 1046 [ 9] .BTF.ext PROGBITS 0000000000000000 000003b5 1047 0000000000000060 0000000000000000 0 0 1 1048 [10] .rel.BTF.ext REL 0000000000000000 000007e0 1049 0000000000000040 0000000000000010 16 9 8 1050 ...... 1051 -bash-4.4$ clang -S -g -O2 --target=bpf t2.c 1052 -bash-4.4$ cat t2.s 1053 ...... 1054 .section .BTF,"",@progbits 1055 .short 60319 # 0xeb9f 1056 .byte 1 1057 .byte 0 1058 .long 24 1059 .long 0 1060 .long 220 1061 .long 220 1062 .long 122 1063 .long 0 # BTF_KIND_FUNC_PROTO(id = 1) 1064 .long 218103808 # 0xd000000 1065 .long 2 1066 .long 83 # BTF_KIND_INT(id = 2) 1067 .long 16777216 # 0x1000000 1068 .long 4 1069 .long 16777248 # 0x1000020 1070 ...... 1071 .byte 0 # string offset=0 1072 .ascii ".text" # string offset=1 1073 .byte 0 1074 .ascii "/home/yhs/tmp-pahole/t2.c" # string offset=7 1075 .byte 0 1076 .ascii "int main() { return 0; }" # string offset=33 1077 .byte 0 1078 .ascii "int test() { return 0; }" # string offset=58 1079 .byte 0 1080 .ascii "int" # string offset=83 1081 ...... 1082 .section .BTF.ext,"",@progbits 1083 .short 60319 # 0xeb9f 1084 .byte 1 1085 .byte 0 1086 .long 24 1087 .long 0 1088 .long 28 1089 .long 28 1090 .long 44 1091 .long 8 # FuncInfo 1092 .long 1 # FuncInfo section string offset=1 1093 .long 2 1094 .long .Lfunc_begin0 1095 .long 3 1096 .long .Lfunc_begin1 1097 .long 5 1098 .long 16 # LineInfo 1099 .long 1 # LineInfo section string offset=1 1100 .long 2 1101 .long .Ltmp0 1102 .long 7 1103 .long 33 1104 .long 7182 # Line 7 Col 14 1105 .long .Ltmp3 1106 .long 7 1107 .long 58 1108 .long 8206 # Line 8 Col 14 1109 1110 7. Testing 1111 ========== 1112 1113 The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_ 1114 provides an extensive set of BTF-related tests. 1115 1116 .. Links 1117 .. _tools/testing/selftests/bpf/prog_tests/btf.c: 1118 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.