1 .. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 ==================== 4 BPF LLVM Relocations 5 ==================== 6 7 This document describes LLVM BPF backend relocation types. 8 9 Relocation Record 10 ================= 11 12 LLVM BPF backend records each relocation with the following 16-byte 13 ELF structure:: 14 15 typedef struct 16 { 17 Elf64_Addr r_offset; // Offset from the beginning of section. 18 Elf64_Xword r_info; // Relocation type and symbol index. 19 } Elf64_Rel; 20 21 For example, for the following code:: 22 23 int g1 __attribute__((section("sec"))); 24 int g2 __attribute__((section("sec"))); 25 static volatile int l1 __attribute__((section("sec"))); 26 static volatile int l2 __attribute__((section("sec"))); 27 int test() { 28 return g1 + g2 + l1 + l2; 29 } 30 31 Compiled with ``clang --target=bpf -O2 -c test.c``, the following is 32 the code with ``llvm-objdump -dr test.o``:: 33 34 0: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 35 0000000000000000: R_BPF_64_64 g1 36 2: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 37 3: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll 38 0000000000000018: R_BPF_64_64 g2 39 5: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0) 40 6: 0f 10 00 00 00 00 00 00 r0 += r1 41 7: 18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll 42 0000000000000038: R_BPF_64_64 sec 43 9: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 44 10: 0f 10 00 00 00 00 00 00 r0 += r1 45 11: 18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll 46 0000000000000058: R_BPF_64_64 sec 47 13: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 48 14: 0f 10 00 00 00 00 00 00 r0 += r1 49 15: 95 00 00 00 00 00 00 00 exit 50 51 There are four relocations in the above for four ``LD_imm64`` instructions. 52 The following ``llvm-readelf -r test.o`` shows the binary values of the four 53 relocations:: 54 55 Relocation section '.rel.text' at offset 0x190 contains 4 entries: 56 Offset Info Type Symbol's Value Symbol's Name 57 0000000000000000 0000000600000001 R_BPF_64_64 0000000000000000 g1 58 0000000000000018 0000000700000001 R_BPF_64_64 0000000000000004 g2 59 0000000000000038 0000000400000001 R_BPF_64_64 0000000000000000 sec 60 0000000000000058 0000000400000001 R_BPF_64_64 0000000000000000 sec 61 62 Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes). 63 For example, the first relocation corresponds to the first instruction 64 (Offset 0x0) and the corresponding ``Info`` indicates the relocation type 65 of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6). 66 The following is the symbol table with ``llvm-readelf -s test.o``:: 67 68 Symbol table '.symtab' contains 8 entries: 69 Num: Value Size Type Bind Vis Ndx Name 70 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND 71 1: 0000000000000000 0 FILE LOCAL DEFAULT ABS test.c 72 2: 0000000000000008 4 OBJECT LOCAL DEFAULT 4 l1 73 3: 000000000000000c 4 OBJECT LOCAL DEFAULT 4 l2 74 4: 0000000000000000 0 SECTION LOCAL DEFAULT 4 sec 75 5: 0000000000000000 128 FUNC GLOBAL DEFAULT 2 test 76 6: 0000000000000000 4 OBJECT GLOBAL DEFAULT 4 g1 77 7: 0000000000000004 4 OBJECT GLOBAL DEFAULT 4 g2 78 79 The 6th entry is global variable ``g1`` with value 0. 80 81 Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3, 82 has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table. 83 The second relocation resolves to global variable ``g2`` which has a symbol 84 value 4. The symbol value represents the offset from the start of ``.data`` 85 section where the initial value of the global variable ``g2`` is stored. 86 87 The third and fourth relocations refer to static variables ``l1`` 88 and ``l2``. From the ``.rel.text`` section above, it is not clear 89 to which symbols they really refer as they both refer to 90 symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type 91 and represents a section. So for a static variable or function, 92 the section offset is written to the original insn 93 buffer, which is called ``A`` (addend). Looking at 94 above insn ``7`` and ``11``, they have section offset ``8`` and ``12``. 95 From symbol table, we can find that they correspond to entries ``2`` 96 and ``3`` for ``l1`` and ``l2``. 97 98 In general, the ``A`` is 0 for global variables and functions, 99 and is the section offset or some computation result based on 100 section offset for static variables/functions. The non-section-offset 101 case refers to function calls. See below for more details. 102 103 Different Relocation Types 104 ========================== 105 106 Six relocation types are supported. The following is an overview and 107 ``S`` represents the value of the symbol in the symbol table:: 108 109 Enum ELF Reloc Type Description BitSize Offset Calculation 110 0 R_BPF_NONE None 111 1 R_BPF_64_64 ld_imm64 insn 32 r_offset + 4 S + A 112 2 R_BPF_64_ABS64 normal data 64 r_offset S + A 113 3 R_BPF_64_ABS32 normal data 32 r_offset S + A 114 4 R_BPF_64_NODYLD32 .BTF[.ext] data 32 r_offset S + A 115 10 R_BPF_64_32 call insn 32 r_offset + 4 (S + A) / 8 - 1 116 117 For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction. 118 The actual to-be-relocated data (0 or section offset) 119 is stored at ``r_offset + 4`` and the read/write 120 data bitsize is 32 (4 bytes). The relocation can be resolved with 121 the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which 122 means the section offset must be less than or equal to ``UINT32_MAX`` and this 123 is enforced by LLVM BPF backend. 124 125 In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data. 126 The actual to-be-relocated data is stored at ``r_offset`` and the read/write data 127 bitsize is 64 (8 bytes). The relocation can be resolved with 128 the symbol value plus implicit addend. 129 130 Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data. 131 But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and 132 ``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld`` 133 is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved 134 to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext`` 135 become unusable by bcc and kernel. 136 137 Type ``R_BPF_64_32`` is used for call instruction. The call target section 138 offset is stored at ``r_offset + 4`` (32bit) and calculated as 139 ``(S + A) / 8 - 1``. 140 141 Examples 142 ======== 143 144 Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64`` 145 and ``call`` instructions. For example:: 146 147 __attribute__((noinline)) __attribute__((section("sec1"))) 148 int gfunc(int a, int b) { 149 return a * b; 150 } 151 static __attribute__((noinline)) __attribute__((section("sec1"))) 152 int lfunc(int a, int b) { 153 return a + b; 154 } 155 int global __attribute__((section("sec2"))); 156 int test(int a, int b) { 157 return gfunc(a, b) + lfunc(a, b) + global; 158 } 159 160 Compiled with ``clang --target=bpf -O2 -c test.c``, we will have 161 following code with `llvm-objdump -dr test.o``:: 162 163 Disassembly of section .text: 164 165 0000000000000000 <test>: 166 0: bf 26 00 00 00 00 00 00 r6 = r2 167 1: bf 17 00 00 00 00 00 00 r7 = r1 168 2: 85 10 00 00 ff ff ff ff call -1 169 0000000000000010: R_BPF_64_32 gfunc 170 3: bf 08 00 00 00 00 00 00 r8 = r0 171 4: bf 71 00 00 00 00 00 00 r1 = r7 172 5: bf 62 00 00 00 00 00 00 r2 = r6 173 6: 85 10 00 00 02 00 00 00 call 2 174 0000000000000030: R_BPF_64_32 sec1 175 7: 0f 80 00 00 00 00 00 00 r0 += r8 176 8: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 177 0000000000000040: R_BPF_64_64 global 178 10: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 179 11: 0f 10 00 00 00 00 00 00 r0 += r1 180 12: 95 00 00 00 00 00 00 00 exit 181 182 Disassembly of section sec1: 183 184 0000000000000000 <gfunc>: 185 0: bf 20 00 00 00 00 00 00 r0 = r2 186 1: 2f 10 00 00 00 00 00 00 r0 *= r1 187 2: 95 00 00 00 00 00 00 00 exit 188 189 0000000000000018 <lfunc>: 190 3: bf 20 00 00 00 00 00 00 r0 = r2 191 4: 0f 10 00 00 00 00 00 00 r0 += r1 192 5: 95 00 00 00 00 00 00 00 exit 193 194 The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0, 195 so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``. 196 The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section 197 offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``. 198 The third relocation corresponds to ld_imm64 of ``global``, which has a section 199 offset ``0``. 200 201 The following is an example to show how R_BPF_64_ABS64 could be generated:: 202 203 int global() { return 0; } 204 struct t { void *g; } gbl = { global }; 205 206 Compiled with ``clang --target=bpf -O2 -g -c test.c``, we will see a 207 relocation below in ``.data`` section with command 208 ``llvm-readelf -r test.o``:: 209 210 Relocation section '.rel.data' at offset 0x458 contains 1 entries: 211 Offset Info Type Symbol's Value Symbol's Name 212 0000000000000000 0000000700000002 R_BPF_64_ABS64 0000000000000000 global 213 214 The relocation says the first 8-byte of ``.data`` section should be 215 filled with address of ``global`` variable. 216 217 With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of 218 ``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations:: 219 220 Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries: 221 Offset Info Type Symbol's Value Symbol's Name 222 0000000000000006 0000000300000003 R_BPF_64_ABS32 0000000000000000 .debug_abbrev 223 000000000000000c 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 224 0000000000000012 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 225 0000000000000016 0000000600000003 R_BPF_64_ABS32 0000000000000000 .debug_line 226 000000000000001a 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 227 000000000000001e 0000000200000002 R_BPF_64_ABS64 0000000000000000 .text 228 000000000000002b 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 229 0000000000000037 0000000800000002 R_BPF_64_ABS64 0000000000000000 gbl 230 0000000000000040 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 231 ...... 232 233 The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations:: 234 235 Relocation section '.rel.BTF' at offset 0x538 contains 1 entries: 236 Offset Info Type Symbol's Value Symbol's Name 237 0000000000000084 0000000800000004 R_BPF_64_NODYLD32 0000000000000000 gbl 238 239 Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries: 240 Offset Info Type Symbol's Value Symbol's Name 241 000000000000002c 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text 242 0000000000000040 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text 243 244 .. _btf-co-re-relocations: 245 246 ================= 247 CO-RE Relocations 248 ================= 249 250 From object file point of view CO-RE mechanism is implemented as a set 251 of CO-RE specific relocation records. These relocation records are not 252 related to ELF relocations and are encoded in .BTF.ext section. 253 See :ref:`Documentation/bpf/btf.rst <BTF_Ext_Section>` for more 254 information on .BTF.ext structure. 255 256 CO-RE relocations are applied to BPF instructions to update immediate 257 or offset fields of the instruction at load time with information 258 relevant for target kernel. 259 260 Field to patch is selected basing on the instruction class: 261 262 * For BPF_ALU, BPF_ALU64, BPF_LD `immediate` field is patched; 263 * For BPF_LDX, BPF_STX, BPF_ST `offset` field is patched; 264 * BPF_JMP, BPF_JMP32 instructions **should not** be patched. 265 266 Relocation kinds 267 ================ 268 269 There are several kinds of CO-RE relocations that could be split in 270 three groups: 271 272 * Field-based - patch instruction with field related information, e.g. 273 change offset field of the BPF_LDX instruction to reflect offset 274 of a specific structure field in the target kernel. 275 276 * Type-based - patch instruction with type related information, e.g. 277 change immediate field of the BPF_ALU move instruction to 0 or 1 to 278 reflect if specific type is present in the target kernel. 279 280 * Enum-based - patch instruction with enum related information, e.g. 281 change immediate field of the BPF_LD_IMM64 instruction to reflect 282 value of a specific enum literal in the target kernel. 283 284 The complete list of relocation kinds is represented by the following enum: 285 286 .. code-block:: c 287 288 enum bpf_core_relo_kind { 289 BPF_CORE_FIELD_BYTE_OFFSET = 0, /* field byte offset */ 290 BPF_CORE_FIELD_BYTE_SIZE = 1, /* field size in bytes */ 291 BPF_CORE_FIELD_EXISTS = 2, /* field existence in target kernel */ 292 BPF_CORE_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */ 293 BPF_CORE_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */ 294 BPF_CORE_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */ 295 BPF_CORE_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */ 296 BPF_CORE_TYPE_ID_TARGET = 7, /* type ID in target kernel */ 297 BPF_CORE_TYPE_EXISTS = 8, /* type existence in target kernel */ 298 BPF_CORE_TYPE_SIZE = 9, /* type size in bytes */ 299 BPF_CORE_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */ 300 BPF_CORE_ENUMVAL_VALUE = 11, /* enum value integer value */ 301 BPF_CORE_TYPE_MATCHES = 12, /* type match in target kernel */ 302 }; 303 304 Notes: 305 306 * ``BPF_CORE_FIELD_LSHIFT_U64`` and ``BPF_CORE_FIELD_RSHIFT_U64`` are 307 supposed to be used to read bitfield values using the following 308 algorithm: 309 310 .. code-block:: c 311 312 // To read bitfield ``f`` from ``struct s`` 313 is_signed = relo(s->f, BPF_CORE_FIELD_SIGNED) 314 off = relo(s->f, BPF_CORE_FIELD_BYTE_OFFSET) 315 sz = relo(s->f, BPF_CORE_FIELD_BYTE_SIZE) 316 l = relo(s->f, BPF_CORE_FIELD_LSHIFT_U64) 317 r = relo(s->f, BPF_CORE_FIELD_RSHIFT_U64) 318 // define ``v`` as signed or unsigned integer of size ``sz`` 319 v = *({s|u}<sz> *)((void *)s + off) 320 v <<= l 321 v >>= r 322 323 * The ``BPF_CORE_TYPE_MATCHES`` queries matching relation, defined as 324 follows: 325 326 * for integers: types match if size and signedness match; 327 * for arrays & pointers: target types are recursively matched; 328 * for structs & unions: 329 330 * local members need to exist in target with the same name; 331 332 * for each member we recursively check match unless it is already behind a 333 pointer, in which case we only check matching names and compatible kind; 334 335 * for enums: 336 337 * local variants have to have a match in target by symbolic name (but not 338 numeric value); 339 340 * size has to match (but enum may match enum64 and vice versa); 341 342 * for function pointers: 343 344 * number and position of arguments in local type has to match target; 345 * for each argument and the return value we recursively check match. 346 347 CO-RE Relocation Record 348 ======================= 349 350 Relocation record is encoded as the following structure: 351 352 .. code-block:: c 353 354 struct bpf_core_relo { 355 __u32 insn_off; 356 __u32 type_id; 357 __u32 access_str_off; 358 enum bpf_core_relo_kind kind; 359 }; 360 361 * ``insn_off`` - instruction offset (in bytes) within a code section 362 associated with this relocation; 363 364 * ``type_id`` - BTF type ID of the "root" (containing) entity of a 365 relocatable type or field; 366 367 * ``access_str_off`` - offset into corresponding .BTF string section. 368 String interpretation depends on specific relocation kind: 369 370 * for field-based relocations, string encodes an accessed field using 371 a sequence of field and array indices, separated by colon (:). It's 372 conceptually very close to LLVM's `getelementptr <GEP_>`_ instruction's 373 arguments for identifying offset to a field. For example, consider the 374 following C code: 375 376 .. code-block:: c 377 378 struct sample { 379 int a; 380 int b; 381 struct { int c[10]; }; 382 } __attribute__((preserve_access_index)); 383 struct sample *s; 384 385 * Access to ``s[0].a`` would be encoded as ``0:0``: 386 387 * ``0``: first element of ``s`` (as if ``s`` is an array); 388 * ``0``: index of field ``a`` in ``struct sample``. 389 390 * Access to ``s->a`` would be encoded as ``0:0`` as well. 391 * Access to ``s->b`` would be encoded as ``0:1``: 392 393 * ``0``: first element of ``s``; 394 * ``1``: index of field ``b`` in ``struct sample``. 395 396 * Access to ``s[1].c[5]`` would be encoded as ``1:2:0:5``: 397 398 * ``1``: second element of ``s``; 399 * ``2``: index of anonymous structure field in ``struct sample``; 400 * ``0``: index of field ``c`` in anonymous structure; 401 * ``5``: access to array element #5. 402 403 * for type-based relocations, string is expected to be just "0"; 404 405 * for enum value-based relocations, string contains an index of enum 406 value within its enum type; 407 408 * ``kind`` - one of ``enum bpf_core_relo_kind``. 409 410 .. _GEP: https://llvm.org/docs/LangRef.html#getelementptr-instruction 411 412 .. _btf_co_re_relocation_examples: 413 414 CO-RE Relocation Examples 415 ========================= 416 417 For the following C code: 418 419 .. code-block:: c 420 421 struct foo { 422 int a; 423 int b; 424 unsigned c:15; 425 } __attribute__((preserve_access_index)); 426 427 enum bar { U, V }; 428 429 With the following BTF definitions: 430 431 .. code-block:: 432 433 ... 434 [2] STRUCT 'foo' size=8 vlen=2 435 'a' type_id=3 bits_offset=0 436 'b' type_id=3 bits_offset=32 437 'c' type_id=4 bits_offset=64 bitfield_size=15 438 [3] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED 439 [4] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none) 440 ... 441 [16] ENUM 'bar' encoding=UNSIGNED size=4 vlen=2 442 'U' val=0 443 'V' val=1 444 445 Field offset relocations are generated automatically when 446 ``__attribute__((preserve_access_index))`` is used, for example: 447 448 .. code-block:: c 449 450 void alpha(struct foo *s, volatile unsigned long *g) { 451 *g = s->a; 452 s->a = 1; 453 } 454 455 00 <alpha>: 456 0: r3 = *(s32 *)(r1 + 0x0) 457 00: CO-RE <byte_off> [2] struct foo::a (0:0) 458 1: *(u64 *)(r2 + 0x0) = r3 459 2: *(u32 *)(r1 + 0x0) = 0x1 460 10: CO-RE <byte_off> [2] struct foo::a (0:0) 461 3: exit 462 463 464 All relocation kinds could be requested via built-in functions. 465 E.g. field-based relocations: 466 467 .. code-block:: c 468 469 void bravo(struct foo *s, volatile unsigned long *g) { 470 *g = __builtin_preserve_field_info(s->b, 0 /* field byte offset */); 471 *g = __builtin_preserve_field_info(s->b, 1 /* field byte size */); 472 *g = __builtin_preserve_field_info(s->b, 2 /* field existence */); 473 *g = __builtin_preserve_field_info(s->b, 3 /* field signedness */); 474 *g = __builtin_preserve_field_info(s->c, 4 /* bitfield left shift */); 475 *g = __builtin_preserve_field_info(s->c, 5 /* bitfield right shift */); 476 } 477 478 20 <bravo>: 479 4: r1 = 0x4 480 20: CO-RE <byte_off> [2] struct foo::b (0:1) 481 5: *(u64 *)(r2 + 0x0) = r1 482 6: r1 = 0x4 483 30: CO-RE <byte_sz> [2] struct foo::b (0:1) 484 7: *(u64 *)(r2 + 0x0) = r1 485 8: r1 = 0x1 486 40: CO-RE <field_exists> [2] struct foo::b (0:1) 487 9: *(u64 *)(r2 + 0x0) = r1 488 10: r1 = 0x1 489 50: CO-RE <signed> [2] struct foo::b (0:1) 490 11: *(u64 *)(r2 + 0x0) = r1 491 12: r1 = 0x31 492 60: CO-RE <lshift_u64> [2] struct foo::c (0:2) 493 13: *(u64 *)(r2 + 0x0) = r1 494 14: r1 = 0x31 495 70: CO-RE <rshift_u64> [2] struct foo::c (0:2) 496 15: *(u64 *)(r2 + 0x0) = r1 497 16: exit 498 499 500 Type-based relocations: 501 502 .. code-block:: c 503 504 void charlie(struct foo *s, volatile unsigned long *g) { 505 *g = __builtin_preserve_type_info(*s, 0 /* type existence */); 506 *g = __builtin_preserve_type_info(*s, 1 /* type size */); 507 *g = __builtin_preserve_type_info(*s, 2 /* type matches */); 508 *g = __builtin_btf_type_id(*s, 0 /* type id in this object file */); 509 *g = __builtin_btf_type_id(*s, 1 /* type id in target kernel */); 510 } 511 512 88 <charlie>: 513 17: r1 = 0x1 514 88: CO-RE <type_exists> [2] struct foo 515 18: *(u64 *)(r2 + 0x0) = r1 516 19: r1 = 0xc 517 98: CO-RE <type_size> [2] struct foo 518 20: *(u64 *)(r2 + 0x0) = r1 519 21: r1 = 0x1 520 a8: CO-RE <type_matches> [2] struct foo 521 22: *(u64 *)(r2 + 0x0) = r1 522 23: r1 = 0x2 ll 523 b8: CO-RE <local_type_id> [2] struct foo 524 25: *(u64 *)(r2 + 0x0) = r1 525 26: r1 = 0x2 ll 526 d0: CO-RE <target_type_id> [2] struct foo 527 28: *(u64 *)(r2 + 0x0) = r1 528 29: exit 529 530 Enum-based relocations: 531 532 .. code-block:: c 533 534 void delta(struct foo *s, volatile unsigned long *g) { 535 *g = __builtin_preserve_enum_value(*(enum bar *)U, 0 /* enum literal existence */); 536 *g = __builtin_preserve_enum_value(*(enum bar *)V, 1 /* enum literal value */); 537 } 538 539 f0 <delta>: 540 30: r1 = 0x1 ll 541 f0: CO-RE <enumval_exists> [16] enum bar::U = 0 542 32: *(u64 *)(r2 + 0x0) = r1 543 33: r1 = 0x1 ll 544 108: CO-RE <enumval_value> [16] enum bar::V = 1 545 35: *(u64 *)(r2 + 0x0) = r1 546 36: exit
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.