1 .. SPDX-License-Identifier: GPL-2.0-only 2 .. Copyright (C) 2022 Red Hat, Inc. 3 .. Copyright (C) 2022-2023 Isovalent, Inc. 4 5 =============================================== 6 BPF_MAP_TYPE_HASH, with PERCPU and LRU Variants 7 =============================================== 8 9 .. note:: 10 - ``BPF_MAP_TYPE_HASH`` was introduced in kernel version 3.19 11 - ``BPF_MAP_TYPE_PERCPU_HASH`` was introduced in version 4.6 12 - Both ``BPF_MAP_TYPE_LRU_HASH`` and ``BPF_MAP_TYPE_LRU_PERCPU_HASH`` 13 were introduced in version 4.10 14 15 ``BPF_MAP_TYPE_HASH`` and ``BPF_MAP_TYPE_PERCPU_HASH`` provide general 16 purpose hash map storage. Both the key and the value can be structs, 17 allowing for composite keys and values. 18 19 The kernel is responsible for allocating and freeing key/value pairs, up 20 to the max_entries limit that you specify. Hash maps use pre-allocation 21 of hash table elements by default. The ``BPF_F_NO_PREALLOC`` flag can be 22 used to disable pre-allocation when it is too memory expensive. 23 24 ``BPF_MAP_TYPE_PERCPU_HASH`` provides a separate value slot per 25 CPU. The per-cpu values are stored internally in an array. 26 27 The ``BPF_MAP_TYPE_LRU_HASH`` and ``BPF_MAP_TYPE_LRU_PERCPU_HASH`` 28 variants add LRU semantics to their respective hash tables. An LRU hash 29 will automatically evict the least recently used entries when the hash 30 table reaches capacity. An LRU hash maintains an internal LRU list that 31 is used to select elements for eviction. This internal LRU list is 32 shared across CPUs but it is possible to request a per CPU LRU list with 33 the ``BPF_F_NO_COMMON_LRU`` flag when calling ``bpf_map_create``. The 34 following table outlines the properties of LRU maps depending on the a 35 map type and the flags used to create the map. 36 37 ======================== ========================= ================================ 38 Flag ``BPF_MAP_TYPE_LRU_HASH`` ``BPF_MAP_TYPE_LRU_PERCPU_HASH`` 39 ======================== ========================= ================================ 40 **BPF_F_NO_COMMON_LRU** Per-CPU LRU, global map Per-CPU LRU, per-cpu map 41 **!BPF_F_NO_COMMON_LRU** Global LRU, global map Global LRU, per-cpu map 42 ======================== ========================= ================================ 43 44 Usage 45 ===== 46 47 Kernel BPF 48 ---------- 49 50 bpf_map_update_elem() 51 ~~~~~~~~~~~~~~~~~~~~~ 52 53 .. code-block:: c 54 55 long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 56 57 Hash entries can be added or updated using the ``bpf_map_update_elem()`` 58 helper. This helper replaces existing elements atomically. The ``flags`` 59 parameter can be used to control the update behaviour: 60 61 - ``BPF_ANY`` will create a new element or update an existing element 62 - ``BPF_NOEXIST`` will create a new element only if one did not already 63 exist 64 - ``BPF_EXIST`` will update an existing element 65 66 ``bpf_map_update_elem()`` returns 0 on success, or negative error in 67 case of failure. 68 69 bpf_map_lookup_elem() 70 ~~~~~~~~~~~~~~~~~~~~~ 71 72 .. code-block:: c 73 74 void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 75 76 Hash entries can be retrieved using the ``bpf_map_lookup_elem()`` 77 helper. This helper returns a pointer to the value associated with 78 ``key``, or ``NULL`` if no entry was found. 79 80 bpf_map_delete_elem() 81 ~~~~~~~~~~~~~~~~~~~~~ 82 83 .. code-block:: c 84 85 long bpf_map_delete_elem(struct bpf_map *map, const void *key) 86 87 Hash entries can be deleted using the ``bpf_map_delete_elem()`` 88 helper. This helper will return 0 on success, or negative error in case 89 of failure. 90 91 Per CPU Hashes 92 -------------- 93 94 For ``BPF_MAP_TYPE_PERCPU_HASH`` and ``BPF_MAP_TYPE_LRU_PERCPU_HASH`` 95 the ``bpf_map_update_elem()`` and ``bpf_map_lookup_elem()`` helpers 96 automatically access the hash slot for the current CPU. 97 98 bpf_map_lookup_percpu_elem() 99 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 100 101 .. code-block:: c 102 103 void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32 cpu) 104 105 The ``bpf_map_lookup_percpu_elem()`` helper can be used to lookup the 106 value in the hash slot for a specific CPU. Returns value associated with 107 ``key`` on ``cpu`` , or ``NULL`` if no entry was found or ``cpu`` is 108 invalid. 109 110 Concurrency 111 ----------- 112 113 Values stored in ``BPF_MAP_TYPE_HASH`` can be accessed concurrently by 114 programs running on different CPUs. Since Kernel version 5.1, the BPF 115 infrastructure provides ``struct bpf_spin_lock`` to synchronise access. 116 See ``tools/testing/selftests/bpf/progs/test_spin_lock.c``. 117 118 Userspace 119 --------- 120 121 bpf_map_get_next_key() 122 ~~~~~~~~~~~~~~~~~~~~~~ 123 124 .. code-block:: c 125 126 int bpf_map_get_next_key(int fd, const void *cur_key, void *next_key) 127 128 In userspace, it is possible to iterate through the keys of a hash using 129 libbpf's ``bpf_map_get_next_key()`` function. The first key can be fetched by 130 calling ``bpf_map_get_next_key()`` with ``cur_key`` set to 131 ``NULL``. Subsequent calls will fetch the next key that follows the 132 current key. ``bpf_map_get_next_key()`` returns 0 on success, -ENOENT if 133 cur_key is the last key in the hash, or negative error in case of 134 failure. 135 136 Note that if ``cur_key`` gets deleted then ``bpf_map_get_next_key()`` 137 will instead return the *first* key in the hash table which is 138 undesirable. It is recommended to use batched lookup if there is going 139 to be key deletion intermixed with ``bpf_map_get_next_key()``. 140 141 Examples 142 ======== 143 144 Please see the ``tools/testing/selftests/bpf`` directory for functional 145 examples. The code snippets below demonstrates API usage. 146 147 This example shows how to declare an LRU Hash with a struct key and a 148 struct value. 149 150 .. code-block:: c 151 152 #include <linux/bpf.h> 153 #include <bpf/bpf_helpers.h> 154 155 struct key { 156 __u32 srcip; 157 }; 158 159 struct value { 160 __u64 packets; 161 __u64 bytes; 162 }; 163 164 struct { 165 __uint(type, BPF_MAP_TYPE_LRU_HASH); 166 __uint(max_entries, 32); 167 __type(key, struct key); 168 __type(value, struct value); 169 } packet_stats SEC(".maps"); 170 171 This example shows how to create or update hash values using atomic 172 instructions: 173 174 .. code-block:: c 175 176 static void update_stats(__u32 srcip, int bytes) 177 { 178 struct key key = { 179 .srcip = srcip, 180 }; 181 struct value *value = bpf_map_lookup_elem(&packet_stats, &key); 182 183 if (value) { 184 __sync_fetch_and_add(&value->packets, 1); 185 __sync_fetch_and_add(&value->bytes, bytes); 186 } else { 187 struct value newval = { 1, bytes }; 188 189 bpf_map_update_elem(&packet_stats, &key, &newval, BPF_NOEXIST); 190 } 191 } 192 193 Userspace walking the map elements from the map declared above: 194 195 .. code-block:: c 196 197 #include <bpf/libbpf.h> 198 #include <bpf/bpf.h> 199 200 static void walk_hash_elements(int map_fd) 201 { 202 struct key *cur_key = NULL; 203 struct key next_key; 204 struct value value; 205 int err; 206 207 for (;;) { 208 err = bpf_map_get_next_key(map_fd, cur_key, &next_key); 209 if (err) 210 break; 211 212 bpf_map_lookup_elem(map_fd, &next_key, &value); 213 214 // Use key and value here 215 216 cur_key = &next_key; 217 } 218 } 219 220 Internals 221 ========= 222 223 This section of the document is targeted at Linux developers and describes 224 aspects of the map implementations that are not considered stable ABI. The 225 following details are subject to change in future versions of the kernel. 226 227 ``BPF_MAP_TYPE_LRU_HASH`` and variants 228 -------------------------------------- 229 230 Updating elements in LRU maps may trigger eviction behaviour when the capacity 231 of the map is reached. There are various steps that the update algorithm 232 attempts in order to enforce the LRU property which have increasing impacts on 233 other CPUs involved in the following operation attempts: 234 235 - Attempt to use CPU-local state to batch operations 236 - Attempt to fetch free nodes from global lists 237 - Attempt to pull any node from a global list and remove it from the hashmap 238 - Attempt to pull any node from any CPU's list and remove it from the hashmap 239 240 This algorithm is described visually in the following diagram. See the 241 description in commit 3a08c2fd7634 ("bpf: LRU List") for a full explanation of 242 the corresponding operations: 243 244 .. kernel-figure:: map_lru_hash_update.dot 245 :alt: Diagram outlining the LRU eviction steps taken during map update. 246 247 LRU hash eviction during map update for ``BPF_MAP_TYPE_LRU_HASH`` and 248 variants. See the dot file source for kernel function name code references. 249 250 Map updates start from the oval in the top right "begin ``bpf_map_update()``" 251 and progress through the graph towards the bottom where the result may be 252 either a successful update or a failure with various error codes. The key in 253 the top right provides indicators for which locks may be involved in specific 254 operations. This is intended as a visual hint for reasoning about how map 255 contention may impact update operations, though the map type and flags may 256 impact the actual contention on those locks, based on the logic described in 257 the table above. For instance, if the map is created with type 258 ``BPF_MAP_TYPE_LRU_PERCPU_HASH`` and flags ``BPF_F_NO_COMMON_LRU`` then all map 259 properties would be per-cpu.
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.