~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/devicetree/bindings/fsi/fsi.txt

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 FSI bus & engine generic device tree bindings
  2 =============================================
  3 
  4 The FSI bus is probe-able, so the OS is able to enumerate FSI slaves, and
  5 engines within those slaves. However, we have a facility to match devicetree
  6 nodes to probed engines. This allows for fsi engines to expose non-probeable
  7 busses, which are then exposed by the device tree. For example, an FSI engine
  8 that is an I2C master - the I2C bus can be described by the device tree under
  9 the engine's device tree node.
 10 
 11 FSI masters may require their own DT nodes (to describe the master HW itself);
 12 that requirement is defined by the master's implementation, and is described by
 13 the fsi-master-* binding specifications.
 14 
 15 Under the masters' nodes, we can describe the bus topology using nodes to
 16 represent the FSI slaves and their slave engines. As a basic outline:
 17 
 18   fsi-master {
 19       /* top-level of FSI bus topology, bound to an FSI master driver and
 20        * exposes an FSI bus */
 21 
 22       fsi-slave@<link,id> {
 23           /* this node defines the FSI slave device, and is handled
 24            * entirely with FSI core code */
 25 
 26           fsi-slave-engine@<addr> {
 27               /* this node defines the engine endpoint & address range, which
 28                * is bound to the relevant fsi device driver */
 29                ...
 30           };
 31 
 32           fsi-slave-engine@<addr> {
 33               ...
 34           };
 35 
 36       };
 37   };
 38 
 39 Note that since the bus is probe-able, some (or all) of the topology may
 40 not be described; this binding only provides an optional facility for
 41 adding subordinate device tree nodes as children of FSI engines.
 42 
 43 FSI masters
 44 -----------
 45 
 46 FSI master nodes declare themselves as such with the "fsi-master" compatible
 47 value. It's likely that an implementation-specific compatible value will
 48 be needed as well, for example:
 49 
 50     compatible = "fsi-master-gpio", "fsi-master";
 51 
 52 Since the master nodes describe the top-level of the FSI topology, they also
 53 need to declare the FSI-standard addressing scheme. This requires two cells for
 54 addresses (link index and slave ID), and no size:
 55 
 56     #address-cells = <2>;
 57     #size-cells = <0>;
 58 
 59 An optional boolean property can be added to indicate that a particular master
 60 should not scan for connected devices at initialization time.  This is
 61 necessary in cases where a scan could cause arbitration issues with other
 62 masters that may be present on the bus.
 63 
 64     no-scan-on-init;
 65 
 66 FSI slaves
 67 ----------
 68 
 69 Slaves are identified by a (link-index, slave-id) pair, so require two cells
 70 for an address identifier. Since these are not a range, no size cells are
 71 required. For an example, a slave on link 1, with ID 2, could be represented
 72 as:
 73 
 74     cfam@1,2 {
 75         reg = <1 2>;
 76         [...];
 77     }
 78 
 79 Each slave provides an address-space, under which the engines are accessible.
 80 That address space has a maximum of 23 bits, so we use one cell to represent
 81 addresses and sizes in the slave address space:
 82 
 83     #address-cells = <1>;
 84     #size-cells = <1>;
 85 
 86 Optionally, a slave can provide a global unique chip ID which is used to
 87 identify the physical location of the chip in a system specific way
 88 
 89     chip-id = <0>;
 90 
 91 FSI engines (devices)
 92 ---------------------
 93 
 94 Engines are identified by their address under the slaves' address spaces. We
 95 use a single cell for address and size. Engine nodes represent the endpoint
 96 FSI device, and are passed to those FSI device drivers' ->probe() functions.
 97 
 98 For example, for a slave using a single 0x400-byte page starting at address
 99 0xc00:
100 
101     engine@c00 {
102         reg = <0xc00 0x400>;
103     };
104 
105 
106 Full example
107 ------------
108 
109 Here's an example that illustrates:
110  - an FSI master
111    - connected to an FSI slave
112      - that contains an engine that is an I2C master
113        - connected to an I2C EEPROM
114 
115 The FSI master may be connected to additional slaves, and slaves may have
116 additional engines, but they don't necessarily need to be describe in the
117 device tree if no extra platform information is required.
118 
119     /* The GPIO-based FSI master node, describing the top level of the
120      * FSI bus
121      */
122     gpio-fsi {
123         compatible = "fsi-master-gpio", "fsi-master";
124         #address-cells = <2>;
125         #size-cells = <0>;
126 
127         /* A FSI slave (aka. CFAM) at link 0, ID 0. */
128         cfam@0,0 {
129             reg = <0 0>;
130             #address-cells = <1>;
131             #size-cells = <1>;
132             chip-id = <0>;
133 
134             /* FSI engine at 0xc00, using a single page. In this example,
135              * it's an I2C master controller, so subnodes describe the
136              * I2C bus.
137              */
138             i2c-controller@c00 {
139                 reg = <0xc00 0x400>;
140 
141                 /* Engine-specific data. In this case, we're describing an
142                  * I2C bus, so we're conforming to the generic I2C binding
143                  */
144                 compatible = "some-vendor,fsi-i2c-controller";
145                 #address-cells = <1>;
146                 #size-cells = <1>;
147 
148                 /* I2C endpoint device: an Atmel EEPROM */
149                 eeprom@50 {
150                     compatible = "atmel,24c256";
151                     reg = <0x50>;
152                     pagesize = <64>;
153                 };
154             };
155         };
156     };

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php