~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/driver-api/driver-model/devres.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 ================================
  2 Devres - Managed Device Resource
  3 ================================
  4 
  5 Tejun Heo       <teheo@suse.de>
  6 
  7 First draft     10 January 2007
  8 
  9 .. contents
 10 
 11    1. Intro                     : Huh? Devres?
 12    2. Devres                    : Devres in a nutshell
 13    3. Devres Group              : Group devres'es and release them together
 14    4. Details                   : Life time rules, calling context, ...
 15    5. Overhead                  : How much do we have to pay for this?
 16    6. List of managed interfaces: Currently implemented managed interfaces
 17 
 18 
 19 1. Intro
 20 --------
 21 
 22 devres came up while trying to convert libata to use iomap.  Each
 23 iomapped address should be kept and unmapped on driver detach.  For
 24 example, a plain SFF ATA controller (that is, good old PCI IDE) in
 25 native mode makes use of 5 PCI BARs and all of them should be
 26 maintained.
 27 
 28 As with many other device drivers, libata low level drivers have
 29 sufficient bugs in ->remove and ->probe failure path.  Well, yes,
 30 that's probably because libata low level driver developers are lazy
 31 bunch, but aren't all low level driver developers?  After spending a
 32 day fiddling with braindamaged hardware with no document or
 33 braindamaged document, if it's finally working, well, it's working.
 34 
 35 For one reason or another, low level drivers don't receive as much
 36 attention or testing as core code, and bugs on driver detach or
 37 initialization failure don't happen often enough to be noticeable.
 38 Init failure path is worse because it's much less travelled while
 39 needs to handle multiple entry points.
 40 
 41 So, many low level drivers end up leaking resources on driver detach
 42 and having half broken failure path implementation in ->probe() which
 43 would leak resources or even cause oops when failure occurs.  iomap
 44 adds more to this mix.  So do msi and msix.
 45 
 46 
 47 2. Devres
 48 ---------
 49 
 50 devres is basically linked list of arbitrarily sized memory areas
 51 associated with a struct device.  Each devres entry is associated with
 52 a release function.  A devres can be released in several ways.  No
 53 matter what, all devres entries are released on driver detach.  On
 54 release, the associated release function is invoked and then the
 55 devres entry is freed.
 56 
 57 Managed interface is created for resources commonly used by device
 58 drivers using devres.  For example, coherent DMA memory is acquired
 59 using dma_alloc_coherent().  The managed version is called
 60 dmam_alloc_coherent().  It is identical to dma_alloc_coherent() except
 61 for the DMA memory allocated using it is managed and will be
 62 automatically released on driver detach.  Implementation looks like
 63 the following::
 64 
 65   struct dma_devres {
 66         size_t          size;
 67         void            *vaddr;
 68         dma_addr_t      dma_handle;
 69   };
 70 
 71   static void dmam_coherent_release(struct device *dev, void *res)
 72   {
 73         struct dma_devres *this = res;
 74 
 75         dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
 76   }
 77 
 78   dmam_alloc_coherent(dev, size, dma_handle, gfp)
 79   {
 80         struct dma_devres *dr;
 81         void *vaddr;
 82 
 83         dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
 84         ...
 85 
 86         /* alloc DMA memory as usual */
 87         vaddr = dma_alloc_coherent(...);
 88         ...
 89 
 90         /* record size, vaddr, dma_handle in dr */
 91         dr->vaddr = vaddr;
 92         ...
 93 
 94         devres_add(dev, dr);
 95 
 96         return vaddr;
 97   }
 98 
 99 If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
100 freed whether initialization fails half-way or the device gets
101 detached.  If most resources are acquired using managed interface, a
102 driver can have much simpler init and exit code.  Init path basically
103 looks like the following::
104 
105   my_init_one()
106   {
107         struct mydev *d;
108 
109         d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
110         if (!d)
111                 return -ENOMEM;
112 
113         d->ring = dmam_alloc_coherent(...);
114         if (!d->ring)
115                 return -ENOMEM;
116 
117         if (check something)
118                 return -EINVAL;
119         ...
120 
121         return register_to_upper_layer(d);
122   }
123 
124 And exit path::
125 
126   my_remove_one()
127   {
128         unregister_from_upper_layer(d);
129         shutdown_my_hardware();
130   }
131 
132 As shown above, low level drivers can be simplified a lot by using
133 devres.  Complexity is shifted from less maintained low level drivers
134 to better maintained higher layer.  Also, as init failure path is
135 shared with exit path, both can get more testing.
136 
137 Note though that when converting current calls or assignments to
138 managed devm_* versions it is up to you to check if internal operations
139 like allocating memory, have failed. Managed resources pertains to the
140 freeing of these resources *only* - all other checks needed are still
141 on you. In some cases this may mean introducing checks that were not
142 necessary before moving to the managed devm_* calls.
143 
144 
145 3. Devres group
146 ---------------
147 
148 Devres entries can be grouped using devres group.  When a group is
149 released, all contained normal devres entries and properly nested
150 groups are released.  One usage is to rollback series of acquired
151 resources on failure.  For example::
152 
153   if (!devres_open_group(dev, NULL, GFP_KERNEL))
154         return -ENOMEM;
155 
156   acquire A;
157   if (failed)
158         goto err;
159 
160   acquire B;
161   if (failed)
162         goto err;
163   ...
164 
165   devres_remove_group(dev, NULL);
166   return 0;
167 
168  err:
169   devres_release_group(dev, NULL);
170   return err_code;
171 
172 As resource acquisition failure usually means probe failure, constructs
173 like above are usually useful in midlayer driver (e.g. libata core
174 layer) where interface function shouldn't have side effect on failure.
175 For LLDs, just returning error code suffices in most cases.
176 
177 Each group is identified by `void *id`.  It can either be explicitly
178 specified by @id argument to devres_open_group() or automatically
179 created by passing NULL as @id as in the above example.  In both
180 cases, devres_open_group() returns the group's id.  The returned id
181 can be passed to other devres functions to select the target group.
182 If NULL is given to those functions, the latest open group is
183 selected.
184 
185 For example, you can do something like the following::
186 
187   int my_midlayer_create_something()
188   {
189         if (!devres_open_group(dev, my_midlayer_create_something, GFP_KERNEL))
190                 return -ENOMEM;
191 
192         ...
193 
194         devres_close_group(dev, my_midlayer_create_something);
195         return 0;
196   }
197 
198   void my_midlayer_destroy_something()
199   {
200         devres_release_group(dev, my_midlayer_create_something);
201   }
202 
203 
204 4. Details
205 ----------
206 
207 Lifetime of a devres entry begins on devres allocation and finishes
208 when it is released or destroyed (removed and freed) - no reference
209 counting.
210 
211 devres core guarantees atomicity to all basic devres operations and
212 has support for single-instance devres types (atomic
213 lookup-and-add-if-not-found).  Other than that, synchronizing
214 concurrent accesses to allocated devres data is caller's
215 responsibility.  This is usually non-issue because bus ops and
216 resource allocations already do the job.
217 
218 For an example of single-instance devres type, read pcim_iomap_table()
219 in lib/devres.c.
220 
221 All devres interface functions can be called without context if the
222 right gfp mask is given.
223 
224 
225 5. Overhead
226 -----------
227 
228 Each devres bookkeeping info is allocated together with requested data
229 area.  With debug option turned off, bookkeeping info occupies 16
230 bytes on 32bit machines and 24 bytes on 64bit (three pointers rounded
231 up to ull alignment).  If singly linked list is used, it can be
232 reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit).
233 
234 Each devres group occupies 8 pointers.  It can be reduced to 6 if
235 singly linked list is used.
236 
237 Memory space overhead on ahci controller with two ports is between 300
238 and 400 bytes on 32bit machine after naive conversion (we can
239 certainly invest a bit more effort into libata core layer).
240 
241 
242 6. List of managed interfaces
243 -----------------------------
244 
245 CLOCK
246   devm_clk_get()
247   devm_clk_get_optional()
248   devm_clk_put()
249   devm_clk_bulk_get()
250   devm_clk_bulk_get_all()
251   devm_clk_bulk_get_optional()
252   devm_get_clk_from_child()
253   devm_clk_hw_register()
254   devm_of_clk_add_hw_provider()
255   devm_clk_hw_register_clkdev()
256 
257 DMA
258   dmaenginem_async_device_register()
259   dmam_alloc_coherent()
260   dmam_alloc_attrs()
261   dmam_free_coherent()
262   dmam_pool_create()
263   dmam_pool_destroy()
264 
265 DRM
266   devm_drm_dev_alloc()
267 
268 GPIO
269   devm_gpiod_get()
270   devm_gpiod_get_array()
271   devm_gpiod_get_array_optional()
272   devm_gpiod_get_index()
273   devm_gpiod_get_index_optional()
274   devm_gpiod_get_optional()
275   devm_gpiod_put()
276   devm_gpiod_unhinge()
277   devm_gpiochip_add_data()
278   devm_gpio_request()
279   devm_gpio_request_one()
280 
281 I2C
282   devm_i2c_add_adapter()
283   devm_i2c_new_dummy_device()
284 
285 IIO
286   devm_iio_device_alloc()
287   devm_iio_device_register()
288   devm_iio_dmaengine_buffer_setup()
289   devm_iio_kfifo_buffer_setup()
290   devm_iio_kfifo_buffer_setup_ext()
291   devm_iio_map_array_register()
292   devm_iio_triggered_buffer_setup()
293   devm_iio_triggered_buffer_setup_ext()
294   devm_iio_trigger_alloc()
295   devm_iio_trigger_register()
296   devm_iio_channel_get()
297   devm_iio_channel_get_all()
298   devm_iio_hw_consumer_alloc()
299   devm_fwnode_iio_channel_get_by_name()
300 
301 INPUT
302   devm_input_allocate_device()
303 
304 IO region
305   devm_release_mem_region()
306   devm_release_region()
307   devm_release_resource()
308   devm_request_mem_region()
309   devm_request_free_mem_region()
310   devm_request_region()
311   devm_request_resource()
312 
313 IOMAP
314   devm_ioport_map()
315   devm_ioport_unmap()
316   devm_ioremap()
317   devm_ioremap_uc()
318   devm_ioremap_wc()
319   devm_ioremap_resource() : checks resource, requests memory region, ioremaps
320   devm_ioremap_resource_wc()
321   devm_platform_ioremap_resource() : calls devm_ioremap_resource() for platform device
322   devm_platform_ioremap_resource_byname()
323   devm_platform_get_and_ioremap_resource()
324   devm_iounmap()
325 
326   Note: For the PCI devices the specific pcim_*() functions may be used, see below.
327 
328 IRQ
329   devm_free_irq()
330   devm_request_any_context_irq()
331   devm_request_irq()
332   devm_request_threaded_irq()
333   devm_irq_alloc_descs()
334   devm_irq_alloc_desc()
335   devm_irq_alloc_desc_at()
336   devm_irq_alloc_desc_from()
337   devm_irq_alloc_descs_from()
338   devm_irq_alloc_generic_chip()
339   devm_irq_setup_generic_chip()
340   devm_irq_domain_create_sim()
341 
342 LED
343   devm_led_classdev_register()
344   devm_led_classdev_register_ext()
345   devm_led_classdev_unregister()
346   devm_led_trigger_register()
347   devm_of_led_get()
348 
349 MDIO
350   devm_mdiobus_alloc()
351   devm_mdiobus_alloc_size()
352   devm_mdiobus_register()
353   devm_of_mdiobus_register()
354 
355 MEM
356   devm_free_pages()
357   devm_get_free_pages()
358   devm_kasprintf()
359   devm_kcalloc()
360   devm_kfree()
361   devm_kmalloc()
362   devm_kmalloc_array()
363   devm_kmemdup()
364   devm_krealloc()
365   devm_krealloc_array()
366   devm_kstrdup()
367   devm_kstrdup_const()
368   devm_kvasprintf()
369   devm_kzalloc()
370 
371 MFD
372   devm_mfd_add_devices()
373 
374 MUX
375   devm_mux_chip_alloc()
376   devm_mux_chip_register()
377   devm_mux_control_get()
378   devm_mux_state_get()
379 
380 NET
381   devm_alloc_etherdev()
382   devm_alloc_etherdev_mqs()
383   devm_register_netdev()
384 
385 PER-CPU MEM
386   devm_alloc_percpu()
387   devm_free_percpu()
388 
389 PCI
390   devm_pci_alloc_host_bridge()  : managed PCI host bridge allocation
391   devm_pci_remap_cfgspace()     : ioremap PCI configuration space
392   devm_pci_remap_cfg_resource() : ioremap PCI configuration space resource
393 
394   pcim_enable_device()          : after success, some PCI ops become managed
395   pcim_iomap()                  : do iomap() on a single BAR
396   pcim_iomap_regions()          : do request_region() and iomap() on multiple BARs
397   pcim_iomap_regions_request_all() : do request_region() on all and iomap() on multiple BARs
398   pcim_iomap_table()            : array of mapped addresses indexed by BAR
399   pcim_iounmap()                : do iounmap() on a single BAR
400   pcim_iounmap_regions()        : do iounmap() and release_region() on multiple BARs
401   pcim_pin_device()             : keep PCI device enabled after release
402   pcim_set_mwi()                : enable Memory-Write-Invalidate PCI transaction
403 
404 PHY
405   devm_usb_get_phy()
406   devm_usb_get_phy_by_node()
407   devm_usb_get_phy_by_phandle()
408   devm_usb_put_phy()
409 
410 PINCTRL
411   devm_pinctrl_get()
412   devm_pinctrl_put()
413   devm_pinctrl_get_select()
414   devm_pinctrl_register()
415   devm_pinctrl_register_and_init()
416   devm_pinctrl_unregister()
417 
418 POWER
419   devm_reboot_mode_register()
420   devm_reboot_mode_unregister()
421 
422 PWM
423   devm_pwmchip_alloc()
424   devm_pwmchip_add()
425   devm_pwm_get()
426   devm_fwnode_pwm_get()
427 
428 REGULATOR
429   devm_regulator_bulk_register_supply_alias()
430   devm_regulator_bulk_get()
431   devm_regulator_bulk_get_const()
432   devm_regulator_bulk_get_enable()
433   devm_regulator_bulk_put()
434   devm_regulator_get()
435   devm_regulator_get_enable()
436   devm_regulator_get_enable_read_voltage()
437   devm_regulator_get_enable_optional()
438   devm_regulator_get_exclusive()
439   devm_regulator_get_optional()
440   devm_regulator_irq_helper()
441   devm_regulator_put()
442   devm_regulator_register()
443   devm_regulator_register_notifier()
444   devm_regulator_register_supply_alias()
445   devm_regulator_unregister_notifier()
446 
447 RESET
448   devm_reset_control_get()
449   devm_reset_controller_register()
450 
451 RTC
452   devm_rtc_device_register()
453   devm_rtc_allocate_device()
454   devm_rtc_register_device()
455   devm_rtc_nvmem_register()
456 
457 SERDEV
458   devm_serdev_device_open()
459 
460 SLAVE DMA ENGINE
461   devm_acpi_dma_controller_register()
462   devm_acpi_dma_controller_free()
463 
464 SPI
465   devm_spi_alloc_master()
466   devm_spi_alloc_slave()
467   devm_spi_optimize_message()
468   devm_spi_register_controller()
469   devm_spi_register_host()
470   devm_spi_register_target()
471 
472 WATCHDOG
473   devm_watchdog_register_device()

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php