1 =============================== 2 LIBNVDIMM: Non-Volatile Devices 3 =============================== 4 5 libnvdimm - kernel / libndctl - userspace helper library 6 7 nvdimm@lists.linux.dev 8 9 Version 13 10 11 .. contents: 12 13 Glossary 14 Overview 15 Supporting Documents 16 Git Trees 17 LIBNVDIMM PMEM 18 PMEM-REGIONs, Atomic Sectors, and DAX 19 Example NVDIMM Platform 20 LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API 21 LIBNDCTL: Context 22 libndctl: instantiate a new library context example 23 LIBNVDIMM/LIBNDCTL: Bus 24 libnvdimm: control class device in /sys/class 25 libnvdimm: bus 26 libndctl: bus enumeration example 27 LIBNVDIMM/LIBNDCTL: DIMM (NMEM) 28 libnvdimm: DIMM (NMEM) 29 libndctl: DIMM enumeration example 30 LIBNVDIMM/LIBNDCTL: Region 31 libnvdimm: region 32 libndctl: region enumeration example 33 Why Not Encode the Region Type into the Region Name? 34 How Do I Determine the Major Type of a Region? 35 LIBNVDIMM/LIBNDCTL: Namespace 36 libnvdimm: namespace 37 libndctl: namespace enumeration example 38 libndctl: namespace creation example 39 Why the Term "namespace"? 40 LIBNVDIMM/LIBNDCTL: Block Translation Table "btt" 41 libnvdimm: btt layout 42 libndctl: btt creation example 43 Summary LIBNDCTL Diagram 44 45 46 Glossary 47 ======== 48 49 PMEM: 50 A system-physical-address range where writes are persistent. A 51 block device composed of PMEM is capable of DAX. A PMEM address range 52 may span an interleave of several DIMMs. 53 54 DPA: 55 DIMM Physical Address, is a DIMM-relative offset. With one DIMM in 56 the system there would be a 1:1 system-physical-address:DPA association. 57 Once more DIMMs are added a memory controller interleave must be 58 decoded to determine the DPA associated with a given 59 system-physical-address. 60 61 DAX: 62 File system extensions to bypass the page cache and block layer to 63 mmap persistent memory, from a PMEM block device, directly into a 64 process address space. 65 66 DSM: 67 Device Specific Method: ACPI method to control specific 68 device - in this case the firmware. 69 70 DCR: 71 NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5. 72 It defines a vendor-id, device-id, and interface format for a given DIMM. 73 74 BTT: 75 Block Translation Table: Persistent memory is byte addressable. 76 Existing software may have an expectation that the power-fail-atomicity 77 of writes is at least one sector, 512 bytes. The BTT is an indirection 78 table with atomic update semantics to front a PMEM block device 79 driver and present arbitrary atomic sector sizes. 80 81 LABEL: 82 Metadata stored on a DIMM device that partitions and identifies 83 (persistently names) capacity allocated to different PMEM namespaces. It 84 also indicates whether an address abstraction like a BTT is applied to 85 the namespace. Note that traditional partition tables, GPT/MBR, are 86 layered on top of a PMEM namespace, or an address abstraction like BTT 87 if present, but partition support is deprecated going forward. 88 89 90 Overview 91 ======== 92 93 The LIBNVDIMM subsystem provides support for PMEM described by platform 94 firmware or a device driver. On ACPI based systems the platform firmware 95 conveys persistent memory resource via the ACPI NFIT "NVDIMM Firmware 96 Interface Table" in ACPI 6. While the LIBNVDIMM subsystem implementation 97 is generic and supports pre-NFIT platforms, it was guided by the 98 superset of capabilities need to support this ACPI 6 definition for 99 NVDIMM resources. The original implementation supported the 100 block-window-aperture capability described in the NFIT, but that support 101 has since been abandoned and never shipped in a product. 102 103 Supporting Documents 104 -------------------- 105 106 ACPI 6: 107 https://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf 108 NVDIMM Namespace: 109 https://pmem.io/documents/NVDIMM_Namespace_Spec.pdf 110 DSM Interface Example: 111 https://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 112 Driver Writer's Guide: 113 https://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf 114 115 Git Trees 116 --------- 117 118 LIBNVDIMM: 119 https://git.kernel.org/cgit/linux/kernel/git/nvdimm/nvdimm.git 120 LIBNDCTL: 121 https://github.com/pmem/ndctl.git 122 123 124 LIBNVDIMM PMEM 125 ============== 126 127 Prior to the arrival of the NFIT, non-volatile memory was described to a 128 system in various ad-hoc ways. Usually only the bare minimum was 129 provided, namely, a single system-physical-address range where writes 130 are expected to be durable after a system power loss. Now, the NFIT 131 specification standardizes not only the description of PMEM, but also 132 platform message-passing entry points for control and configuration. 133 134 PMEM (nd_pmem.ko): Drives a system-physical-address range. This range is 135 contiguous in system memory and may be interleaved (hardware memory controller 136 striped) across multiple DIMMs. When interleaved the platform may optionally 137 provide details of which DIMMs are participating in the interleave. 138 139 It is worth noting that when the labeling capability is detected (a EFI 140 namespace label index block is found), then no block device is created 141 by default as userspace needs to do at least one allocation of DPA to 142 the PMEM range. In contrast ND_NAMESPACE_IO ranges, once registered, 143 can be immediately attached to nd_pmem. This latter mode is called 144 label-less or "legacy". 145 146 PMEM-REGIONs, Atomic Sectors, and DAX 147 ------------------------------------- 148 149 For the cases where an application or filesystem still needs atomic sector 150 update guarantees it can register a BTT on a PMEM device or partition. See 151 LIBNVDIMM/NDCTL: Block Translation Table "btt" 152 153 154 Example NVDIMM Platform 155 ======================= 156 157 For the remainder of this document the following diagram will be 158 referenced for any example sysfs layouts:: 159 160 161 (a) (b) DIMM 162 +-------------------+--------+--------+--------+ 163 +------+ | pm0.0 | free | pm1.0 | free | 0 164 | imc0 +--+- - - region0- - - +--------+ +--------+ 165 +--+---+ | pm0.0 | free | pm1.0 | free | 1 166 | +-------------------+--------v v--------+ 167 +--+---+ | | 168 | cpu0 | region1 169 +--+---+ | | 170 | +----------------------------^ ^--------+ 171 +--+---+ | free | pm1.0 | free | 2 172 | imc1 +--+----------------------------| +--------+ 173 +------+ | free | pm1.0 | free | 3 174 +----------------------------+--------+--------+ 175 176 In this platform we have four DIMMs and two memory controllers in one 177 socket. Each PMEM interleave set is identified by a region device with 178 a dynamically assigned id. 179 180 1. The first portion of DIMM0 and DIMM1 are interleaved as REGION0. A 181 single PMEM namespace is created in the REGION0-SPA-range that spans most 182 of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that 183 interleaved system-physical-address range is left free for 184 another PMEM namespace to be defined. 185 186 2. In the last portion of DIMM0 and DIMM1 we have an interleaved 187 system-physical-address range, REGION1, that spans those two DIMMs as 188 well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace 189 named "pm1.0". 190 191 This bus is provided by the kernel under the device 192 /sys/devices/platform/nfit_test.0 when the nfit_test.ko module from 193 tools/testing/nvdimm is loaded. This module is a unit test for 194 LIBNVDIMM and the acpi_nfit.ko driver. 195 196 197 LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API 198 ======================================================== 199 200 What follows is a description of the LIBNVDIMM sysfs layout and a 201 corresponding object hierarchy diagram as viewed through the LIBNDCTL 202 API. The example sysfs paths and diagrams are relative to the Example 203 NVDIMM Platform which is also the LIBNVDIMM bus used in the LIBNDCTL unit 204 test. 205 206 LIBNDCTL: Context 207 ----------------- 208 209 Every API call in the LIBNDCTL library requires a context that holds the 210 logging parameters and other library instance state. The library is 211 based on the libabc template: 212 213 https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git 214 215 LIBNDCTL: instantiate a new library context example 216 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 217 218 :: 219 220 struct ndctl_ctx *ctx; 221 222 if (ndctl_new(&ctx) == 0) 223 return ctx; 224 else 225 return NULL; 226 227 LIBNVDIMM/LIBNDCTL: Bus 228 ----------------------- 229 230 A bus has a 1:1 relationship with an NFIT. The current expectation for 231 ACPI based systems is that there is only ever one platform-global NFIT. 232 That said, it is trivial to register multiple NFITs, the specification 233 does not preclude it. The infrastructure supports multiple busses and 234 we use this capability to test multiple NFIT configurations in the unit 235 test. 236 237 LIBNVDIMM: control class device in /sys/class 238 --------------------------------------------- 239 240 This character device accepts DSM messages to be passed to DIMM 241 identified by its NFIT handle:: 242 243 /sys/class/nd/ndctl0 244 |-- dev 245 |-- device -> ../../../ndbus0 246 |-- subsystem -> ../../../../../../../class/nd 247 248 249 250 LIBNVDIMM: bus 251 -------------- 252 253 :: 254 255 struct nvdimm_bus *nvdimm_bus_register(struct device *parent, 256 struct nvdimm_bus_descriptor *nfit_desc); 257 258 :: 259 260 /sys/devices/platform/nfit_test.0/ndbus0 261 |-- commands 262 |-- nd 263 |-- nfit 264 |-- nmem0 265 |-- nmem1 266 |-- nmem2 267 |-- nmem3 268 |-- power 269 |-- provider 270 |-- region0 271 |-- region1 272 |-- region2 273 |-- region3 274 |-- region4 275 |-- region5 276 |-- uevent 277 `-- wait_probe 278 279 LIBNDCTL: bus enumeration example 280 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 281 282 Find the bus handle that describes the bus from Example NVDIMM Platform:: 283 284 static struct ndctl_bus *get_bus_by_provider(struct ndctl_ctx *ctx, 285 const char *provider) 286 { 287 struct ndctl_bus *bus; 288 289 ndctl_bus_foreach(ctx, bus) 290 if (strcmp(provider, ndctl_bus_get_provider(bus)) == 0) 291 return bus; 292 293 return NULL; 294 } 295 296 bus = get_bus_by_provider(ctx, "nfit_test.0"); 297 298 299 LIBNVDIMM/LIBNDCTL: DIMM (NMEM) 300 ------------------------------- 301 302 The DIMM device provides a character device for sending commands to 303 hardware, and it is a container for LABELs. If the DIMM is defined by 304 NFIT then an optional 'nfit' attribute sub-directory is available to add 305 NFIT-specifics. 306 307 Note that the kernel device name for "DIMMs" is "nmemX". The NFIT 308 describes these devices via "Memory Device to System Physical Address 309 Range Mapping Structure", and there is no requirement that they actually 310 be physical DIMMs, so we use a more generic name. 311 312 LIBNVDIMM: DIMM (NMEM) 313 ^^^^^^^^^^^^^^^^^^^^^^ 314 315 :: 316 317 struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, 318 const struct attribute_group **groups, unsigned long flags, 319 unsigned long *dsm_mask); 320 321 :: 322 323 /sys/devices/platform/nfit_test.0/ndbus0 324 |-- nmem0 325 | |-- available_slots 326 | |-- commands 327 | |-- dev 328 | |-- devtype 329 | |-- driver -> ../../../../../bus/nd/drivers/nvdimm 330 | |-- modalias 331 | |-- nfit 332 | | |-- device 333 | | |-- format 334 | | |-- handle 335 | | |-- phys_id 336 | | |-- rev_id 337 | | |-- serial 338 | | `-- vendor 339 | |-- state 340 | |-- subsystem -> ../../../../../bus/nd 341 | `-- uevent 342 |-- nmem1 343 [..] 344 345 346 LIBNDCTL: DIMM enumeration example 347 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 348 349 Note, in this example we are assuming NFIT-defined DIMMs which are 350 identified by an "nfit_handle" a 32-bit value where: 351 352 - Bit 3:0 DIMM number within the memory channel 353 - Bit 7:4 memory channel number 354 - Bit 11:8 memory controller ID 355 - Bit 15:12 socket ID (within scope of a Node controller if node 356 controller is present) 357 - Bit 27:16 Node Controller ID 358 - Bit 31:28 Reserved 359 360 :: 361 362 static struct ndctl_dimm *get_dimm_by_handle(struct ndctl_bus *bus, 363 unsigned int handle) 364 { 365 struct ndctl_dimm *dimm; 366 367 ndctl_dimm_foreach(bus, dimm) 368 if (ndctl_dimm_get_handle(dimm) == handle) 369 return dimm; 370 371 return NULL; 372 } 373 374 #define DIMM_HANDLE(n, s, i, c, d) \ 375 (((n & 0xfff) << 16) | ((s & 0xf) << 12) | ((i & 0xf) << 8) \ 376 | ((c & 0xf) << 4) | (d & 0xf)) 377 378 dimm = get_dimm_by_handle(bus, DIMM_HANDLE(0, 0, 0, 0, 0)); 379 380 LIBNVDIMM/LIBNDCTL: Region 381 -------------------------- 382 383 A generic REGION device is registered for each PMEM interleave-set / 384 range. Per the example there are 2 PMEM regions on the "nfit_test.0" 385 bus. The primary role of regions are to be a container of "mappings". A 386 mapping is a tuple of <DIMM, DPA-start-offset, length>. 387 388 LIBNVDIMM provides a built-in driver for REGION devices. This driver 389 is responsible for all parsing LABELs, if present, and then emitting NAMESPACE 390 devices for the nd_pmem driver to consume. 391 392 In addition to the generic attributes of "mapping"s, "interleave_ways" 393 and "size" the REGION device also exports some convenience attributes. 394 "nstype" indicates the integer type of namespace-device this region 395 emits, "devtype" duplicates the DEVTYPE variable stored by udev at the 396 'add' event, "modalias" duplicates the MODALIAS variable stored by udev 397 at the 'add' event, and finally, the optional "spa_index" is provided in 398 the case where the region is defined by a SPA. 399 400 LIBNVDIMM: region:: 401 402 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 403 struct nd_region_desc *ndr_desc); 404 405 :: 406 407 /sys/devices/platform/nfit_test.0/ndbus0 408 |-- region0 409 | |-- available_size 410 | |-- btt0 411 | |-- btt_seed 412 | |-- devtype 413 | |-- driver -> ../../../../../bus/nd/drivers/nd_region 414 | |-- init_namespaces 415 | |-- mapping0 416 | |-- mapping1 417 | |-- mappings 418 | |-- modalias 419 | |-- namespace0.0 420 | |-- namespace_seed 421 | |-- numa_node 422 | |-- nfit 423 | | `-- spa_index 424 | |-- nstype 425 | |-- set_cookie 426 | |-- size 427 | |-- subsystem -> ../../../../../bus/nd 428 | `-- uevent 429 |-- region1 430 [..] 431 432 LIBNDCTL: region enumeration example 433 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 434 435 Sample region retrieval routines based on NFIT-unique data like 436 "spa_index" (interleave set id). 437 438 :: 439 440 static struct ndctl_region *get_pmem_region_by_spa_index(struct ndctl_bus *bus, 441 unsigned int spa_index) 442 { 443 struct ndctl_region *region; 444 445 ndctl_region_foreach(bus, region) { 446 if (ndctl_region_get_type(region) != ND_DEVICE_REGION_PMEM) 447 continue; 448 if (ndctl_region_get_spa_index(region) == spa_index) 449 return region; 450 } 451 return NULL; 452 } 453 454 455 LIBNVDIMM/LIBNDCTL: Namespace 456 ----------------------------- 457 458 A REGION, after resolving DPA aliasing and LABEL specified boundaries, surfaces 459 one or more "namespace" devices. The arrival of a "namespace" device currently 460 triggers the nd_pmem driver to load and register a disk/block device. 461 462 LIBNVDIMM: namespace 463 ^^^^^^^^^^^^^^^^^^^^ 464 465 Here is a sample layout from the 2 major types of NAMESPACE where namespace0.0 466 represents DIMM-info-backed PMEM (note that it has a 'uuid' attribute), and 467 namespace1.0 represents an anonymous PMEM namespace (note that has no 'uuid' 468 attribute due to not support a LABEL) 469 470 :: 471 472 /sys/devices/platform/nfit_test.0/ndbus0/region0/namespace0.0 473 |-- alt_name 474 |-- devtype 475 |-- dpa_extents 476 |-- force_raw 477 |-- modalias 478 |-- numa_node 479 |-- resource 480 |-- size 481 |-- subsystem -> ../../../../../../bus/nd 482 |-- type 483 |-- uevent 484 `-- uuid 485 /sys/devices/platform/nfit_test.1/ndbus1/region1/namespace1.0 486 |-- block 487 | `-- pmem0 488 |-- devtype 489 |-- driver -> ../../../../../../bus/nd/drivers/pmem 490 |-- force_raw 491 |-- modalias 492 |-- numa_node 493 |-- resource 494 |-- size 495 |-- subsystem -> ../../../../../../bus/nd 496 |-- type 497 `-- uevent 498 499 LIBNDCTL: namespace enumeration example 500 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 501 Namespaces are indexed relative to their parent region, example below. 502 These indexes are mostly static from boot to boot, but subsystem makes 503 no guarantees in this regard. For a static namespace identifier use its 504 'uuid' attribute. 505 506 :: 507 508 static struct ndctl_namespace 509 *get_namespace_by_id(struct ndctl_region *region, unsigned int id) 510 { 511 struct ndctl_namespace *ndns; 512 513 ndctl_namespace_foreach(region, ndns) 514 if (ndctl_namespace_get_id(ndns) == id) 515 return ndns; 516 517 return NULL; 518 } 519 520 LIBNDCTL: namespace creation example 521 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 522 523 Idle namespaces are automatically created by the kernel if a given 524 region has enough available capacity to create a new namespace. 525 Namespace instantiation involves finding an idle namespace and 526 configuring it. For the most part the setting of namespace attributes 527 can occur in any order, the only constraint is that 'uuid' must be set 528 before 'size'. This enables the kernel to track DPA allocations 529 internally with a static identifier:: 530 531 static int configure_namespace(struct ndctl_region *region, 532 struct ndctl_namespace *ndns, 533 struct namespace_parameters *parameters) 534 { 535 char devname[50]; 536 537 snprintf(devname, sizeof(devname), "namespace%d.%d", 538 ndctl_region_get_id(region), paramaters->id); 539 540 ndctl_namespace_set_alt_name(ndns, devname); 541 /* 'uuid' must be set prior to setting size! */ 542 ndctl_namespace_set_uuid(ndns, paramaters->uuid); 543 ndctl_namespace_set_size(ndns, paramaters->size); 544 /* unlike pmem namespaces, blk namespaces have a sector size */ 545 if (parameters->lbasize) 546 ndctl_namespace_set_sector_size(ndns, parameters->lbasize); 547 ndctl_namespace_enable(ndns); 548 } 549 550 551 Why the Term "namespace"? 552 ^^^^^^^^^^^^^^^^^^^^^^^^^ 553 554 1. Why not "volume" for instance? "volume" ran the risk of confusing 555 ND (libnvdimm subsystem) to a volume manager like device-mapper. 556 557 2. The term originated to describe the sub-devices that can be created 558 within a NVME controller (see the nvme specification: 559 https://www.nvmexpress.org/specifications/), and NFIT namespaces are 560 meant to parallel the capabilities and configurability of 561 NVME-namespaces. 562 563 564 LIBNVDIMM/LIBNDCTL: Block Translation Table "btt" 565 ------------------------------------------------- 566 567 A BTT (design document: https://pmem.io/2014/09/23/btt.html) is a 568 personality driver for a namespace that fronts entire namespace as an 569 'address abstraction'. 570 571 LIBNVDIMM: btt layout 572 ^^^^^^^^^^^^^^^^^^^^^ 573 574 Every region will start out with at least one BTT device which is the 575 seed device. To activate it set the "namespace", "uuid", and 576 "sector_size" attributes and then bind the device to the nd_pmem or 577 nd_blk driver depending on the region type:: 578 579 /sys/devices/platform/nfit_test.1/ndbus0/region0/btt0/ 580 |-- namespace 581 |-- delete 582 |-- devtype 583 |-- modalias 584 |-- numa_node 585 |-- sector_size 586 |-- subsystem -> ../../../../../bus/nd 587 |-- uevent 588 `-- uuid 589 590 LIBNDCTL: btt creation example 591 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 592 593 Similar to namespaces an idle BTT device is automatically created per 594 region. Each time this "seed" btt device is configured and enabled a new 595 seed is created. Creating a BTT configuration involves two steps of 596 finding and idle BTT and assigning it to consume a namespace. 597 598 :: 599 600 static struct ndctl_btt *get_idle_btt(struct ndctl_region *region) 601 { 602 struct ndctl_btt *btt; 603 604 ndctl_btt_foreach(region, btt) 605 if (!ndctl_btt_is_enabled(btt) 606 && !ndctl_btt_is_configured(btt)) 607 return btt; 608 609 return NULL; 610 } 611 612 static int configure_btt(struct ndctl_region *region, 613 struct btt_parameters *parameters) 614 { 615 btt = get_idle_btt(region); 616 617 ndctl_btt_set_uuid(btt, parameters->uuid); 618 ndctl_btt_set_sector_size(btt, parameters->sector_size); 619 ndctl_btt_set_namespace(btt, parameters->ndns); 620 /* turn off raw mode device */ 621 ndctl_namespace_disable(parameters->ndns); 622 /* turn on btt access */ 623 ndctl_btt_enable(btt); 624 } 625 626 Once instantiated a new inactive btt seed device will appear underneath 627 the region. 628 629 Once a "namespace" is removed from a BTT that instance of the BTT device 630 will be deleted or otherwise reset to default values. This deletion is 631 only at the device model level. In order to destroy a BTT the "info 632 block" needs to be destroyed. Note, that to destroy a BTT the media 633 needs to be written in raw mode. By default, the kernel will autodetect 634 the presence of a BTT and disable raw mode. This autodetect behavior 635 can be suppressed by enabling raw mode for the namespace via the 636 ndctl_namespace_set_raw_mode() API. 637 638 639 Summary LIBNDCTL Diagram 640 ------------------------ 641 642 For the given example above, here is the view of the objects as seen by the 643 LIBNDCTL API:: 644 645 +---+ 646 |CTX| 647 +-+-+ 648 | 649 +-------+ | 650 | DIMM0 <-+ | +---------+ +--------------+ +---------------+ 651 +-------+ | | +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" | 652 | DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+ 653 +-------+ +-+BUS0+-| +---------+ +--------------+ +----------------------+ 654 | DIMM2 <-+ +----+ +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" | BTT1 | 655 +-------+ | | +---------+ +--------------+ +---------------+------+ 656 | DIMM3 <-+ 657 +-------+
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.