~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/gpu/komeda-kms.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 .. SPDX-License-Identifier: GPL-2.0
  2 
  3 ==============================
  4  drm/komeda Arm display driver
  5 ==============================
  6 
  7 The drm/komeda driver supports the Arm display processor D71 and later products,
  8 this document gives a brief overview of driver design: how it works and why
  9 design it like that.
 10 
 11 Overview of D71 like display IPs
 12 ================================
 13 
 14 From D71, Arm display IP begins to adopt a flexible and modularized
 15 architecture. A display pipeline is made up of multiple individual and
 16 functional pipeline stages called components, and every component has some
 17 specific capabilities that can give the flowed pipeline pixel data a
 18 particular processing.
 19 
 20 Typical D71 components:
 21 
 22 Layer
 23 -----
 24 Layer is the first pipeline stage, which prepares the pixel data for the next
 25 stage. It fetches the pixel from memory, decodes it if it's AFBC, rotates the
 26 source image, unpacks or converts YUV pixels to the device internal RGB pixels,
 27 then adjusts the color_space of pixels if needed.
 28 
 29 Scaler
 30 ------
 31 As its name suggests, scaler takes responsibility for scaling, and D71 also
 32 supports image enhancements by scaler.
 33 The usage of scaler is very flexible and can be connected to layer output
 34 for layer scaling, or connected to compositor and scale the whole display
 35 frame and then feed the output data into wb_layer which will then write it
 36 into memory.
 37 
 38 Compositor (compiz)
 39 -------------------
 40 Compositor blends multiple layers or pixel data flows into one single display
 41 frame. its output frame can be fed into post image processor for showing it on
 42 the monitor or fed into wb_layer and written to memory at the same time.
 43 user can also insert a scaler between compositor and wb_layer to down scale
 44 the display frame first and then write to memory.
 45 
 46 Writeback Layer (wb_layer)
 47 --------------------------
 48 Writeback layer does the opposite things of Layer, which connects to compiz
 49 and writes the composition result to memory.
 50 
 51 Post image processor (improc)
 52 -----------------------------
 53 Post image processor adjusts frame data like gamma and color space to fit the
 54 requirements of the monitor.
 55 
 56 Timing controller (timing_ctrlr)
 57 --------------------------------
 58 Final stage of display pipeline, Timing controller is not for the pixel
 59 handling, but only for controlling the display timing.
 60 
 61 Merger
 62 ------
 63 D71 scaler mostly only has the half horizontal input/output capabilities
 64 compared with Layer, like if Layer supports 4K input size, the scaler only can
 65 support 2K input/output in the same time. To achieve the ful frame scaling, D71
 66 introduces Layer Split, which splits the whole image to two half parts and feeds
 67 them to two Layers A and B, and does the scaling independently. After scaling
 68 the result need to be fed to merger to merge two part images together, and then
 69 output merged result to compiz.
 70 
 71 Splitter
 72 --------
 73 Similar to Layer Split, but Splitter is used for writeback, which splits the
 74 compiz result to two parts and then feed them to two scalers.
 75 
 76 Possible D71 Pipeline usage
 77 ===========================
 78 
 79 Benefitting from the modularized architecture, D71 pipelines can be easily
 80 adjusted to fit different usages. And D71 has two pipelines, which support two
 81 types of working mode:
 82 
 83 -   Dual display mode
 84     Two pipelines work independently and separately to drive two display outputs.
 85 
 86 -   Single display mode
 87     Two pipelines work together to drive only one display output.
 88 
 89     On this mode, pipeline_B doesn't work independently, but outputs its
 90     composition result into pipeline_A, and its pixel timing also derived from
 91     pipeline_A.timing_ctrlr. The pipeline_B works just like a "slave" of
 92     pipeline_A(master)
 93 
 94 Single pipeline data flow
 95 -------------------------
 96 
 97 .. kernel-render:: DOT
 98    :alt: Single pipeline digraph
 99    :caption: Single pipeline data flow
100 
101    digraph single_ppl {
102       rankdir=LR;
103 
104       subgraph {
105          "Memory";
106          "Monitor";
107       }
108 
109       subgraph cluster_pipeline {
110           style=dashed
111           node [shape=box]
112           {
113               node [bgcolor=grey style=dashed]
114               "Scaler-0";
115               "Scaler-1";
116               "Scaler-0/1"
117           }
118 
119          node [bgcolor=grey style=filled]
120          "Layer-0" -> "Scaler-0"
121          "Layer-1" -> "Scaler-0"
122          "Layer-2" -> "Scaler-1"
123          "Layer-3" -> "Scaler-1"
124 
125          "Layer-0" -> "Compiz"
126          "Layer-1" -> "Compiz"
127          "Layer-2" -> "Compiz"
128          "Layer-3" -> "Compiz"
129          "Scaler-0" -> "Compiz"
130          "Scaler-1" -> "Compiz"
131 
132          "Compiz" -> "Scaler-0/1" -> "Wb_layer"
133          "Compiz" -> "Improc" -> "Timing Controller"
134       }
135 
136       "Wb_layer" -> "Memory"
137       "Timing Controller" -> "Monitor"
138    }
139 
140 Dual pipeline with Slave enabled
141 --------------------------------
142 
143 .. kernel-render:: DOT
144    :alt: Slave pipeline digraph
145    :caption: Slave pipeline enabled data flow
146 
147    digraph slave_ppl {
148       rankdir=LR;
149 
150       subgraph {
151          "Memory";
152          "Monitor";
153       }
154       node [shape=box]
155       subgraph cluster_pipeline_slave {
156           style=dashed
157           label="Slave Pipeline_B"
158           node [shape=box]
159           {
160               node [bgcolor=grey style=dashed]
161               "Slave.Scaler-0";
162               "Slave.Scaler-1";
163           }
164 
165          node [bgcolor=grey style=filled]
166          "Slave.Layer-0" -> "Slave.Scaler-0"
167          "Slave.Layer-1" -> "Slave.Scaler-0"
168          "Slave.Layer-2" -> "Slave.Scaler-1"
169          "Slave.Layer-3" -> "Slave.Scaler-1"
170 
171          "Slave.Layer-0" -> "Slave.Compiz"
172          "Slave.Layer-1" -> "Slave.Compiz"
173          "Slave.Layer-2" -> "Slave.Compiz"
174          "Slave.Layer-3" -> "Slave.Compiz"
175          "Slave.Scaler-0" -> "Slave.Compiz"
176          "Slave.Scaler-1" -> "Slave.Compiz"
177       }
178 
179       subgraph cluster_pipeline_master {
180           style=dashed
181           label="Master Pipeline_A"
182           node [shape=box]
183           {
184               node [bgcolor=grey style=dashed]
185               "Scaler-0";
186               "Scaler-1";
187               "Scaler-0/1"
188           }
189 
190          node [bgcolor=grey style=filled]
191          "Layer-0" -> "Scaler-0"
192          "Layer-1" -> "Scaler-0"
193          "Layer-2" -> "Scaler-1"
194          "Layer-3" -> "Scaler-1"
195 
196          "Slave.Compiz" -> "Compiz"
197          "Layer-0" -> "Compiz"
198          "Layer-1" -> "Compiz"
199          "Layer-2" -> "Compiz"
200          "Layer-3" -> "Compiz"
201          "Scaler-0" -> "Compiz"
202          "Scaler-1" -> "Compiz"
203 
204          "Compiz" -> "Scaler-0/1" -> "Wb_layer"
205          "Compiz" -> "Improc" -> "Timing Controller"
206       }
207 
208       "Wb_layer" -> "Memory"
209       "Timing Controller" -> "Monitor"
210    }
211 
212 Sub-pipelines for input and output
213 ----------------------------------
214 
215 A complete display pipeline can be easily divided into three sub-pipelines
216 according to the in/out usage.
217 
218 Layer(input) pipeline
219 ~~~~~~~~~~~~~~~~~~~~~
220 
221 .. kernel-render:: DOT
222    :alt: Layer data digraph
223    :caption: Layer (input) data flow
224 
225    digraph layer_data_flow {
226       rankdir=LR;
227       node [shape=box]
228 
229       {
230          node [bgcolor=grey style=dashed]
231            "Scaler-n";
232       }
233 
234       "Layer-n" -> "Scaler-n" -> "Compiz"
235    }
236 
237 .. kernel-render:: DOT
238    :alt: Layer Split digraph
239    :caption: Layer Split pipeline
240 
241    digraph layer_data_flow {
242       rankdir=LR;
243       node [shape=box]
244 
245       "Layer-0/1" -> "Scaler-0" -> "Merger"
246       "Layer-2/3" -> "Scaler-1" -> "Merger"
247       "Merger" -> "Compiz"
248    }
249 
250 Writeback(output) pipeline
251 ~~~~~~~~~~~~~~~~~~~~~~~~~~
252 .. kernel-render:: DOT
253    :alt: writeback digraph
254    :caption: Writeback(output) data flow
255 
256    digraph writeback_data_flow {
257       rankdir=LR;
258       node [shape=box]
259 
260       {
261          node [bgcolor=grey style=dashed]
262            "Scaler-n";
263       }
264 
265       "Compiz" -> "Scaler-n" -> "Wb_layer"
266    }
267 
268 .. kernel-render:: DOT
269    :alt: split writeback digraph
270    :caption: Writeback(output) Split data flow
271 
272    digraph writeback_data_flow {
273       rankdir=LR;
274       node [shape=box]
275 
276       "Compiz" -> "Splitter"
277       "Splitter" -> "Scaler-0" -> "Merger"
278       "Splitter" -> "Scaler-1" -> "Merger"
279       "Merger" -> "Wb_layer"
280    }
281 
282 Display output pipeline
283 ~~~~~~~~~~~~~~~~~~~~~~~
284 .. kernel-render:: DOT
285    :alt: display digraph
286    :caption: display output data flow
287 
288    digraph single_ppl {
289       rankdir=LR;
290       node [shape=box]
291 
292       "Compiz" -> "Improc" -> "Timing Controller"
293    }
294 
295 In the following section we'll see these three sub-pipelines will be handled
296 by KMS-plane/wb_conn/crtc respectively.
297 
298 Komeda Resource abstraction
299 ===========================
300 
301 struct komeda_pipeline/component
302 --------------------------------
303 
304 To fully utilize and easily access/configure the HW, the driver side also uses
305 a similar architecture: Pipeline/Component to describe the HW features and
306 capabilities, and a specific component includes two parts:
307 
308 -  Data flow controlling.
309 -  Specific component capabilities and features.
310 
311 So the driver defines a common header struct komeda_component to describe the
312 data flow control and all specific components are a subclass of this base
313 structure.
314 
315 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_pipeline.h
316    :internal:
317 
318 Resource discovery and initialization
319 =====================================
320 
321 Pipeline and component are used to describe how to handle the pixel data. We
322 still need a @struct komeda_dev to describe the whole view of the device, and
323 the control-abilites of device.
324 
325 We have &komeda_dev, &komeda_pipeline, &komeda_component. Now fill devices with
326 pipelines. Since komeda is not for D71 only but also intended for later products,
327 of course we’d better share as much as possible between different products. To
328 achieve this, split the komeda device into two layers: CORE and CHIP.
329 
330 -   CORE: for common features and capabilities handling.
331 -   CHIP: for register programming and HW specific feature (limitation) handling.
332 
333 CORE can access CHIP by three chip function structures:
334 
335 -   struct komeda_dev_funcs
336 -   struct komeda_pipeline_funcs
337 -   struct komeda_component_funcs
338 
339 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_dev.h
340    :internal:
341 
342 Format handling
343 ===============
344 
345 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_format_caps.h
346    :internal:
347 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_framebuffer.h
348    :internal:
349 
350 Attach komeda_dev to DRM-KMS
351 ============================
352 
353 Komeda abstracts resources by pipeline/component, but DRM-KMS uses
354 crtc/plane/connector. One KMS-obj cannot represent only one single component,
355 since the requirements of a single KMS object cannot simply be achieved by a
356 single component, usually that needs multiple components to fit the requirement.
357 Like set mode, gamma, ctm for KMS all target on CRTC-obj, but komeda needs
358 compiz, improc and timing_ctrlr to work together to fit these requirements.
359 And a KMS-Plane may require multiple komeda resources: layer/scaler/compiz.
360 
361 So, one KMS-Obj represents a sub-pipeline of komeda resources.
362 
363 -   Plane: `Layer(input) pipeline`_
364 -   Wb_connector: `Writeback(output) pipeline`_
365 -   Crtc: `Display output pipeline`_
366 
367 So, for komeda, we treat KMS crtc/plane/connector as users of pipeline and
368 component, and at any one time a pipeline/component only can be used by one
369 user. And pipeline/component will be treated as private object of DRM-KMS; the
370 state will be managed by drm_atomic_state as well.
371 
372 How to map plane to Layer(input) pipeline
373 -----------------------------------------
374 
375 Komeda has multiple Layer input pipelines, see:
376 -   `Single pipeline data flow`_
377 -   `Dual pipeline with Slave enabled`_
378 
379 The easiest way is binding a plane to a fixed Layer pipeline, but consider the
380 komeda capabilities:
381 
382 -   Layer Split, See `Layer(input) pipeline`_
383 
384     Layer_Split is quite complicated feature, which splits a big image into two
385     parts and handles it by two layers and two scalers individually. But it
386     imports an edge problem or effect in the middle of the image after the split.
387     To avoid such a problem, it needs a complicated Split calculation and some
388     special configurations to the layer and scaler. We'd better hide such HW
389     related complexity to user mode.
390 
391 -   Slave pipeline, See `Dual pipeline with Slave enabled`_
392 
393     Since the compiz component doesn't output alpha value, the slave pipeline
394     only can be used for bottom layers composition. The komeda driver wants to
395     hide this limitation to the user. The way to do this is to pick a suitable
396     Layer according to plane_state->zpos.
397 
398 So for komeda, the KMS-plane doesn't represent a fixed komeda layer pipeline,
399 but multiple Layers with same capabilities. Komeda will select one or more
400 Layers to fit the requirement of one KMS-plane.
401 
402 Make component/pipeline to be drm_private_obj
403 ---------------------------------------------
404 
405 Add :c:type:`drm_private_obj` to :c:type:`komeda_component`, :c:type:`komeda_pipeline`
406 
407 .. code-block:: c
408 
409     struct komeda_component {
410         struct drm_private_obj obj;
411         ...
412     }
413 
414     struct komeda_pipeline {
415         struct drm_private_obj obj;
416         ...
417     }
418 
419 Tracking component_state/pipeline_state by drm_atomic_state
420 -----------------------------------------------------------
421 
422 Add :c:type:`drm_private_state` and user to :c:type:`komeda_component_state`,
423 :c:type:`komeda_pipeline_state`
424 
425 .. code-block:: c
426 
427     struct komeda_component_state {
428         struct drm_private_state obj;
429         void *binding_user;
430         ...
431     }
432 
433     struct komeda_pipeline_state {
434         struct drm_private_state obj;
435         struct drm_crtc *crtc;
436         ...
437     }
438 
439 komeda component validation
440 ---------------------------
441 
442 Komeda has multiple types of components, but the process of validation are
443 similar, usually including the following steps:
444 
445 .. code-block:: c
446 
447     int komeda_xxxx_validate(struct komeda_component_xxx xxx_comp,
448                 struct komeda_component_output *input_dflow,
449                 struct drm_plane/crtc/connector *user,
450                 struct drm_plane/crtc/connector_state, *user_state)
451     {
452          setup 1: check if component is needed, like the scaler is optional depending
453                   on the user_state; if unneeded, just return, and the caller will
454                   put the data flow into next stage.
455          Setup 2: check user_state with component features and capabilities to see
456                   if requirements can be met; if not, return fail.
457          Setup 3: get component_state from drm_atomic_state, and try set to set
458                   user to component; fail if component has been assigned to another
459                   user already.
460          Setup 3: configure the component_state, like set its input component,
461                   convert user_state to component specific state.
462          Setup 4: adjust the input_dflow and prepare it for the next stage.
463     }
464 
465 komeda_kms Abstraction
466 ----------------------
467 
468 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_kms.h
469    :internal:
470 
471 komde_kms Functions
472 -------------------
473 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_crtc.c
474    :internal:
475 .. kernel-doc:: drivers/gpu/drm/arm/display/komeda/komeda_plane.c
476    :internal:
477 
478 Build komeda to be a Linux module driver
479 ========================================
480 
481 Now we have two level devices:
482 
483 -   komeda_dev: describes the real display hardware.
484 -   komeda_kms_dev: attaches or connects komeda_dev to DRM-KMS.
485 
486 All komeda operations are supplied or operated by komeda_dev or komeda_kms_dev,
487 the module driver is only a simple wrapper to pass the Linux command
488 (probe/remove/pm) into komeda_dev or komeda_kms_dev.

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php