1 ================ 2 Shadow Variables 3 ================ 4 5 Shadow variables are a simple way for livepatch modules to associate 6 additional "shadow" data with existing data structures. Shadow data is 7 allocated separately from parent data structures, which are left 8 unmodified. The shadow variable API described in this document is used 9 to allocate/add and remove/free shadow variables to/from their parents. 10 11 The implementation introduces a global, in-kernel hashtable that 12 associates pointers to parent objects and a numeric identifier of the 13 shadow data. The numeric identifier is a simple enumeration that may be 14 used to describe shadow variable version, class or type, etc. More 15 specifically, the parent pointer serves as the hashtable key while the 16 numeric id subsequently filters hashtable queries. Multiple shadow 17 variables may attach to the same parent object, but their numeric 18 identifier distinguishes between them. 19 20 21 1. Brief API summary 22 ==================== 23 24 (See the full API usage docbook notes in livepatch/shadow.c.) 25 26 A hashtable references all shadow variables. These references are 27 stored and retrieved through a <obj, id> pair. 28 29 * The klp_shadow variable data structure encapsulates both tracking 30 meta-data and shadow-data: 31 32 - meta-data 33 34 - obj - pointer to parent object 35 - id - data identifier 36 37 - data[] - storage for shadow data 38 39 It is important to note that the klp_shadow_alloc() and 40 klp_shadow_get_or_alloc() are zeroing the variable by default. 41 They also allow to call a custom constructor function when a non-zero 42 value is needed. Callers should provide whatever mutual exclusion 43 is required. 44 45 Note that the constructor is called under klp_shadow_lock spinlock. It allows 46 to do actions that can be done only once when a new variable is allocated. 47 48 * klp_shadow_get() - retrieve a shadow variable data pointer 49 - search hashtable for <obj, id> pair 50 51 * klp_shadow_alloc() - allocate and add a new shadow variable 52 - search hashtable for <obj, id> pair 53 54 - if exists 55 56 - WARN and return NULL 57 58 - if <obj, id> doesn't already exist 59 60 - allocate a new shadow variable 61 - initialize the variable using a custom constructor and data when provided 62 - add <obj, id> to the global hashtable 63 64 * klp_shadow_get_or_alloc() - get existing or alloc a new shadow variable 65 - search hashtable for <obj, id> pair 66 67 - if exists 68 69 - return existing shadow variable 70 71 - if <obj, id> doesn't already exist 72 73 - allocate a new shadow variable 74 - initialize the variable using a custom constructor and data when provided 75 - add <obj, id> pair to the global hashtable 76 77 * klp_shadow_free() - detach and free a <obj, id> shadow variable 78 - find and remove a <obj, id> reference from global hashtable 79 80 - if found 81 82 - call destructor function if defined 83 - free shadow variable 84 85 * klp_shadow_free_all() - detach and free all <_, id> shadow variables 86 - find and remove any <_, id> references from global hashtable 87 88 - if found 89 90 - call destructor function if defined 91 - free shadow variable 92 93 94 2. Use cases 95 ============ 96 97 (See the example shadow variable livepatch modules in samples/livepatch/ 98 for full working demonstrations.) 99 100 For the following use-case examples, consider commit 1d147bfa6429 101 ("mac80211: fix AP powersave TX vs. wakeup race"), which added a 102 spinlock to net/mac80211/sta_info.h :: struct sta_info. Each use-case 103 example can be considered a stand-alone livepatch implementation of this 104 fix. 105 106 107 Matching parent's lifecycle 108 --------------------------- 109 110 If parent data structures are frequently created and destroyed, it may 111 be easiest to align their shadow variables lifetimes to the same 112 allocation and release functions. In this case, the parent data 113 structure is typically allocated, initialized, then registered in some 114 manner. Shadow variable allocation and setup can then be considered 115 part of the parent's initialization and should be completed before the 116 parent "goes live" (ie, any shadow variable get-API requests are made 117 for this <obj, id> pair.) 118 119 For commit 1d147bfa6429, when a parent sta_info structure is allocated, 120 allocate a shadow copy of the ps_lock pointer, then initialize it:: 121 122 #define PS_LOCK 1 123 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 124 const u8 *addr, gfp_t gfp) 125 { 126 struct sta_info *sta; 127 spinlock_t *ps_lock; 128 129 /* Parent structure is created */ 130 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 131 132 /* Attach a corresponding shadow variable, then initialize it */ 133 ps_lock = klp_shadow_alloc(sta, PS_LOCK, sizeof(*ps_lock), gfp, 134 NULL, NULL); 135 if (!ps_lock) 136 goto shadow_fail; 137 spin_lock_init(ps_lock); 138 ... 139 140 When requiring a ps_lock, query the shadow variable API to retrieve one 141 for a specific struct sta_info::: 142 143 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 144 { 145 spinlock_t *ps_lock; 146 147 /* sync with ieee80211_tx_h_unicast_ps_buf */ 148 ps_lock = klp_shadow_get(sta, PS_LOCK); 149 if (ps_lock) 150 spin_lock(ps_lock); 151 ... 152 153 When the parent sta_info structure is freed, first free the shadow 154 variable:: 155 156 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 157 { 158 klp_shadow_free(sta, PS_LOCK, NULL); 159 kfree(sta); 160 ... 161 162 163 In-flight parent objects 164 ------------------------ 165 166 Sometimes it may not be convenient or possible to allocate shadow 167 variables alongside their parent objects. Or a livepatch fix may 168 require shadow variables for only a subset of parent object instances. 169 In these cases, the klp_shadow_get_or_alloc() call can be used to attach 170 shadow variables to parents already in-flight. 171 172 For commit 1d147bfa6429, a good spot to allocate a shadow spinlock is 173 inside ieee80211_sta_ps_deliver_wakeup():: 174 175 int ps_lock_shadow_ctor(void *obj, void *shadow_data, void *ctor_data) 176 { 177 spinlock_t *lock = shadow_data; 178 179 spin_lock_init(lock); 180 return 0; 181 } 182 183 #define PS_LOCK 1 184 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 185 { 186 spinlock_t *ps_lock; 187 188 /* sync with ieee80211_tx_h_unicast_ps_buf */ 189 ps_lock = klp_shadow_get_or_alloc(sta, PS_LOCK, 190 sizeof(*ps_lock), GFP_ATOMIC, 191 ps_lock_shadow_ctor, NULL); 192 193 if (ps_lock) 194 spin_lock(ps_lock); 195 ... 196 197 This usage will create a shadow variable, only if needed, otherwise it 198 will use one that was already created for this <obj, id> pair. 199 200 Like the previous use-case, the shadow spinlock needs to be cleaned up. 201 A shadow variable can be freed just before its parent object is freed, 202 or even when the shadow variable itself is no longer required. 203 204 205 Other use-cases 206 --------------- 207 208 Shadow variables can also be used as a flag indicating that a data 209 structure was allocated by new, livepatched code. In this case, it 210 doesn't matter what data value the shadow variable holds, its existence 211 suggests how to handle the parent object. 212 213 214 3. References 215 ============= 216 217 * https://github.com/dynup/kpatch 218 219 The livepatch implementation is based on the kpatch version of shadow 220 variables. 221 222 * http://files.mkgnu.net/files/dynamos/doc/papers/dynamos_eurosys_07.pdf 223 224 Dynamic and Adaptive Updates of Non-Quiescent Subsystems in Commodity 225 Operating System Kernels (Kritis Makris, Kyung Dong Ryu 2007) presented 226 a datatype update technique called "shadow data structures".
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.