~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/networking/packet_mmap.rst

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 .. SPDX-License-Identifier: GPL-2.0
  2 
  3 ===========
  4 Packet MMAP
  5 ===========
  6 
  7 Abstract
  8 ========
  9 
 10 This file documents the mmap() facility available with the PACKET
 11 socket interface. This type of sockets is used for
 12 
 13 i) capture network traffic with utilities like tcpdump,
 14 ii) transmit network traffic, or any other that needs raw
 15     access to network interface.
 16 
 17 Howto can be found at:
 18 
 19     https://sites.google.com/site/packetmmap/
 20 
 21 Please send your comments to
 22     - Ulisses Alonso CamarĂ³ <uaca@i.hate.spam.alumni.uv.es>
 23     - Johann Baudy
 24 
 25 Why use PACKET_MMAP
 26 ===================
 27 
 28 Non PACKET_MMAP capture process (plain AF_PACKET) is very
 29 inefficient. It uses very limited buffers and requires one system call to
 30 capture each packet, it requires two if you want to get packet's timestamp
 31 (like libpcap always does).
 32 
 33 On the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
 34 configurable circular buffer mapped in user space that can be used to either
 35 send or receive packets. This way reading packets just needs to wait for them,
 36 most of the time there is no need to issue a single system call. Concerning
 37 transmission, multiple packets can be sent through one system call to get the
 38 highest bandwidth. By using a shared buffer between the kernel and the user
 39 also has the benefit of minimizing packet copies.
 40 
 41 It's fine to use PACKET_MMAP to improve the performance of the capture and
 42 transmission process, but it isn't everything. At least, if you are capturing
 43 at high speeds (this is relative to the cpu speed), you should check if the
 44 device driver of your network interface card supports some sort of interrupt
 45 load mitigation or (even better) if it supports NAPI, also make sure it is
 46 enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
 47 supported by devices of your network. CPU IRQ pinning of your network interface
 48 card can also be an advantage.
 49 
 50 How to use mmap() to improve capture process
 51 ============================================
 52 
 53 From the user standpoint, you should use the higher level libpcap library, which
 54 is a de facto standard, portable across nearly all operating systems
 55 including Win32.
 56 
 57 Packet MMAP support was integrated into libpcap around the time of version 1.3.0;
 58 TPACKET_V3 support was added in version 1.5.0
 59 
 60 How to use mmap() directly to improve capture process
 61 =====================================================
 62 
 63 From the system calls stand point, the use of PACKET_MMAP involves
 64 the following process::
 65 
 66 
 67     [setup]     socket() -------> creation of the capture socket
 68                 setsockopt() ---> allocation of the circular buffer (ring)
 69                                   option: PACKET_RX_RING
 70                 mmap() ---------> mapping of the allocated buffer to the
 71                                   user process
 72 
 73     [capture]   poll() ---------> to wait for incoming packets
 74 
 75     [shutdown]  close() --------> destruction of the capture socket and
 76                                   deallocation of all associated
 77                                   resources.
 78 
 79 
 80 socket creation and destruction is straight forward, and is done
 81 the same way with or without PACKET_MMAP::
 82 
 83  int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
 84 
 85 where mode is SOCK_RAW for the raw interface were link level
 86 information can be captured or SOCK_DGRAM for the cooked
 87 interface where link level information capture is not
 88 supported and a link level pseudo-header is provided
 89 by the kernel.
 90 
 91 The destruction of the socket and all associated resources
 92 is done by a simple call to close(fd).
 93 
 94 Similarly as without PACKET_MMAP, it is possible to use one socket
 95 for capture and transmission. This can be done by mapping the
 96 allocated RX and TX buffer ring with a single mmap() call.
 97 See "Mapping and use of the circular buffer (ring)".
 98 
 99 Next I will describe PACKET_MMAP settings and its constraints,
100 also the mapping of the circular buffer in the user process and
101 the use of this buffer.
102 
103 How to use mmap() directly to improve transmission process
104 ==========================================================
105 Transmission process is similar to capture as shown below::
106 
107     [setup]         socket() -------> creation of the transmission socket
108                     setsockopt() ---> allocation of the circular buffer (ring)
109                                       option: PACKET_TX_RING
110                     bind() ---------> bind transmission socket with a network interface
111                     mmap() ---------> mapping of the allocated buffer to the
112                                       user process
113 
114     [transmission]  poll() ---------> wait for free packets (optional)
115                     send() ---------> send all packets that are set as ready in
116                                       the ring
117                                       The flag MSG_DONTWAIT can be used to return
118                                       before end of transfer.
119 
120     [shutdown]      close() --------> destruction of the transmission socket and
121                                       deallocation of all associated resources.
122 
123 Socket creation and destruction is also straight forward, and is done
124 the same way as in capturing described in the previous paragraph::
125 
126  int fd = socket(PF_PACKET, mode, 0);
127 
128 The protocol can optionally be 0 in case we only want to transmit
129 via this socket, which avoids an expensive call to packet_rcv().
130 In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
131 set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.
132 
133 Binding the socket to your network interface is mandatory (with zero copy) to
134 know the header size of frames used in the circular buffer.
135 
136 As capture, each frame contains two parts::
137 
138     --------------------
139     | struct tpacket_hdr | Header. It contains the status of
140     |                    | of this frame
141     |--------------------|
142     | data buffer        |
143     .                    .  Data that will be sent over the network interface.
144     .                    .
145     --------------------
146 
147  bind() associates the socket to your network interface thanks to
148  sll_ifindex parameter of struct sockaddr_ll.
149 
150  Initialization example::
151 
152     struct sockaddr_ll my_addr;
153     struct ifreq s_ifr;
154     ...
155 
156     strscpy_pad (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
157 
158     /* get interface index of eth0 */
159     ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
160 
161     /* fill sockaddr_ll struct to prepare binding */
162     my_addr.sll_family = AF_PACKET;
163     my_addr.sll_protocol = htons(ETH_P_ALL);
164     my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
165 
166     /* bind socket to eth0 */
167     bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
168 
169  A complete tutorial is available at: https://sites.google.com/site/packetmmap/
170 
171 By default, the user should put data at::
172 
173  frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
174 
175 So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
176 the beginning of the user data will be at::
177 
178  frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
179 
180 If you wish to put user data at a custom offset from the beginning of
181 the frame (for payload alignment with SOCK_RAW mode for instance) you
182 can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
183 to make this work it must be enabled previously with setsockopt()
184 and the PACKET_TX_HAS_OFF option.
185 
186 PACKET_MMAP settings
187 ====================
188 
189 To setup PACKET_MMAP from user level code is done with a call like
190 
191  - Capture process::
192 
193      setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
194 
195  - Transmission process::
196 
197      setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
198 
199 The most significant argument in the previous call is the req parameter,
200 this parameter must to have the following structure::
201 
202     struct tpacket_req
203     {
204         unsigned int    tp_block_size;  /* Minimal size of contiguous block */
205         unsigned int    tp_block_nr;    /* Number of blocks */
206         unsigned int    tp_frame_size;  /* Size of frame */
207         unsigned int    tp_frame_nr;    /* Total number of frames */
208     };
209 
210 This structure is defined in /usr/include/linux/if_packet.h and establishes a
211 circular buffer (ring) of unswappable memory.
212 Being mapped in the capture process allows reading the captured frames and
213 related meta-information like timestamps without requiring a system call.
214 
215 Frames are grouped in blocks. Each block is a physically contiguous
216 region of memory and holds tp_block_size/tp_frame_size frames. The total number
217 of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because::
218 
219     frames_per_block = tp_block_size/tp_frame_size
220 
221 indeed, packet_set_ring checks that the following condition is true::
222 
223     frames_per_block * tp_block_nr == tp_frame_nr
224 
225 Lets see an example, with the following values::
226 
227      tp_block_size= 4096
228      tp_frame_size= 2048
229      tp_block_nr  = 4
230      tp_frame_nr  = 8
231 
232 we will get the following buffer structure::
233 
234             block #1                 block #2
235     +---------+---------+    +---------+---------+
236     | frame 1 | frame 2 |    | frame 3 | frame 4 |
237     +---------+---------+    +---------+---------+
238 
239             block #3                 block #4
240     +---------+---------+    +---------+---------+
241     | frame 5 | frame 6 |    | frame 7 | frame 8 |
242     +---------+---------+    +---------+---------+
243 
244 A frame can be of any size with the only condition it can fit in a block. A block
245 can only hold an integer number of frames, or in other words, a frame cannot
246 be spawned across two blocks, so there are some details you have to take into
247 account when choosing the frame_size. See "Mapping and use of the circular
248 buffer (ring)".
249 
250 PACKET_MMAP setting constraints
251 ===============================
252 
253 In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
254 the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
255 16384 in a 64 bit architecture.
256 
257 Block size limit
258 ----------------
259 
260 As stated earlier, each block is a contiguous physical region of memory. These
261 memory regions are allocated with calls to the __get_free_pages() function. As
262 the name indicates, this function allocates pages of memory, and the second
263 argument is "order" or a power of two number of pages, that is
264 (for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes,
265 order=2 ==> 16384 bytes, etc. The maximum size of a
266 region allocated by __get_free_pages is determined by the MAX_PAGE_ORDER macro.
267 More precisely the limit can be calculated as::
268 
269    PAGE_SIZE << MAX_PAGE_ORDER
270 
271    In a i386 architecture PAGE_SIZE is 4096 bytes
272    In a 2.4/i386 kernel MAX_PAGE_ORDER is 10
273    In a 2.6/i386 kernel MAX_PAGE_ORDER is 11
274 
275 So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel
276 respectively, with an i386 architecture.
277 
278 User space programs can include /usr/include/sys/user.h and
279 /usr/include/linux/mmzone.h to get PAGE_SIZE MAX_PAGE_ORDER declarations.
280 
281 The pagesize can also be determined dynamically with the getpagesize (2)
282 system call.
283 
284 Block number limit
285 ------------------
286 
287 To understand the constraints of PACKET_MMAP, we have to see the structure
288 used to hold the pointers to each block.
289 
290 Currently, this structure is a dynamically allocated vector with kmalloc
291 called pg_vec, its size limits the number of blocks that can be allocated::
292 
293     +---+---+---+---+
294     | x | x | x | x |
295     +---+---+---+---+
296       |   |   |   |
297       |   |   |   v
298       |   |   v  block #4
299       |   v  block #3
300       v  block #2
301      block #1
302 
303 kmalloc allocates any number of bytes of physically contiguous memory from
304 a pool of pre-determined sizes. This pool of memory is maintained by the slab
305 allocator which is at the end the responsible for doing the allocation and
306 hence which imposes the maximum memory that kmalloc can allocate.
307 
308 In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The
309 predetermined sizes that kmalloc uses can be checked in the "size-<bytes>"
310 entries of /proc/slabinfo
311 
312 In a 32 bit architecture, pointers are 4 bytes long, so the total number of
313 pointers to blocks is::
314 
315      131072/4 = 32768 blocks
316 
317 PACKET_MMAP buffer size calculator
318 ==================================
319 
320 Definitions:
321 
322 ==============  ================================================================
323 <size-max>      is the maximum size of allocable with kmalloc
324                 (see /proc/slabinfo)
325 <pointer size>  depends on the architecture -- ``sizeof(void *)``
326 <page size>     depends on the architecture -- PAGE_SIZE or getpagesize (2)
327 <max-order>     is the value defined with MAX_PAGE_ORDER
328 <frame size>    it's an upper bound of frame's capture size (more on this later)
329 ==============  ================================================================
330 
331 from these definitions we will derive::
332 
333         <block number> = <size-max>/<pointer size>
334         <block size> = <pagesize> << <max-order>
335 
336 so, the max buffer size is::
337 
338         <block number> * <block size>
339 
340 and, the number of frames be::
341 
342         <block number> * <block size> / <frame size>
343 
344 Suppose the following parameters, which apply for 2.6 kernel and an
345 i386 architecture::
346 
347         <size-max> = 131072 bytes
348         <pointer size> = 4 bytes
349         <pagesize> = 4096 bytes
350         <max-order> = 11
351 
352 and a value for <frame size> of 2048 bytes. These parameters will yield::
353 
354         <block number> = 131072/4 = 32768 blocks
355         <block size> = 4096 << 11 = 8 MiB.
356 
357 and hence the buffer will have a 262144 MiB size. So it can hold
358 262144 MiB / 2048 bytes = 134217728 frames
359 
360 Actually, this buffer size is not possible with an i386 architecture.
361 Remember that the memory is allocated in kernel space, in the case of
362 an i386 kernel's memory size is limited to 1GiB.
363 
364 All memory allocations are not freed until the socket is closed. The memory
365 allocations are done with GFP_KERNEL priority, this basically means that
366 the allocation can wait and swap other process' memory in order to allocate
367 the necessary memory, so normally limits can be reached.
368 
369 Other constraints
370 -----------------
371 
372 If you check the source code you will see that what I draw here as a frame
373 is not only the link level frame. At the beginning of each frame there is a
374 header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
375 meta information like timestamp. So what we draw here a frame it's really
376 the following (from include/linux/if_packet.h)::
377 
378  /*
379    Frame structure:
380 
381    - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
382    - struct tpacket_hdr
383    - pad to TPACKET_ALIGNMENT=16
384    - struct sockaddr_ll
385    - Gap, chosen so that packet data (Start+tp_net) aligns to
386      TPACKET_ALIGNMENT=16
387    - Start+tp_mac: [ Optional MAC header ]
388    - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
389    - Pad to align to TPACKET_ALIGNMENT=16
390  */
391 
392 The following are conditions that are checked in packet_set_ring
393 
394    - tp_block_size must be a multiple of PAGE_SIZE (1)
395    - tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
396    - tp_frame_size must be a multiple of TPACKET_ALIGNMENT
397    - tp_frame_nr   must be exactly frames_per_block*tp_block_nr
398 
399 Note that tp_block_size should be chosen to be a power of two or there will
400 be a waste of memory.
401 
402 Mapping and use of the circular buffer (ring)
403 ---------------------------------------------
404 
405 The mapping of the buffer in the user process is done with the conventional
406 mmap function. Even the circular buffer is compound of several physically
407 discontiguous blocks of memory, they are contiguous to the user space, hence
408 just one call to mmap is needed::
409 
410     mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
411 
412 If tp_frame_size is a divisor of tp_block_size frames will be
413 contiguously spaced by tp_frame_size bytes. If not, each
414 tp_block_size/tp_frame_size frames there will be a gap between
415 the frames. This is because a frame cannot be spawn across two
416 blocks.
417 
418 To use one socket for capture and transmission, the mapping of both the
419 RX and TX buffer ring has to be done with one call to mmap::
420 
421     ...
422     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &foo, sizeof(foo));
423     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, &bar, sizeof(bar));
424     ...
425     rx_ring = mmap(0, size * 2, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
426     tx_ring = rx_ring + size;
427 
428 RX must be the first as the kernel maps the TX ring memory right
429 after the RX one.
430 
431 At the beginning of each frame there is an status field (see
432 struct tpacket_hdr). If this field is 0 means that the frame is ready
433 to be used for the kernel, If not, there is a frame the user can read
434 and the following flags apply:
435 
436 Capture process
437 ^^^^^^^^^^^^^^^
438 
439 From include/linux/if_packet.h::
440 
441      #define TP_STATUS_COPY          (1 << 1)
442      #define TP_STATUS_LOSING        (1 << 2)
443      #define TP_STATUS_CSUMNOTREADY  (1 << 3)
444      #define TP_STATUS_CSUM_VALID    (1 << 7)
445 
446 ======================  =======================================================
447 TP_STATUS_COPY          This flag indicates that the frame (and associated
448                         meta information) has been truncated because it's
449                         larger than tp_frame_size. This packet can be
450                         read entirely with recvfrom().
451 
452                         In order to make this work it must to be
453                         enabled previously with setsockopt() and
454                         the PACKET_COPY_THRESH option.
455 
456                         The number of frames that can be buffered to
457                         be read with recvfrom is limited like a normal socket.
458                         See the SO_RCVBUF option in the socket (7) man page.
459 
460 TP_STATUS_LOSING        indicates there were packet drops from last time
461                         statistics where checked with getsockopt() and
462                         the PACKET_STATISTICS option.
463 
464 TP_STATUS_CSUMNOTREADY  currently it's used for outgoing IP packets which
465                         its checksum will be done in hardware. So while
466                         reading the packet we should not try to check the
467                         checksum.
468 
469 TP_STATUS_CSUM_VALID    This flag indicates that at least the transport
470                         header checksum of the packet has been already
471                         validated on the kernel side. If the flag is not set
472                         then we are free to check the checksum by ourselves
473                         provided that TP_STATUS_CSUMNOTREADY is also not set.
474 ======================  =======================================================
475 
476 for convenience there are also the following defines::
477 
478      #define TP_STATUS_KERNEL        0
479      #define TP_STATUS_USER          1
480 
481 The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
482 receives a packet it puts in the buffer and updates the status with
483 at least the TP_STATUS_USER flag. Then the user can read the packet,
484 once the packet is read the user must zero the status field, so the kernel
485 can use again that frame buffer.
486 
487 The user can use poll (any other variant should apply too) to check if new
488 packets are in the ring::
489 
490     struct pollfd pfd;
491 
492     pfd.fd = fd;
493     pfd.revents = 0;
494     pfd.events = POLLIN|POLLRDNORM|POLLERR;
495 
496     if (status == TP_STATUS_KERNEL)
497         retval = poll(&pfd, 1, timeout);
498 
499 It doesn't incur in a race condition to first check the status value and
500 then poll for frames.
501 
502 Transmission process
503 ^^^^^^^^^^^^^^^^^^^^
504 
505 Those defines are also used for transmission::
506 
507      #define TP_STATUS_AVAILABLE        0 // Frame is available
508      #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
509      #define TP_STATUS_SENDING          2 // Frame is currently in transmission
510      #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct
511 
512 First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
513 packet, the user fills a data buffer of an available frame, sets tp_len to
514 current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
515 This can be done on multiple frames. Once the user is ready to transmit, it
516 calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
517 forwarded to the network device. The kernel updates each status of sent
518 frames with TP_STATUS_SENDING until the end of transfer.
519 
520 At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
521 
522 ::
523 
524     header->tp_len = in_i_size;
525     header->tp_status = TP_STATUS_SEND_REQUEST;
526     retval = send(this->socket, NULL, 0, 0);
527 
528 The user can also use poll() to check if a buffer is available:
529 
530 (status == TP_STATUS_SENDING)
531 
532 ::
533 
534     struct pollfd pfd;
535     pfd.fd = fd;
536     pfd.revents = 0;
537     pfd.events = POLLOUT;
538     retval = poll(&pfd, 1, timeout);
539 
540 What TPACKET versions are available and when to use them?
541 =========================================================
542 
543 ::
544 
545  int val = tpacket_version;
546  setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
547  getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
548 
549 where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
550 
551 TPACKET_V1:
552         - Default if not otherwise specified by setsockopt(2)
553         - RX_RING, TX_RING available
554 
555 TPACKET_V1 --> TPACKET_V2:
556         - Made 64 bit clean due to unsigned long usage in TPACKET_V1
557           structures, thus this also works on 64 bit kernel with 32 bit
558           userspace and the like
559         - Timestamp resolution in nanoseconds instead of microseconds
560         - RX_RING, TX_RING available
561         - VLAN metadata information available for packets
562           (TP_STATUS_VLAN_VALID, TP_STATUS_VLAN_TPID_VALID),
563           in the tpacket2_hdr structure:
564 
565                 - TP_STATUS_VLAN_VALID bit being set into the tp_status field indicates
566                   that the tp_vlan_tci field has valid VLAN TCI value
567                 - TP_STATUS_VLAN_TPID_VALID bit being set into the tp_status field
568                   indicates that the tp_vlan_tpid field has valid VLAN TPID value
569 
570         - How to switch to TPACKET_V2:
571 
572                 1. Replace struct tpacket_hdr by struct tpacket2_hdr
573                 2. Query header len and save
574                 3. Set protocol version to 2, set up ring as usual
575                 4. For getting the sockaddr_ll,
576                    use ``(void *)hdr + TPACKET_ALIGN(hdrlen)`` instead of
577                    ``(void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))``
578 
579 TPACKET_V2 --> TPACKET_V3:
580         - Flexible buffer implementation for RX_RING:
581                 1. Blocks can be configured with non-static frame-size
582                 2. Read/poll is at a block-level (as opposed to packet-level)
583                 3. Added poll timeout to avoid indefinite user-space wait
584                    on idle links
585                 4. Added user-configurable knobs:
586 
587                         4.1 block::timeout
588                         4.2 tpkt_hdr::sk_rxhash
589 
590         - RX Hash data available in user space
591         - TX_RING semantics are conceptually similar to TPACKET_V2;
592           use tpacket3_hdr instead of tpacket2_hdr, and TPACKET3_HDRLEN
593           instead of TPACKET2_HDRLEN. In the current implementation,
594           the tp_next_offset field in the tpacket3_hdr MUST be set to
595           zero, indicating that the ring does not hold variable sized frames.
596           Packets with non-zero values of tp_next_offset will be dropped.
597 
598 AF_PACKET fanout mode
599 =====================
600 
601 In the AF_PACKET fanout mode, packet reception can be load balanced among
602 processes. This also works in combination with mmap(2) on packet sockets.
603 
604 Currently implemented fanout policies are:
605 
606   - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
607   - PACKET_FANOUT_LB: schedule to socket by round-robin
608   - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
609   - PACKET_FANOUT_RND: schedule to socket by random selection
610   - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
611   - PACKET_FANOUT_QM: schedule to socket by skbs recorded queue_mapping
612 
613 Minimal example code by David S. Miller (try things like "./test eth0 hash",
614 "./test eth0 lb", etc.)::
615 
616     #include <stddef.h>
617     #include <stdlib.h>
618     #include <stdio.h>
619     #include <string.h>
620 
621     #include <sys/types.h>
622     #include <sys/wait.h>
623     #include <sys/socket.h>
624     #include <sys/ioctl.h>
625 
626     #include <unistd.h>
627 
628     #include <linux/if_ether.h>
629     #include <linux/if_packet.h>
630 
631     #include <net/if.h>
632 
633     static const char *device_name;
634     static int fanout_type;
635     static int fanout_id;
636 
637     #ifndef PACKET_FANOUT
638     # define PACKET_FANOUT                      18
639     # define PACKET_FANOUT_HASH         0
640     # define PACKET_FANOUT_LB           1
641     #endif
642 
643     static int setup_socket(void)
644     {
645             int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
646             struct sockaddr_ll ll;
647             struct ifreq ifr;
648             int fanout_arg;
649 
650             if (fd < 0) {
651                     perror("socket");
652                     return EXIT_FAILURE;
653             }
654 
655             memset(&ifr, 0, sizeof(ifr));
656             strcpy(ifr.ifr_name, device_name);
657             err = ioctl(fd, SIOCGIFINDEX, &ifr);
658             if (err < 0) {
659                     perror("SIOCGIFINDEX");
660                     return EXIT_FAILURE;
661             }
662 
663             memset(&ll, 0, sizeof(ll));
664             ll.sll_family = AF_PACKET;
665             ll.sll_ifindex = ifr.ifr_ifindex;
666             err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
667             if (err < 0) {
668                     perror("bind");
669                     return EXIT_FAILURE;
670             }
671 
672             fanout_arg = (fanout_id | (fanout_type << 16));
673             err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
674                             &fanout_arg, sizeof(fanout_arg));
675             if (err) {
676                     perror("setsockopt");
677                     return EXIT_FAILURE;
678             }
679 
680             return fd;
681     }
682 
683     static void fanout_thread(void)
684     {
685             int fd = setup_socket();
686             int limit = 10000;
687 
688             if (fd < 0)
689                     exit(fd);
690 
691             while (limit-- > 0) {
692                     char buf[1600];
693                     int err;
694 
695                     err = read(fd, buf, sizeof(buf));
696                     if (err < 0) {
697                             perror("read");
698                             exit(EXIT_FAILURE);
699                     }
700                     if ((limit % 10) == 0)
701                             fprintf(stdout, "(%d) \n", getpid());
702             }
703 
704             fprintf(stdout, "%d: Received 10000 packets\n", getpid());
705 
706             close(fd);
707             exit(0);
708     }
709 
710     int main(int argc, char **argp)
711     {
712             int fd, err;
713             int i;
714 
715             if (argc != 3) {
716                     fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
717                     return EXIT_FAILURE;
718             }
719 
720             if (!strcmp(argp[2], "hash"))
721                     fanout_type = PACKET_FANOUT_HASH;
722             else if (!strcmp(argp[2], "lb"))
723                     fanout_type = PACKET_FANOUT_LB;
724             else {
725                     fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
726                     exit(EXIT_FAILURE);
727             }
728 
729             device_name = argp[1];
730             fanout_id = getpid() & 0xffff;
731 
732             for (i = 0; i < 4; i++) {
733                     pid_t pid = fork();
734 
735                     switch (pid) {
736                     case 0:
737                             fanout_thread();
738 
739                     case -1:
740                             perror("fork");
741                             exit(EXIT_FAILURE);
742                     }
743             }
744 
745             for (i = 0; i < 4; i++) {
746                     int status;
747 
748                     wait(&status);
749             }
750 
751             return 0;
752     }
753 
754 AF_PACKET TPACKET_V3 example
755 ============================
756 
757 AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
758 sizes by doing its own memory management. It is based on blocks where polling
759 works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
760 
761 It is said that TPACKET_V3 brings the following benefits:
762 
763  * ~15% - 20% reduction in CPU-usage
764  * ~20% increase in packet capture rate
765  * ~2x increase in packet density
766  * Port aggregation analysis
767  * Non static frame size to capture entire packet payload
768 
769 So it seems to be a good candidate to be used with packet fanout.
770 
771 Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
772 it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.)::
773 
774     /* Written from scratch, but kernel-to-user space API usage
775     * dissected from lolpcap:
776     *  Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
777     *  License: GPL, version 2.0
778     */
779 
780     #include <stdio.h>
781     #include <stdlib.h>
782     #include <stdint.h>
783     #include <string.h>
784     #include <assert.h>
785     #include <net/if.h>
786     #include <arpa/inet.h>
787     #include <netdb.h>
788     #include <poll.h>
789     #include <unistd.h>
790     #include <signal.h>
791     #include <inttypes.h>
792     #include <sys/socket.h>
793     #include <sys/mman.h>
794     #include <linux/if_packet.h>
795     #include <linux/if_ether.h>
796     #include <linux/ip.h>
797 
798     #ifndef likely
799     # define likely(x)          __builtin_expect(!!(x), 1)
800     #endif
801     #ifndef unlikely
802     # define unlikely(x)                __builtin_expect(!!(x), 0)
803     #endif
804 
805     struct block_desc {
806             uint32_t version;
807             uint32_t offset_to_priv;
808             struct tpacket_hdr_v1 h1;
809     };
810 
811     struct ring {
812             struct iovec *rd;
813             uint8_t *map;
814             struct tpacket_req3 req;
815     };
816 
817     static unsigned long packets_total = 0, bytes_total = 0;
818     static sig_atomic_t sigint = 0;
819 
820     static void sighandler(int num)
821     {
822             sigint = 1;
823     }
824 
825     static int setup_socket(struct ring *ring, char *netdev)
826     {
827             int err, i, fd, v = TPACKET_V3;
828             struct sockaddr_ll ll;
829             unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
830             unsigned int blocknum = 64;
831 
832             fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
833             if (fd < 0) {
834                     perror("socket");
835                     exit(1);
836             }
837 
838             err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
839             if (err < 0) {
840                     perror("setsockopt");
841                     exit(1);
842             }
843 
844             memset(&ring->req, 0, sizeof(ring->req));
845             ring->req.tp_block_size = blocksiz;
846             ring->req.tp_frame_size = framesiz;
847             ring->req.tp_block_nr = blocknum;
848             ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
849             ring->req.tp_retire_blk_tov = 60;
850             ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
851 
852             err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
853                             sizeof(ring->req));
854             if (err < 0) {
855                     perror("setsockopt");
856                     exit(1);
857             }
858 
859             ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
860                             PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
861             if (ring->map == MAP_FAILED) {
862                     perror("mmap");
863                     exit(1);
864             }
865 
866             ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
867             assert(ring->rd);
868             for (i = 0; i < ring->req.tp_block_nr; ++i) {
869                     ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
870                     ring->rd[i].iov_len = ring->req.tp_block_size;
871             }
872 
873             memset(&ll, 0, sizeof(ll));
874             ll.sll_family = PF_PACKET;
875             ll.sll_protocol = htons(ETH_P_ALL);
876             ll.sll_ifindex = if_nametoindex(netdev);
877             ll.sll_hatype = 0;
878             ll.sll_pkttype = 0;
879             ll.sll_halen = 0;
880 
881             err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
882             if (err < 0) {
883                     perror("bind");
884                     exit(1);
885             }
886 
887             return fd;
888     }
889 
890     static void display(struct tpacket3_hdr *ppd)
891     {
892             struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
893             struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
894 
895             if (eth->h_proto == htons(ETH_P_IP)) {
896                     struct sockaddr_in ss, sd;
897                     char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
898 
899                     memset(&ss, 0, sizeof(ss));
900                     ss.sin_family = PF_INET;
901                     ss.sin_addr.s_addr = ip->saddr;
902                     getnameinfo((struct sockaddr *) &ss, sizeof(ss),
903                                 sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
904 
905                     memset(&sd, 0, sizeof(sd));
906                     sd.sin_family = PF_INET;
907                     sd.sin_addr.s_addr = ip->daddr;
908                     getnameinfo((struct sockaddr *) &sd, sizeof(sd),
909                                 dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
910 
911                     printf("%s -> %s, ", sbuff, dbuff);
912             }
913 
914             printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
915     }
916 
917     static void walk_block(struct block_desc *pbd, const int block_num)
918     {
919             int num_pkts = pbd->h1.num_pkts, i;
920             unsigned long bytes = 0;
921             struct tpacket3_hdr *ppd;
922 
923             ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
924                                         pbd->h1.offset_to_first_pkt);
925             for (i = 0; i < num_pkts; ++i) {
926                     bytes += ppd->tp_snaplen;
927                     display(ppd);
928 
929                     ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
930                                                 ppd->tp_next_offset);
931             }
932 
933             packets_total += num_pkts;
934             bytes_total += bytes;
935     }
936 
937     static void flush_block(struct block_desc *pbd)
938     {
939             pbd->h1.block_status = TP_STATUS_KERNEL;
940     }
941 
942     static void teardown_socket(struct ring *ring, int fd)
943     {
944             munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
945             free(ring->rd);
946             close(fd);
947     }
948 
949     int main(int argc, char **argp)
950     {
951             int fd, err;
952             socklen_t len;
953             struct ring ring;
954             struct pollfd pfd;
955             unsigned int block_num = 0, blocks = 64;
956             struct block_desc *pbd;
957             struct tpacket_stats_v3 stats;
958 
959             if (argc != 2) {
960                     fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
961                     return EXIT_FAILURE;
962             }
963 
964             signal(SIGINT, sighandler);
965 
966             memset(&ring, 0, sizeof(ring));
967             fd = setup_socket(&ring, argp[argc - 1]);
968             assert(fd > 0);
969 
970             memset(&pfd, 0, sizeof(pfd));
971             pfd.fd = fd;
972             pfd.events = POLLIN | POLLERR;
973             pfd.revents = 0;
974 
975             while (likely(!sigint)) {
976                     pbd = (struct block_desc *) ring.rd[block_num].iov_base;
977 
978                     if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
979                             poll(&pfd, 1, -1);
980                             continue;
981                     }
982 
983                     walk_block(pbd, block_num);
984                     flush_block(pbd);
985                     block_num = (block_num + 1) % blocks;
986             }
987 
988             len = sizeof(stats);
989             err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
990             if (err < 0) {
991                     perror("getsockopt");
992                     exit(1);
993             }
994 
995             fflush(stdout);
996             printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
997                 stats.tp_packets, bytes_total, stats.tp_drops,
998                 stats.tp_freeze_q_cnt);
999 
1000             teardown_socket(&ring, fd);
1001             return 0;
1002     }
1003 
1004 PACKET_QDISC_BYPASS
1005 ===================
1006 
1007 If there is a requirement to load the network with many packets in a similar
1008 fashion as pktgen does, you might set the following option after socket
1009 creation::
1010 
1011     int one = 1;
1012     setsockopt(fd, SOL_PACKET, PACKET_QDISC_BYPASS, &one, sizeof(one));
1013 
1014 This has the side-effect, that packets sent through PF_PACKET will bypass the
1015 kernel's qdisc layer and are forcedly pushed to the driver directly. Meaning,
1016 packet are not buffered, tc disciplines are ignored, increased loss can occur
1017 and such packets are also not visible to other PF_PACKET sockets anymore. So,
1018 you have been warned; generally, this can be useful for stress testing various
1019 components of a system.
1020 
1021 On default, PACKET_QDISC_BYPASS is disabled and needs to be explicitly enabled
1022 on PF_PACKET sockets.
1023 
1024 PACKET_TIMESTAMP
1025 ================
1026 
1027 The PACKET_TIMESTAMP setting determines the source of the timestamp in
1028 the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
1029 NIC is capable of timestamping packets in hardware, you can request those
1030 hardware timestamps to be used. Note: you may need to enable the generation
1031 of hardware timestamps with SIOCSHWTSTAMP (see related information from
1032 Documentation/networking/timestamping.rst).
1033 
1034 PACKET_TIMESTAMP accepts the same integer bit field as SO_TIMESTAMPING::
1035 
1036     int req = SOF_TIMESTAMPING_RAW_HARDWARE;
1037     setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1038 
1039 For the mmap(2)ed ring buffers, such timestamps are stored in the
1040 ``tpacket{,2,3}_hdr`` structure's tp_sec and ``tp_{n,u}sec`` members.
1041 To determine what kind of timestamp has been reported, the tp_status field
1042 is binary or'ed with the following possible bits ...
1043 
1044 ::
1045 
1046     TP_STATUS_TS_RAW_HARDWARE
1047     TP_STATUS_TS_SOFTWARE
1048 
1049 ... that are equivalent to its ``SOF_TIMESTAMPING_*`` counterparts. For the
1050 RX_RING, if neither is set (i.e. PACKET_TIMESTAMP is not set), then a
1051 software fallback was invoked *within* PF_PACKET's processing code (less
1052 precise).
1053 
1054 Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1055 ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1056 frames to be updated resp. the frame handed over to the application, iv) walk
1057 through the frames to pick up the individual hw/sw timestamps.
1058 
1059 Only (!) if transmit timestamping is enabled, then these bits are combined
1060 with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1061 application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1062 in a first step to see if the frame belongs to the application, and then
1063 one can extract the type of timestamp in a second step from tp_status)!
1064 
1065 If you don't care about them, thus having it disabled, checking for
1066 TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1067 TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1068 members do not contain a valid value. For TX_RINGs, by default no timestamp
1069 is generated!
1070 
1071 See include/linux/net_tstamp.h and Documentation/networking/timestamping.rst
1072 for more information on hardware timestamps.
1073 
1074 Miscellaneous bits
1075 ==================
1076 
1077 - Packet sockets work well together with Linux socket filters, thus you also
1078   might want to have a look at Documentation/networking/filter.rst
1079 
1080 THANKS
1081 ======
1082 
1083    Jesse Brandeburg, for fixing my grammathical/spelling errors

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php