~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/networking/vrf.rst

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 .. SPDX-License-Identifier: GPL-2.0
  2 
  3 ====================================
  4 Virtual Routing and Forwarding (VRF)
  5 ====================================
  6 
  7 The VRF Device
  8 ==============
  9 
 10 The VRF device combined with ip rules provides the ability to create virtual
 11 routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
 12 Linux network stack. One use case is the multi-tenancy problem where each
 13 tenant has their own unique routing tables and in the very least need
 14 different default gateways.
 15 
 16 Processes can be "VRF aware" by binding a socket to the VRF device. Packets
 17 through the socket then use the routing table associated with the VRF
 18 device. An important feature of the VRF device implementation is that it
 19 impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
 20 (ie., they do not need to be run in each VRF). The design also allows
 21 the use of higher priority ip rules (Policy Based Routing, PBR) to take
 22 precedence over the VRF device rules directing specific traffic as desired.
 23 
 24 In addition, VRF devices allow VRFs to be nested within namespaces. For
 25 example network namespaces provide separation of network interfaces at the
 26 device layer, VLANs on the interfaces within a namespace provide L2 separation
 27 and then VRF devices provide L3 separation.
 28 
 29 Design
 30 ------
 31 A VRF device is created with an associated route table. Network interfaces
 32 are then enslaved to a VRF device::
 33 
 34          +-----------------------------+
 35          |           vrf-blue          |  ===> route table 10
 36          +-----------------------------+
 37             |        |            |
 38          +------+ +------+     +-------------+
 39          | eth1 | | eth2 | ... |    bond1    |
 40          +------+ +------+     +-------------+
 41                                   |       |
 42                               +------+ +------+
 43                               | eth8 | | eth9 |
 44                               +------+ +------+
 45 
 46 Packets received on an enslaved device and are switched to the VRF device
 47 in the IPv4 and IPv6 processing stacks giving the impression that packets
 48 flow through the VRF device. Similarly on egress routing rules are used to
 49 send packets to the VRF device driver before getting sent out the actual
 50 interface. This allows tcpdump on a VRF device to capture all packets into
 51 and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
 52 can be applied using the VRF device to specify rules that apply to the VRF
 53 domain as a whole.
 54 
 55 .. [1] Packets in the forwarded state do not flow through the device, so those
 56        packets are not seen by tcpdump. Will revisit this limitation in a
 57        future release.
 58 
 59 .. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
 60        ingress device and both INPUT and PREROUTING rules with skb->dev set to
 61        the VRF device. For egress POSTROUTING and OUTPUT rules can be written
 62        using either the VRF device or real egress device.
 63 
 64 Setup
 65 -----
 66 1. VRF device is created with an association to a FIB table.
 67    e.g,::
 68 
 69         ip link add vrf-blue type vrf table 10
 70         ip link set dev vrf-blue up
 71 
 72 2. An l3mdev FIB rule directs lookups to the table associated with the device.
 73    A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
 74    l3mdev rule for IPv4 and IPv6 when the first device is created with a
 75    default preference of 1000. Users may delete the rule if desired and add
 76    with a different priority or install per-VRF rules.
 77 
 78    Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::
 79 
 80        ip ru add oif vrf-blue table 10
 81        ip ru add iif vrf-blue table 10
 82 
 83 3. Set the default route for the table (and hence default route for the VRF)::
 84 
 85        ip route add table 10 unreachable default metric 4278198272
 86 
 87    This high metric value ensures that the default unreachable route can
 88    be overridden by a routing protocol suite.  FRRouting interprets
 89    kernel metrics as a combined admin distance (upper byte) and priority
 90    (lower 3 bytes).  Thus the above metric translates to [255/8192].
 91 
 92 4. Enslave L3 interfaces to a VRF device::
 93 
 94        ip link set dev eth1 master vrf-blue
 95 
 96    Local and connected routes for enslaved devices are automatically moved to
 97    the table associated with VRF device. Any additional routes depending on
 98    the enslaved device are dropped and will need to be reinserted to the VRF
 99    FIB table following the enslavement.
100 
101    The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
102    addresses as VRF enslavement changes::
103 
104        sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
105 
106 5. Additional VRF routes are added to associated table::
107 
108        ip route add table 10 ...
109 
110 
111 Applications
112 ------------
113 Applications that are to work within a VRF need to bind their socket to the
114 VRF device::
115 
116     setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
117 
118 or to specify the output device using cmsg and IP_PKTINFO.
119 
120 By default the scope of the port bindings for unbound sockets is
121 limited to the default VRF. That is, it will not be matched by packets
122 arriving on interfaces enslaved to an l3mdev and processes may bind to
123 the same port if they bind to an l3mdev.
124 
125 TCP & UDP services running in the default VRF context (ie., not bound
126 to any VRF device) can work across all VRF domains by enabling the
127 tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::
128 
129     sysctl -w net.ipv4.tcp_l3mdev_accept=1
130     sysctl -w net.ipv4.udp_l3mdev_accept=1
131 
132 These options are disabled by default so that a socket in a VRF is only
133 selected for packets in that VRF. There is a similar option for RAW
134 sockets, which is enabled by default for reasons of backwards compatibility.
135 This is so as to specify the output device with cmsg and IP_PKTINFO, but
136 using a socket not bound to the corresponding VRF. This allows e.g. older ping
137 implementations to be run with specifying the device but without executing it
138 in the VRF. This option can be disabled so that packets received in a VRF
139 context are only handled by a raw socket bound to the VRF, and packets in the
140 default VRF are only handled by a socket not bound to any VRF::
141 
142     sysctl -w net.ipv4.raw_l3mdev_accept=0
143 
144 netfilter rules on the VRF device can be used to limit access to services
145 running in the default VRF context as well.
146 
147 Using VRF-aware applications (applications which simultaneously create sockets
148 outside and inside VRFs) in conjunction with ``net.ipv4.tcp_l3mdev_accept=1``
149 is possible but may lead to problems in some situations. With that sysctl
150 value, it is unspecified which listening socket will be selected to handle
151 connections for VRF traffic; ie. either a socket bound to the VRF or an unbound
152 socket may be used to accept new connections from a VRF. This somewhat
153 unexpected behavior can lead to problems if sockets are configured with extra
154 options (ex. TCP MD5 keys) with the expectation that VRF traffic will
155 exclusively be handled by sockets bound to VRFs, as would be the case with
156 ``net.ipv4.tcp_l3mdev_accept=0``. Finally and as a reminder, regardless of
157 which listening socket is selected, established sockets will be created in the
158 VRF based on the ingress interface, as documented earlier.
159 
160 --------------------------------------------------------------------------------
161 
162 Using iproute2 for VRFs
163 =======================
164 iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
165 section lists both commands where appropriate -- with the vrf keyword and the
166 older form without it.
167 
168 1. Create a VRF
169 
170    To instantiate a VRF device and associate it with a table::
171 
172        $ ip link add dev NAME type vrf table ID
173 
174    As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
175    covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
176    device create.
177 
178 2. List VRFs
179 
180    To list VRFs that have been created::
181 
182        $ ip [-d] link show type vrf
183          NOTE: The -d option is needed to show the table id
184 
185    For example::
186 
187        $ ip -d link show type vrf
188        11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
189            link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
190            vrf table 1 addrgenmode eui64
191        12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
192            link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
193            vrf table 10 addrgenmode eui64
194        13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
195            link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
196            vrf table 66 addrgenmode eui64
197        14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
198            link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
199            vrf table 81 addrgenmode eui64
200 
201 
202    Or in brief output::
203 
204        $ ip -br link show type vrf
205        mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
206        red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
207        blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
208        green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
209 
210 
211 3. Assign a Network Interface to a VRF
212 
213    Network interfaces are assigned to a VRF by enslaving the netdevice to a
214    VRF device::
215 
216        $ ip link set dev NAME master NAME
217 
218    On enslavement connected and local routes are automatically moved to the
219    table associated with the VRF device.
220 
221    For example::
222 
223        $ ip link set dev eth0 master mgmt
224 
225 
226 4. Show Devices Assigned to a VRF
227 
228    To show devices that have been assigned to a specific VRF add the master
229    option to the ip command::
230 
231        $ ip link show vrf NAME
232        $ ip link show master NAME
233 
234    For example::
235 
236        $ ip link show vrf red
237        3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
238            link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
239        4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
240            link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
241        7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
242            link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
243 
244 
245    Or using the brief output::
246 
247        $ ip -br link show vrf red
248        eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
249        eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
250        eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>
251 
252 
253 5. Show Neighbor Entries for a VRF
254 
255    To list neighbor entries associated with devices enslaved to a VRF device
256    add the master option to the ip command::
257 
258        $ ip [-6] neigh show vrf NAME
259        $ ip [-6] neigh show master NAME
260 
261    For example::
262 
263        $  ip neigh show vrf red
264        10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
265        10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
266 
267        $ ip -6 neigh show vrf red
268        2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
269 
270 
271 6. Show Addresses for a VRF
272 
273    To show addresses for interfaces associated with a VRF add the master
274    option to the ip command::
275 
276        $ ip addr show vrf NAME
277        $ ip addr show master NAME
278 
279    For example::
280 
281         $ ip addr show vrf red
282         3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
283             link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
284             inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
285                valid_lft forever preferred_lft forever
286             inet6 2002:1::2/120 scope global
287                valid_lft forever preferred_lft forever
288             inet6 fe80::ff:fe00:202/64 scope link
289                valid_lft forever preferred_lft forever
290         4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
291             link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
292             inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
293                valid_lft forever preferred_lft forever
294             inet6 2002:2::2/120 scope global
295                valid_lft forever preferred_lft forever
296             inet6 fe80::ff:fe00:203/64 scope link
297                valid_lft forever preferred_lft forever
298         7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
299             link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
300 
301    Or in brief format::
302 
303         $ ip -br addr show vrf red
304         eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
305         eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
306         eth5             DOWN
307 
308 
309 7. Show Routes for a VRF
310 
311    To show routes for a VRF use the ip command to display the table associated
312    with the VRF device::
313 
314        $ ip [-6] route show vrf NAME
315        $ ip [-6] route show table ID
316 
317    For example::
318 
319         $ ip route show vrf red
320         unreachable default  metric 4278198272
321         broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
322         10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
323         local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
324         broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
325         broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
326         10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
327         local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
328         broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2
329 
330         $ ip -6 route show vrf red
331         local 2002:1:: dev lo  proto none  metric 0  pref medium
332         local 2002:1::2 dev lo  proto none  metric 0  pref medium
333         2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
334         local 2002:2:: dev lo  proto none  metric 0  pref medium
335         local 2002:2::2 dev lo  proto none  metric 0  pref medium
336         2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
337         local fe80:: dev lo  proto none  metric 0  pref medium
338         local fe80:: dev lo  proto none  metric 0  pref medium
339         local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
340         local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
341         fe80::/64 dev eth1  proto kernel  metric 256  pref medium
342         fe80::/64 dev eth2  proto kernel  metric 256  pref medium
343         ff00::/8 dev red  metric 256  pref medium
344         ff00::/8 dev eth1  metric 256  pref medium
345         ff00::/8 dev eth2  metric 256  pref medium
346         unreachable default dev lo  metric 4278198272  error -101 pref medium
347 
348 8. Route Lookup for a VRF
349 
350    A test route lookup can be done for a VRF::
351 
352        $ ip [-6] route get vrf NAME ADDRESS
353        $ ip [-6] route get oif NAME ADDRESS
354 
355    For example::
356 
357         $ ip route get 10.2.1.40 vrf red
358         10.2.1.40 dev eth1  table red  src 10.2.1.2
359             cache
360 
361         $ ip -6 route get 2002:1::32 vrf red
362         2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium
363 
364 
365 9. Removing Network Interface from a VRF
366 
367    Network interfaces are removed from a VRF by breaking the enslavement to
368    the VRF device::
369 
370        $ ip link set dev NAME nomaster
371 
372    Connected routes are moved back to the default table and local entries are
373    moved to the local table.
374 
375    For example::
376 
377     $ ip link set dev eth0 nomaster
378 
379 --------------------------------------------------------------------------------
380 
381 Commands used in this example::
382 
383      cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
384      1  mgmt
385      10 red
386      66 blue
387      81 green
388      EOF
389 
390      function vrf_create
391      {
392          VRF=$1
393          TBID=$2
394 
395          # create VRF device
396          ip link add ${VRF} type vrf table ${TBID}
397 
398          if [ "${VRF}" != "mgmt" ]; then
399              ip route add table ${TBID} unreachable default metric 4278198272
400          fi
401          ip link set dev ${VRF} up
402      }
403 
404      vrf_create mgmt 1
405      ip link set dev eth0 master mgmt
406 
407      vrf_create red 10
408      ip link set dev eth1 master red
409      ip link set dev eth2 master red
410      ip link set dev eth5 master red
411 
412      vrf_create blue 66
413      ip link set dev eth3 master blue
414 
415      vrf_create green 81
416      ip link set dev eth4 master green
417 
418 
419      Interface addresses from /etc/network/interfaces:
420      auto eth0
421      iface eth0 inet static
422            address 10.0.0.2
423            netmask 255.255.255.0
424            gateway 10.0.0.254
425 
426      iface eth0 inet6 static
427            address 2000:1::2
428            netmask 120
429 
430      auto eth1
431      iface eth1 inet static
432            address 10.2.1.2
433            netmask 255.255.255.0
434 
435      iface eth1 inet6 static
436            address 2002:1::2
437            netmask 120
438 
439      auto eth2
440      iface eth2 inet static
441            address 10.2.2.2
442            netmask 255.255.255.0
443 
444      iface eth2 inet6 static
445            address 2002:2::2
446            netmask 120
447 
448      auto eth3
449      iface eth3 inet static
450            address 10.2.3.2
451            netmask 255.255.255.0
452 
453      iface eth3 inet6 static
454            address 2002:3::2
455            netmask 120
456 
457      auto eth4
458      iface eth4 inet static
459            address 10.2.4.2
460            netmask 255.255.255.0
461 
462      iface eth4 inet6 static
463            address 2002:4::2
464            netmask 120

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php