~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/power/powercap/powercap.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 =======================
  2 Power Capping Framework
  3 =======================
  4 
  5 The power capping framework provides a consistent interface between the kernel
  6 and the user space that allows power capping drivers to expose the settings to
  7 user space in a uniform way.
  8 
  9 Terminology
 10 ===========
 11 
 12 The framework exposes power capping devices to user space via sysfs in the
 13 form of a tree of objects. The objects at the root level of the tree represent
 14 'control types', which correspond to different methods of power capping.  For
 15 example, the intel-rapl control type represents the Intel "Running Average
 16 Power Limit" (RAPL) technology, whereas the 'idle-injection' control type
 17 corresponds to the use of idle injection for controlling power.
 18 
 19 Power zones represent different parts of the system, which can be controlled and
 20 monitored using the power capping method determined by the control type the
 21 given zone belongs to. They each contain attributes for monitoring power, as
 22 well as controls represented in the form of power constraints.  If the parts of
 23 the system represented by different power zones are hierarchical (that is, one
 24 bigger part consists of multiple smaller parts that each have their own power
 25 controls), those power zones may also be organized in a hierarchy with one
 26 parent power zone containing multiple subzones and so on to reflect the power
 27 control topology of the system.  In that case, it is possible to apply power
 28 capping to a set of devices together using the parent power zone and if more
 29 fine grained control is required, it can be applied through the subzones.
 30 
 31 
 32 Example sysfs interface tree::
 33 
 34   /sys/devices/virtual/powercap
 35   └──intel-rapl
 36       ├──intel-rapl:0
 37       │   ├──constraint_0_name
 38       │   ├──constraint_0_power_limit_uw
 39       │   ├──constraint_0_time_window_us
 40       │   ├──constraint_1_name
 41       │   ├──constraint_1_power_limit_uw
 42       │   ├──constraint_1_time_window_us
 43       │   ├──device -> ../../intel-rapl
 44       │   ├──energy_uj
 45       │   ├──intel-rapl:0:0
 46       │   │   ├──constraint_0_name
 47       │   │   ├──constraint_0_power_limit_uw
 48       │   │   ├──constraint_0_time_window_us
 49       │   │   ├──constraint_1_name
 50       │   │   ├──constraint_1_power_limit_uw
 51       │   │   ├──constraint_1_time_window_us
 52       │   │   ├──device -> ../../intel-rapl:0
 53       │   │   ├──energy_uj
 54       │   │   ├──max_energy_range_uj
 55       │   │   ├──name
 56       │   │   ├──enabled
 57       │   │   ├──power
 58       │   │   │   ├──async
 59       │   │   │   []
 60       │   │   ├──subsystem -> ../../../../../../class/power_cap
 61       │   │   └──uevent
 62       │   ├──intel-rapl:0:1
 63       │   │   ├──constraint_0_name
 64       │   │   ├──constraint_0_power_limit_uw
 65       │   │   ├──constraint_0_time_window_us
 66       │   │   ├──constraint_1_name
 67       │   │   ├──constraint_1_power_limit_uw
 68       │   │   ├──constraint_1_time_window_us
 69       │   │   ├──device -> ../../intel-rapl:0
 70       │   │   ├──energy_uj
 71       │   │   ├──max_energy_range_uj
 72       │   │   ├──name
 73       │   │   ├──enabled
 74       │   │   ├──power
 75       │   │   │   ├──async
 76       │   │   │   []
 77       │   │   ├──subsystem -> ../../../../../../class/power_cap
 78       │   │   └──uevent
 79       │   ├──max_energy_range_uj
 80       │   ├──max_power_range_uw
 81       │   ├──name
 82       │   ├──enabled
 83       │   ├──power
 84       │   │   ├──async
 85       │   │   []
 86       │   ├──subsystem -> ../../../../../class/power_cap
 87       │   ├──enabled
 88       │   ├──uevent
 89       ├──intel-rapl:1
 90       │   ├──constraint_0_name
 91       │   ├──constraint_0_power_limit_uw
 92       │   ├──constraint_0_time_window_us
 93       │   ├──constraint_1_name
 94       │   ├──constraint_1_power_limit_uw
 95       │   ├──constraint_1_time_window_us
 96       │   ├──device -> ../../intel-rapl
 97       │   ├──energy_uj
 98       │   ├──intel-rapl:1:0
 99       │   │   ├──constraint_0_name
100       │   │   ├──constraint_0_power_limit_uw
101       │   │   ├──constraint_0_time_window_us
102       │   │   ├──constraint_1_name
103       │   │   ├──constraint_1_power_limit_uw
104       │   │   ├──constraint_1_time_window_us
105       │   │   ├──device -> ../../intel-rapl:1
106       │   │   ├──energy_uj
107       │   │   ├──max_energy_range_uj
108       │   │   ├──name
109       │   │   ├──enabled
110       │   │   ├──power
111       │   │   │   ├──async
112       │   │   │   []
113       │   │   ├──subsystem -> ../../../../../../class/power_cap
114       │   │   └──uevent
115       │   ├──intel-rapl:1:1
116       │   │   ├──constraint_0_name
117       │   │   ├──constraint_0_power_limit_uw
118       │   │   ├──constraint_0_time_window_us
119       │   │   ├──constraint_1_name
120       │   │   ├──constraint_1_power_limit_uw
121       │   │   ├──constraint_1_time_window_us
122       │   │   ├──device -> ../../intel-rapl:1
123       │   │   ├──energy_uj
124       │   │   ├──max_energy_range_uj
125       │   │   ├──name
126       │   │   ├──enabled
127       │   │   ├──power
128       │   │   │   ├──async
129       │   │   │   []
130       │   │   ├──subsystem -> ../../../../../../class/power_cap
131       │   │   └──uevent
132       │   ├──max_energy_range_uj
133       │   ├──max_power_range_uw
134       │   ├──name
135       │   ├──enabled
136       │   ├──power
137       │   │   ├──async
138       │   │   []
139       │   ├──subsystem -> ../../../../../class/power_cap
140       │   ├──uevent
141       ├──power
142       │   ├──async
143       │   []
144       ├──subsystem -> ../../../../class/power_cap
145       ├──enabled
146       └──uevent
147 
148 The above example illustrates a case in which the Intel RAPL technology,
149 available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one
150 control type called intel-rapl which contains two power zones, intel-rapl:0 and
151 intel-rapl:1, representing CPU packages.  Each of these power zones contains
152 two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the
153 "core" and the "uncore" parts of the given CPU package, respectively.  All of
154 the zones and subzones contain energy monitoring attributes (energy_uj,
155 max_energy_range_uj) and constraint attributes (constraint_*) allowing controls
156 to be applied (the constraints in the 'package' power zones apply to the whole
157 CPU packages and the subzone constraints only apply to the respective parts of
158 the given package individually). Since Intel RAPL doesn't provide instantaneous
159 power value, there is no power_uw attribute.
160 
161 In addition to that, each power zone contains a name attribute, allowing the
162 part of the system represented by that zone to be identified.
163 For example::
164 
165         cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name
166 
167 package-0
168 ---------
169 
170 Depending on different power zones, the Intel RAPL technology allows
171 one or multiple constraints like short term, long term and peak power,
172 with different time windows to be applied to each power zone.
173 All the zones contain attributes representing the constraint names,
174 power limits and the sizes of the time windows. Note that time window
175 is not applicable to peak power. Here, constraint_j_* attributes
176 correspond to the jth constraint (j = 0,1,2).
177 
178 For example::
179 
180         constraint_0_name
181         constraint_0_power_limit_uw
182         constraint_0_time_window_us
183         constraint_1_name
184         constraint_1_power_limit_uw
185         constraint_1_time_window_us
186         constraint_2_name
187         constraint_2_power_limit_uw
188         constraint_2_time_window_us
189 
190 Power Zone Attributes
191 =====================
192 
193 Monitoring attributes
194 ---------------------
195 
196 energy_uj (rw)
197         Current energy counter in micro joules. Write "0" to reset.
198         If the counter can not be reset, then this attribute is read only.
199 
200 max_energy_range_uj (ro)
201         Range of the above energy counter in micro-joules.
202 
203 power_uw (ro)
204         Current power in micro watts.
205 
206 max_power_range_uw (ro)
207         Range of the above power value in micro-watts.
208 
209 name (ro)
210         Name of this power zone.
211 
212 It is possible that some domains have both power ranges and energy counter ranges;
213 however, only one is mandatory.
214 
215 Constraints
216 -----------
217 
218 constraint_X_power_limit_uw (rw)
219         Power limit in micro watts, which should be applicable for the
220         time window specified by "constraint_X_time_window_us".
221 
222 constraint_X_time_window_us (rw)
223         Time window in micro seconds.
224 
225 constraint_X_name (ro)
226         An optional name of the constraint
227 
228 constraint_X_max_power_uw(ro)
229         Maximum allowed power in micro watts.
230 
231 constraint_X_min_power_uw(ro)
232         Minimum allowed power in micro watts.
233 
234 constraint_X_max_time_window_us(ro)
235         Maximum allowed time window in micro seconds.
236 
237 constraint_X_min_time_window_us(ro)
238         Minimum allowed time window in micro seconds.
239 
240 Except power_limit_uw and time_window_us other fields are optional.
241 
242 Common zone and control type attributes
243 ---------------------------------------
244 
245 enabled (rw): Enable/Disable controls at zone level or for all zones using
246 a control type.
247 
248 Power Cap Client Driver Interface
249 =================================
250 
251 The API summary:
252 
253 Call powercap_register_control_type() to register control type object.
254 Call powercap_register_zone() to register a power zone (under a given
255 control type), either as a top-level power zone or as a subzone of another
256 power zone registered earlier.
257 The number of constraints in a power zone and the corresponding callbacks have
258 to be defined prior to calling powercap_register_zone() to register that zone.
259 
260 To Free a power zone call powercap_unregister_zone().
261 To free a control type object call powercap_unregister_control_type().
262 Detailed API can be generated using kernel-doc on include/linux/powercap.h.

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php