~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/scsi/ufs.rst

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 .. SPDX-License-Identifier: GPL-2.0
  2 
  3 =======================
  4 Universal Flash Storage
  5 =======================
  6 
  7 
  8 .. Contents
  9 
 10    1. Overview
 11    2. UFS Architecture Overview
 12      2.1 Application Layer
 13      2.2 UFS Transport Protocol (UTP) layer
 14      2.3 UFS Interconnect (UIC) Layer
 15    3. UFSHCD Overview
 16      3.1 UFS controller initialization
 17      3.2 UTP Transfer requests
 18      3.3 UFS error handling
 19      3.4 SCSI Error handling
 20    4. BSG Support
 21    5. UFS Reference Clock Frequency configuration
 22 
 23 
 24 1. Overview
 25 ===========
 26 
 27 Universal Flash Storage (UFS) is a storage specification for flash devices.
 28 It aims to provide a universal storage interface for both
 29 embedded and removable flash memory-based storage in mobile
 30 devices such as smart phones and tablet computers. The specification
 31 is defined by JEDEC Solid State Technology Association. UFS is based
 32 on the MIPI M-PHY physical layer standard. UFS uses MIPI M-PHY as the
 33 physical layer and MIPI Unipro as the link layer.
 34 
 35 The main goals of UFS are to provide:
 36 
 37  * Optimized performance:
 38 
 39    For UFS version 1.0 and 1.1 the target performance is as follows:
 40 
 41    - Support for Gear1 is mandatory (rate A: 1248Mbps, rate B: 1457.6Mbps)
 42    - Support for Gear2 is optional (rate A: 2496Mbps, rate B: 2915.2Mbps)
 43 
 44    Future version of the standard,
 45 
 46    - Gear3 (rate A: 4992Mbps, rate B: 5830.4Mbps)
 47 
 48  * Low power consumption
 49  * High random IOPs and low latency
 50 
 51 
 52 2. UFS Architecture Overview
 53 ============================
 54 
 55 UFS has a layered communication architecture which is based on SCSI
 56 SAM-5 architectural model.
 57 
 58 UFS communication architecture consists of the following layers.
 59 
 60 2.1 Application Layer
 61 ---------------------
 62 
 63   The Application layer is composed of the UFS command set layer (UCS),
 64   Task Manager and Device manager. The UFS interface is designed to be
 65   protocol agnostic, however SCSI has been selected as a baseline
 66   protocol for versions 1.0 and 1.1 of the UFS protocol layer.
 67 
 68   UFS supports a subset of SCSI commands defined by SPC-4 and SBC-3.
 69 
 70   * UCS:
 71      It handles SCSI commands supported by UFS specification.
 72   * Task manager:
 73      It handles task management functions defined by the
 74      UFS which are meant for command queue control.
 75   * Device manager:
 76      It handles device level operations and device
 77      configuration operations. Device level operations mainly involve
 78      device power management operations and commands to Interconnect
 79      layers. Device level configurations involve handling of query
 80      requests which are used to modify and retrieve configuration
 81      information of the device.
 82 
 83 2.2 UFS Transport Protocol (UTP) layer
 84 --------------------------------------
 85 
 86   The UTP layer provides services for
 87   the higher layers through Service Access Points. UTP defines 3
 88   service access points for higher layers.
 89 
 90   * UDM_SAP: Device manager service access point is exposed to device
 91     manager for device level operations. These device level operations
 92     are done through query requests.
 93   * UTP_CMD_SAP: Command service access point is exposed to UFS command
 94     set layer (UCS) to transport commands.
 95   * UTP_TM_SAP: Task management service access point is exposed to task
 96     manager to transport task management functions.
 97 
 98   UTP transports messages through UFS protocol information unit (UPIU).
 99 
100 2.3 UFS Interconnect (UIC) Layer
101 --------------------------------
102 
103   UIC is the lowest layer of the UFS layered architecture. It handles
104   the connection between UFS host and UFS device. UIC consists of
105   MIPI UniPro and MIPI M-PHY. UIC provides 2 service access points
106   to upper layer:
107 
108   * UIC_SAP: To transport UPIU between UFS host and UFS device.
109   * UIO_SAP: To issue commands to Unipro layers.
110 
111 
112 3. UFSHCD Overview
113 ==================
114 
115 The UFS host controller driver is based on the Linux SCSI Framework.
116 UFSHCD is a low-level device driver which acts as an interface between
117 the SCSI Midlayer and PCIe-based UFS host controllers.
118 
119 The current UFSHCD implementation supports the following functionality:
120 
121 3.1 UFS controller initialization
122 ---------------------------------
123 
124   The initialization module brings the UFS host controller to active state
125   and prepares the controller to transfer commands/responses between
126   UFSHCD and UFS device.
127 
128 3.2 UTP Transfer requests
129 -------------------------
130 
131   Transfer request handling module of UFSHCD receives SCSI commands
132   from the SCSI Midlayer, forms UPIUs and issues the UPIUs to the UFS Host
133   controller. Also, the module decodes responses received from the UFS
134   host controller in the form of UPIUs and intimates the SCSI Midlayer
135   of the status of the command.
136 
137 3.3 UFS error handling
138 ----------------------
139 
140   Error handling module handles Host controller fatal errors,
141   Device fatal errors and UIC interconnect layer-related errors.
142 
143 3.4 SCSI Error handling
144 -----------------------
145 
146   This is done through UFSHCD SCSI error handling routines registered
147   with the SCSI Midlayer. Examples of some of the error handling commands
148   issues by the SCSI Midlayer are Abort task, LUN reset and host reset.
149   UFSHCD Routines to perform these tasks are registered with
150   SCSI Midlayer through .eh_abort_handler, .eh_device_reset_handler and
151   .eh_host_reset_handler.
152 
153 In this version of UFSHCD, Query requests and power management
154 functionality are not implemented.
155 
156 4. BSG Support
157 ==============
158 
159 This transport driver supports exchanging UFS protocol information units
160 (UPIUs) with a UFS device. Typically, user space will allocate
161 struct ufs_bsg_request and struct ufs_bsg_reply (see ufs_bsg.h) as
162 request_upiu and reply_upiu respectively.  Filling those UPIUs should
163 be done in accordance with JEDEC spec UFS2.1 paragraph 10.7.
164 *Caveat emptor*: The driver makes no further input validations and sends the
165 UPIU to the device as it is.  Open the bsg device in /dev/ufs-bsg and
166 send SG_IO with the applicable sg_io_v4::
167 
168         io_hdr_v4.guard = 'Q';
169         io_hdr_v4.protocol = BSG_PROTOCOL_SCSI;
170         io_hdr_v4.subprotocol = BSG_SUB_PROTOCOL_SCSI_TRANSPORT;
171         io_hdr_v4.response = (__u64)reply_upiu;
172         io_hdr_v4.max_response_len = reply_len;
173         io_hdr_v4.request_len = request_len;
174         io_hdr_v4.request = (__u64)request_upiu;
175         if (dir == SG_DXFER_TO_DEV) {
176                 io_hdr_v4.dout_xfer_len = (uint32_t)byte_cnt;
177                 io_hdr_v4.dout_xferp = (uintptr_t)(__u64)buff;
178         } else {
179                 io_hdr_v4.din_xfer_len = (uint32_t)byte_cnt;
180                 io_hdr_v4.din_xferp = (uintptr_t)(__u64)buff;
181         }
182 
183 If you wish to read or write a descriptor, use the appropriate xferp of
184 sg_io_v4.
185 
186 The userspace tool that interacts with the ufs-bsg endpoint and uses its
187 UPIU-based protocol is available at:
188 
189         https://github.com/westerndigitalcorporation/ufs-tool
190 
191 For more detailed information about the tool and its supported
192 features, please see the tool's README.
193 
194 UFS specifications can be found at:
195 
196 - UFS - http://www.jedec.org/sites/default/files/docs/JESD220.pdf
197 - UFSHCI - http://www.jedec.org/sites/default/files/docs/JESD223.pdf
198 
199 5. UFS Reference Clock Frequency configuration
200 ==============================================
201 
202 Devicetree can define a clock named "ref_clk" under the UFS controller node
203 to specify the intended reference clock frequency for the UFS storage
204 parts. ACPI-based system can specify the frequency using ACPI
205 Device-Specific Data property named "ref-clk-freq". In both ways the value
206 is interpreted as frequency in Hz and must match one of the values given in
207 the UFS specification. UFS subsystem will attempt to read the value when
208 executing common controller initialization. If the value is available, UFS
209 subsystem will ensure the bRefClkFreq attribute of the UFS storage device is
210 set accordingly and will modify it if there is a mismatch.

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php