~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/sound/soc/dapm.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 ===================================================
  2 Dynamic Audio Power Management for Portable Devices
  3 ===================================================
  4 
  5 Description
  6 ===========
  7 
  8 Dynamic Audio Power Management (DAPM) is designed to allow portable
  9 Linux devices to use the minimum amount of power within the audio
 10 subsystem at all times. It is independent of other kernel power
 11 management frameworks and, as such, can easily co-exist with them.
 12 
 13 DAPM is also completely transparent to all user space applications as
 14 all power switching is done within the ASoC core. No code changes or
 15 recompiling are required for user space applications. DAPM makes power
 16 switching decisions based upon any audio stream (capture/playback)
 17 activity and audio mixer settings within the device.
 18 
 19 DAPM is based on two basic elements, called widgets and routes:
 20 
 21  * a **widget** is every part of the audio hardware that can be enabled by
 22    software when in use and disabled to save power when not in use
 23  * a **route** is an interconnection between widgets that exists when sound
 24    can flow from one widget to the other
 25 
 26 All DAPM power switching decisions are made automatically by consulting an
 27 audio routing graph. This graph is specific to each sound card and spans
 28 the whole sound card, so some DAPM routes connect two widgets belonging to
 29 different components (e.g. the LINE OUT pin of a CODEC and the input pin of
 30 an amplifier).
 31 
 32 The graph for the STM32MP1-DK1 sound card is shown in picture:
 33 
 34 .. kernel-figure:: dapm-graph.svg
 35     :alt:   Example DAPM graph
 36     :align: center
 37 
 38 DAPM power domains
 39 ==================
 40 
 41 There are 4 power domains within DAPM:
 42 
 43 Codec bias domain
 44       VREF, VMID (core codec and audio power)
 45 
 46       Usually controlled at codec probe/remove and suspend/resume, although
 47       can be set at stream time if power is not needed for sidetone, etc.
 48 
 49 Platform/Machine domain
 50       physically connected inputs and outputs
 51 
 52       Is platform/machine and user action specific, is configured by the
 53       machine driver and responds to asynchronous events e.g when HP
 54       are inserted
 55 
 56 Path domain
 57       audio subsystem signal paths
 58 
 59       Automatically set when mixer and mux settings are changed by the user.
 60       e.g. alsamixer, amixer.
 61 
 62 Stream domain
 63       DACs and ADCs.
 64 
 65       Enabled and disabled when stream playback/capture is started and
 66       stopped respectively. e.g. aplay, arecord.
 67 
 68 
 69 DAPM Widgets
 70 ============
 71 
 72 Audio DAPM widgets fall into a number of types:
 73 
 74 Mixer
 75         Mixes several analog signals into a single analog signal.
 76 Mux
 77         An analog switch that outputs only one of many inputs.
 78 PGA
 79         A programmable gain amplifier or attenuation widget.
 80 ADC
 81         Analog to Digital Converter
 82 DAC
 83         Digital to Analog Converter
 84 Switch
 85         An analog switch
 86 Input
 87         A codec input pin
 88 Output
 89         A codec output pin
 90 Headphone
 91         Headphone (and optional Jack)
 92 Mic
 93         Mic (and optional Jack)
 94 Line
 95         Line Input/Output (and optional Jack)
 96 Speaker
 97         Speaker
 98 Supply
 99         Power or clock supply widget used by other widgets.
100 Regulator
101         External regulator that supplies power to audio components.
102 Clock
103         External clock that supplies clock to audio components.
104 AIF IN
105         Audio Interface Input (with TDM slot mask).
106 AIF OUT
107         Audio Interface Output (with TDM slot mask).
108 Siggen
109         Signal Generator.
110 DAI IN
111         Digital Audio Interface Input.
112 DAI OUT
113         Digital Audio Interface Output.
114 DAI Link
115         DAI Link between two DAI structures
116 Pre
117         Special PRE widget (exec before all others)
118 Post
119         Special POST widget (exec after all others)
120 Buffer
121         Inter widget audio data buffer within a DSP.
122 Scheduler
123         DSP internal scheduler that schedules component/pipeline processing
124         work.
125 Effect
126         Widget that performs an audio processing effect.
127 SRC
128         Sample Rate Converter within DSP or CODEC
129 ASRC
130         Asynchronous Sample Rate Converter within DSP or CODEC
131 Encoder
132         Widget that encodes audio data from one format (usually PCM) to another
133         usually more compressed format.
134 Decoder
135         Widget that decodes audio data from a compressed format to an
136         uncompressed format like PCM.
137 
138 
139 (Widgets are defined in include/sound/soc-dapm.h)
140 
141 Widgets can be added to the sound card by any of the component driver types.
142 There are convenience macros defined in soc-dapm.h that can be used to quickly
143 build a list of widgets of the codecs and machines DAPM widgets.
144 
145 Most widgets have a name, register, shift and invert. Some widgets have extra
146 parameters for stream name and kcontrols.
147 
148 
149 Stream Domain Widgets
150 ---------------------
151 
152 Stream Widgets relate to the stream power domain and only consist of ADCs
153 (analog to digital converters), DACs (digital to analog converters),
154 AIF IN and AIF OUT.
155 
156 Stream widgets have the following format:
157 ::
158 
159   SND_SOC_DAPM_DAC(name, stream name, reg, shift, invert),
160   SND_SOC_DAPM_AIF_IN(name, stream, slot, reg, shift, invert)
161 
162 NOTE: the stream name must match the corresponding stream name in your codec
163 snd_soc_dai_driver.
164 
165 e.g. stream widgets for HiFi playback and capture
166 ::
167 
168   SND_SOC_DAPM_DAC("HiFi DAC", "HiFi Playback", REG, 3, 1),
169   SND_SOC_DAPM_ADC("HiFi ADC", "HiFi Capture", REG, 2, 1),
170 
171 e.g. stream widgets for AIF
172 ::
173 
174   SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
175   SND_SOC_DAPM_AIF_OUT("AIF1TX", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),
176 
177 
178 Path Domain Widgets
179 -------------------
180 
181 Path domain widgets have a ability to control or affect the audio signal or
182 audio paths within the audio subsystem. They have the following form:
183 ::
184 
185   SND_SOC_DAPM_PGA(name, reg, shift, invert, controls, num_controls)
186 
187 Any widget kcontrols can be set using the controls and num_controls members.
188 
189 e.g. Mixer widget (the kcontrols are declared first)
190 ::
191 
192   /* Output Mixer */
193   static const snd_kcontrol_new_t wm8731_output_mixer_controls[] = {
194   SOC_DAPM_SINGLE("Line Bypass Switch", WM8731_APANA, 3, 1, 0),
195   SOC_DAPM_SINGLE("Mic Sidetone Switch", WM8731_APANA, 5, 1, 0),
196   SOC_DAPM_SINGLE("HiFi Playback Switch", WM8731_APANA, 4, 1, 0),
197   };
198 
199   SND_SOC_DAPM_MIXER("Output Mixer", WM8731_PWR, 4, 1, wm8731_output_mixer_controls,
200         ARRAY_SIZE(wm8731_output_mixer_controls)),
201 
202 If you don't want the mixer elements prefixed with the name of the mixer widget,
203 you can use SND_SOC_DAPM_MIXER_NAMED_CTL instead. the parameters are the same
204 as for SND_SOC_DAPM_MIXER.
205 
206 
207 Machine domain Widgets
208 ----------------------
209 
210 Machine widgets are different from codec widgets in that they don't have a
211 codec register bit associated with them. A machine widget is assigned to each
212 machine audio component (non codec or DSP) that can be independently
213 powered. e.g.
214 
215 * Speaker Amp
216 * Microphone Bias
217 * Jack connectors
218 
219 A machine widget can have an optional call back.
220 
221 e.g. Jack connector widget for an external Mic that enables Mic Bias
222 when the Mic is inserted::
223 
224   static int spitz_mic_bias(struct snd_soc_dapm_widget* w, int event)
225   {
226         gpio_set_value(SPITZ_GPIO_MIC_BIAS, SND_SOC_DAPM_EVENT_ON(event));
227         return 0;
228   }
229 
230   SND_SOC_DAPM_MIC("Mic Jack", spitz_mic_bias),
231 
232 
233 Codec (BIAS) Domain
234 -------------------
235 
236 The codec bias power domain has no widgets and is handled by the codec DAPM
237 event handler. This handler is called when the codec powerstate is changed wrt
238 to any stream event or by kernel PM events.
239 
240 
241 Virtual Widgets
242 ---------------
243 
244 Sometimes widgets exist in the codec or machine audio graph that don't have any
245 corresponding soft power control. In this case it is necessary to create
246 a virtual widget - a widget with no control bits e.g.
247 ::
248 
249   SND_SOC_DAPM_MIXER("AC97 Mixer", SND_SOC_NOPM, 0, 0, NULL, 0),
250 
251 This can be used to merge two signal paths together in software.
252 
253 Registering DAPM controls
254 =========================
255 
256 In many cases the DAPM widgets are implemented statically in a ``static
257 const struct snd_soc_dapm_widget`` array in a codec driver, and simply
258 declared via the ``dapm_widgets`` and ``num_dapm_widgets`` fields of the
259 ``struct snd_soc_component_driver``.
260 
261 Similarly, routes connecting them are implemented statically in a ``static
262 const struct snd_soc_dapm_route`` array and declared via the
263 ``dapm_routes`` and ``num_dapm_routes`` fields of the same struct.
264 
265 With the above declared, the driver registration will take care of
266 populating them::
267 
268   static const struct snd_soc_dapm_widget wm2000_dapm_widgets[] = {
269         SND_SOC_DAPM_OUTPUT("SPKN"),
270         SND_SOC_DAPM_OUTPUT("SPKP"),
271         ...
272   };
273 
274   /* Target, Path, Source */
275   static const struct snd_soc_dapm_route wm2000_audio_map[] = {
276         { "SPKN", NULL, "ANC Engine" },
277         { "SPKP", NULL, "ANC Engine" },
278         ...
279   };
280 
281   static const struct snd_soc_component_driver soc_component_dev_wm2000 = {
282         ...
283         .dapm_widgets           = wm2000_dapm_widgets,
284         .num_dapm_widgets       = ARRAY_SIZE(wm2000_dapm_widgets),
285         .dapm_routes            = wm2000_audio_map,
286         .num_dapm_routes        = ARRAY_SIZE(wm2000_audio_map),
287         ...
288   };
289 
290 In more complex cases the list of DAPM widgets and/or routes can be only
291 known at probe time. This happens for example when a driver supports
292 different models having a different set of features. In those cases
293 separate widgets and routes arrays implementing the case-specific features
294 can be registered programmatically by calling snd_soc_dapm_new_controls()
295 and snd_soc_dapm_add_routes().
296 
297 
298 Codec/DSP Widget Interconnections
299 =================================
300 
301 Widgets are connected to each other within the codec, platform and machine by
302 audio paths (called interconnections). Each interconnection must be defined in
303 order to create a graph of all audio paths between widgets.
304 
305 This is easiest with a diagram of the codec or DSP (and schematic of the machine
306 audio system), as it requires joining widgets together via their audio signal
307 paths.
308 
309 For example the WM8731 output mixer (wm8731.c) has 3 inputs (sources):
310 
311 1. Line Bypass Input
312 2. DAC (HiFi playback)
313 3. Mic Sidetone Input
314 
315 Each input in this example has a kcontrol associated with it (defined in
316 the example above) and is connected to the output mixer via its kcontrol
317 name. We can now connect the destination widget (wrt audio signal) with its
318 source widgets.  ::
319 
320         /* output mixer */
321         {"Output Mixer", "Line Bypass Switch", "Line Input"},
322         {"Output Mixer", "HiFi Playback Switch", "DAC"},
323         {"Output Mixer", "Mic Sidetone Switch", "Mic Bias"},
324 
325 So we have:
326 
327 * Destination Widget  <=== Path Name <=== Source Widget, or
328 * Sink, Path, Source, or
329 * ``Output Mixer`` is connected to the ``DAC`` via the ``HiFi Playback Switch``.
330 
331 When there is no path name connecting widgets (e.g. a direct connection) we
332 pass NULL for the path name.
333 
334 Interconnections are created with a call to::
335 
336   snd_soc_dapm_connect_input(codec, sink, path, source);
337 
338 Finally, snd_soc_dapm_new_widgets() must be called after all widgets and
339 interconnections have been registered with the core. This causes the core to
340 scan the codec and machine so that the internal DAPM state matches the
341 physical state of the machine.
342 
343 
344 Machine Widget Interconnections
345 -------------------------------
346 Machine widget interconnections are created in the same way as codec ones and
347 directly connect the codec pins to machine level widgets.
348 
349 e.g. connects the speaker out codec pins to the internal speaker.
350 ::
351 
352         /* ext speaker connected to codec pins LOUT2, ROUT2  */
353         {"Ext Spk", NULL , "ROUT2"},
354         {"Ext Spk", NULL , "LOUT2"},
355 
356 This allows the DAPM to power on and off pins that are connected (and in use)
357 and pins that are NC respectively.
358 
359 
360 Endpoint Widgets
361 ================
362 An endpoint is a start or end point (widget) of an audio signal within the
363 machine and includes the codec. e.g.
364 
365 * Headphone Jack
366 * Internal Speaker
367 * Internal Mic
368 * Mic Jack
369 * Codec Pins
370 
371 Endpoints are added to the DAPM graph so that their usage can be determined in
372 order to save power. e.g. NC codecs pins will be switched OFF, unconnected
373 jacks can also be switched OFF.
374 
375 
376 DAPM Widget Events
377 ==================
378 
379 Widgets needing to implement a more complex behaviour than what DAPM can do
380 can set a custom "event handler" by setting a function pointer. An example
381 is a power supply needing to enable a GPIO::
382 
383   static int sof_es8316_speaker_power_event(struct snd_soc_dapm_widget *w,
384                                           struct snd_kcontrol *kcontrol, int event)
385   {
386         if (SND_SOC_DAPM_EVENT_ON(event))
387                 gpiod_set_value_cansleep(gpio_pa, true);
388         else
389                 gpiod_set_value_cansleep(gpio_pa, false);
390 
391         return 0;
392   }
393 
394   static const struct snd_soc_dapm_widget st_widgets[] = {
395         ...
396         SND_SOC_DAPM_SUPPLY("Speaker Power", SND_SOC_NOPM, 0, 0,
397                             sof_es8316_speaker_power_event,
398                             SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU),
399   };
400 
401 See soc-dapm.h for all other widgets that support events.
402 
403 
404 Event types
405 -----------
406 
407 The following event types are supported by event widgets::
408 
409   /* dapm event types */
410   #define SND_SOC_DAPM_PRE_PMU          0x1     /* before widget power up */
411   #define SND_SOC_DAPM_POST_PMU         0x2     /* after  widget power up */
412   #define SND_SOC_DAPM_PRE_PMD          0x4     /* before widget power down */
413   #define SND_SOC_DAPM_POST_PMD         0x8     /* after  widget power down */
414   #define SND_SOC_DAPM_PRE_REG          0x10    /* before audio path setup */
415   #define SND_SOC_DAPM_POST_REG         0x20    /* after  audio path setup */
416   #define SND_SOC_DAPM_WILL_PMU         0x40    /* called at start of sequence */
417   #define SND_SOC_DAPM_WILL_PMD         0x80    /* called at start of sequence */
418   #define SND_SOC_DAPM_PRE_POST_PMD     (SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD)
419   #define SND_SOC_DAPM_PRE_POST_PMU     (SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU)

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php