~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/staging/static-keys.rst

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 ===========
  2 Static Keys
  3 ===========
  4 
  5 .. warning::
  6 
  7    DEPRECATED API:
  8 
  9    The use of 'struct static_key' directly, is now DEPRECATED. In addition
 10    static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following::
 11 
 12         struct static_key false = STATIC_KEY_INIT_FALSE;
 13         struct static_key true = STATIC_KEY_INIT_TRUE;
 14         static_key_true()
 15         static_key_false()
 16 
 17    The updated API replacements are::
 18 
 19         DEFINE_STATIC_KEY_TRUE(key);
 20         DEFINE_STATIC_KEY_FALSE(key);
 21         DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
 22         DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
 23         static_branch_likely()
 24         static_branch_unlikely()
 25 
 26 Abstract
 27 ========
 28 
 29 Static keys allows the inclusion of seldom used features in
 30 performance-sensitive fast-path kernel code, via a GCC feature and a code
 31 patching technique. A quick example::
 32 
 33         DEFINE_STATIC_KEY_FALSE(key);
 34 
 35         ...
 36 
 37         if (static_branch_unlikely(&key))
 38                 do unlikely code
 39         else
 40                 do likely code
 41 
 42         ...
 43         static_branch_enable(&key);
 44         ...
 45         static_branch_disable(&key);
 46         ...
 47 
 48 The static_branch_unlikely() branch will be generated into the code with as little
 49 impact to the likely code path as possible.
 50 
 51 
 52 Motivation
 53 ==========
 54 
 55 
 56 Currently, tracepoints are implemented using a conditional branch. The
 57 conditional check requires checking a global variable for each tracepoint.
 58 Although the overhead of this check is small, it increases when the memory
 59 cache comes under pressure (memory cache lines for these global variables may
 60 be shared with other memory accesses). As we increase the number of tracepoints
 61 in the kernel this overhead may become more of an issue. In addition,
 62 tracepoints are often dormant (disabled) and provide no direct kernel
 63 functionality. Thus, it is highly desirable to reduce their impact as much as
 64 possible. Although tracepoints are the original motivation for this work, other
 65 kernel code paths should be able to make use of the static keys facility.
 66 
 67 
 68 Solution
 69 ========
 70 
 71 
 72 gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
 73 
 74 https://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
 75 
 76 Using the 'asm goto', we can create branches that are either taken or not taken
 77 by default, without the need to check memory. Then, at run-time, we can patch
 78 the branch site to change the branch direction.
 79 
 80 For example, if we have a simple branch that is disabled by default::
 81 
 82         if (static_branch_unlikely(&key))
 83                 printk("I am the true branch\n");
 84 
 85 Thus, by default the 'printk' will not be emitted. And the code generated will
 86 consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
 87 straight-line code path. When the branch is 'flipped', we will patch the
 88 'no-op' in the straight-line codepath with a 'jump' instruction to the
 89 out-of-line true branch. Thus, changing branch direction is expensive but
 90 branch selection is basically 'free'. That is the basic tradeoff of this
 91 optimization.
 92 
 93 This lowlevel patching mechanism is called 'jump label patching', and it gives
 94 the basis for the static keys facility.
 95 
 96 Static key label API, usage and examples
 97 ========================================
 98 
 99 
100 In order to make use of this optimization you must first define a key::
101 
102         DEFINE_STATIC_KEY_TRUE(key);
103 
104 or::
105 
106         DEFINE_STATIC_KEY_FALSE(key);
107 
108 
109 The key must be global, that is, it can't be allocated on the stack or dynamically
110 allocated at run-time.
111 
112 The key is then used in code as::
113 
114         if (static_branch_unlikely(&key))
115                 do unlikely code
116         else
117                 do likely code
118 
119 Or::
120 
121         if (static_branch_likely(&key))
122                 do likely code
123         else
124                 do unlikely code
125 
126 Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
127 be used in either static_branch_likely() or static_branch_unlikely()
128 statements.
129 
130 Branch(es) can be set true via::
131 
132         static_branch_enable(&key);
133 
134 or false via::
135 
136         static_branch_disable(&key);
137 
138 The branch(es) can then be switched via reference counts::
139 
140         static_branch_inc(&key);
141         ...
142         static_branch_dec(&key);
143 
144 Thus, 'static_branch_inc()' means 'make the branch true', and
145 'static_branch_dec()' means 'make the branch false' with appropriate
146 reference counting. For example, if the key is initialized true, a
147 static_branch_dec(), will switch the branch to false. And a subsequent
148 static_branch_inc(), will change the branch back to true. Likewise, if the
149 key is initialized false, a 'static_branch_inc()', will change the branch to
150 true. And then a 'static_branch_dec()', will again make the branch false.
151 
152 The state and the reference count can be retrieved with 'static_key_enabled()'
153 and 'static_key_count()'.  In general, if you use these functions, they
154 should be protected with the same mutex used around the enable/disable
155 or increment/decrement function.
156 
157 Note that switching branches results in some locks being taken,
158 particularly the CPU hotplug lock (in order to avoid races against
159 CPUs being brought in the kernel while the kernel is getting
160 patched). Calling the static key API from within a hotplug notifier is
161 thus a sure deadlock recipe. In order to still allow use of the
162 functionality, the following functions are provided:
163 
164         static_key_enable_cpuslocked()
165         static_key_disable_cpuslocked()
166         static_branch_enable_cpuslocked()
167         static_branch_disable_cpuslocked()
168 
169 These functions are *not* general purpose, and must only be used when
170 you really know that you're in the above context, and no other.
171 
172 Where an array of keys is required, it can be defined as::
173 
174         DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
175 
176 or::
177 
178         DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
179 
180 4) Architecture level code patching interface, 'jump labels'
181 
182 
183 There are a few functions and macros that architectures must implement in order
184 to take advantage of this optimization. If there is no architecture support, we
185 simply fall back to a traditional, load, test, and jump sequence. Also, the
186 struct jump_entry table must be at least 4-byte aligned because the
187 static_key->entry field makes use of the two least significant bits.
188 
189 * ``select HAVE_ARCH_JUMP_LABEL``,
190     see: arch/x86/Kconfig
191 
192 * ``#define JUMP_LABEL_NOP_SIZE``,
193     see: arch/x86/include/asm/jump_label.h
194 
195 * ``__always_inline bool arch_static_branch(struct static_key *key, bool branch)``,
196     see: arch/x86/include/asm/jump_label.h
197 
198 * ``__always_inline bool arch_static_branch_jump(struct static_key *key, bool branch)``,
199     see: arch/x86/include/asm/jump_label.h
200 
201 * ``void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type)``,
202     see: arch/x86/kernel/jump_label.c
203 
204 * ``struct jump_entry``,
205     see: arch/x86/include/asm/jump_label.h
206 
207 
208 5) Static keys / jump label analysis, results (x86_64):
209 
210 
211 As an example, let's add the following branch to 'getppid()', such that the
212 system call now looks like::
213 
214   SYSCALL_DEFINE0(getppid)
215   {
216         int pid;
217 
218   +     if (static_branch_unlikely(&key))
219   +             printk("I am the true branch\n");
220 
221         rcu_read_lock();
222         pid = task_tgid_vnr(rcu_dereference(current->real_parent));
223         rcu_read_unlock();
224 
225         return pid;
226   }
227 
228 The resulting instructions with jump labels generated by GCC is::
229 
230   ffffffff81044290 <sys_getppid>:
231   ffffffff81044290:       55                      push   %rbp
232   ffffffff81044291:       48 89 e5                mov    %rsp,%rbp
233   ffffffff81044294:       e9 00 00 00 00          jmpq   ffffffff81044299 <sys_getppid+0x9>
234   ffffffff81044299:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
235   ffffffff810442a0:       00 00
236   ffffffff810442a2:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
237   ffffffff810442a9:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
238   ffffffff810442b0:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
239   ffffffff810442b7:       e8 f4 d9 00 00          callq  ffffffff81051cb0 <pid_vnr>
240   ffffffff810442bc:       5d                      pop    %rbp
241   ffffffff810442bd:       48 98                   cltq
242   ffffffff810442bf:       c3                      retq
243   ffffffff810442c0:       48 c7 c7 e3 54 98 81    mov    $0xffffffff819854e3,%rdi
244   ffffffff810442c7:       31 c0                   xor    %eax,%eax
245   ffffffff810442c9:       e8 71 13 6d 00          callq  ffffffff8171563f <printk>
246   ffffffff810442ce:       eb c9                   jmp    ffffffff81044299 <sys_getppid+0x9>
247 
248 Without the jump label optimization it looks like::
249 
250   ffffffff810441f0 <sys_getppid>:
251   ffffffff810441f0:       8b 05 8a 52 d8 00       mov    0xd8528a(%rip),%eax        # ffffffff81dc9480 <key>
252   ffffffff810441f6:       55                      push   %rbp
253   ffffffff810441f7:       48 89 e5                mov    %rsp,%rbp
254   ffffffff810441fa:       85 c0                   test   %eax,%eax
255   ffffffff810441fc:       75 27                   jne    ffffffff81044225 <sys_getppid+0x35>
256   ffffffff810441fe:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
257   ffffffff81044205:       00 00
258   ffffffff81044207:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
259   ffffffff8104420e:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
260   ffffffff81044215:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
261   ffffffff8104421c:       e8 2f da 00 00          callq  ffffffff81051c50 <pid_vnr>
262   ffffffff81044221:       5d                      pop    %rbp
263   ffffffff81044222:       48 98                   cltq
264   ffffffff81044224:       c3                      retq
265   ffffffff81044225:       48 c7 c7 13 53 98 81    mov    $0xffffffff81985313,%rdi
266   ffffffff8104422c:       31 c0                   xor    %eax,%eax
267   ffffffff8104422e:       e8 60 0f 6d 00          callq  ffffffff81715193 <printk>
268   ffffffff81044233:       eb c9                   jmp    ffffffff810441fe <sys_getppid+0xe>
269   ffffffff81044235:       66 66 2e 0f 1f 84 00    data32 nopw %cs:0x0(%rax,%rax,1)
270   ffffffff8104423c:       00 00 00 00
271 
272 Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
273 vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
274 to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
275 label case adds::
276 
277   6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
278 
279 If we then include the padding bytes, the jump label code saves, 16 total bytes
280 of instruction memory for this small function. In this case the non-jump label
281 function is 80 bytes long. Thus, we have saved 20% of the instruction
282 footprint. We can in fact improve this even further, since the 5-byte no-op
283 really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
284 However, we have not yet implemented optimal no-op sizes (they are currently
285 hard-coded).
286 
287 Since there are a number of static key API uses in the scheduler paths,
288 'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
289 performance improvement. Testing done on 3.3.0-rc2:
290 
291 jump label disabled::
292 
293  Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
294 
295         855.700314 task-clock                #    0.534 CPUs utilized            ( +-  0.11% )
296            200,003 context-switches          #    0.234 M/sec                    ( +-  0.00% )
297                  0 CPU-migrations            #    0.000 M/sec                    ( +- 39.58% )
298                487 page-faults               #    0.001 M/sec                    ( +-  0.02% )
299      1,474,374,262 cycles                    #    1.723 GHz                      ( +-  0.17% )
300    <not supported> stalled-cycles-frontend
301    <not supported> stalled-cycles-backend
302      1,178,049,567 instructions              #    0.80  insns per cycle          ( +-  0.06% )
303        208,368,926 branches                  #  243.507 M/sec                    ( +-  0.06% )
304          5,569,188 branch-misses             #    2.67% of all branches          ( +-  0.54% )
305 
306        1.601607384 seconds time elapsed                                          ( +-  0.07% )
307 
308 jump label enabled::
309 
310  Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
311 
312         841.043185 task-clock                #    0.533 CPUs utilized            ( +-  0.12% )
313            200,004 context-switches          #    0.238 M/sec                    ( +-  0.00% )
314                  0 CPU-migrations            #    0.000 M/sec                    ( +- 40.87% )
315                487 page-faults               #    0.001 M/sec                    ( +-  0.05% )
316      1,432,559,428 cycles                    #    1.703 GHz                      ( +-  0.18% )
317    <not supported> stalled-cycles-frontend
318    <not supported> stalled-cycles-backend
319      1,175,363,994 instructions              #    0.82  insns per cycle          ( +-  0.04% )
320        206,859,359 branches                  #  245.956 M/sec                    ( +-  0.04% )
321          4,884,119 branch-misses             #    2.36% of all branches          ( +-  0.85% )
322 
323        1.579384366 seconds time elapsed
324 
325 The percentage of saved branches is .7%, and we've saved 12% on
326 'branch-misses'. This is where we would expect to get the most savings, since
327 this optimization is about reducing the number of branches. In addition, we've
328 saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php