1 .. SPDX-License-Identifier: GPL-2.0+ 2 3 .. include:: ../disclaimer-zh_CN.rst 4 5 :Original: Documentation/core-api/this_cpu_ops.rst 6 7 :翻译: 8 9 周彬彬 Binbin Zhou <zhoubinbin@loongson.cn> 10 11 :校译: 12 13 吴想成 Wu Xiangcheng <bobwxc@email.cn> 14 15 ============ 16 this_cpu操作 17 ============ 18 19 :作者: Christoph Lameter, 2014年8月4日 20 :作者: Pranith Kumar, 2014年8月2日 21 22 this_cpu操作是一种优化访问与当前执行处理器相关的每CPU变量的方法。这是通过使用段寄 23 存器(或专用寄存器,cpu在其中永久存储特定处理器的每CPU区域的起始)来完成的。 24 25 this_cpu操作将每CPU变量的偏移量添加到处理器特定的每CPU基址上,并将该操作编码到对 26 每CPU变量进行操作的指令中。 27 28 这意味着在偏移量的计算和对数据的操作之间不存在原子性问题。因此,没有必要禁用抢占 29 或中断来确保处理器在计算地址和数据操作之间不被改变。 30 31 读取-修改-写入操作特别值得关注。通常处理器具有特殊的低延迟指令,可以在没有典型同 32 步开销的情况下运行,但仍提供某种宽松的原子性保证。例如,x86可以执行RMW(读取, 33 修改,写入)指令,如同inc/dec/cmpxchg,而无需锁前缀和相关的延迟损失。 34 35 对没有锁前缀的变量的访问是不同步的,也不需要同步,因为我们处理的是当前执行的处理 36 器所特有的每CPU数据。只有当前的处理器可以访问该变量,因此系统中的其他处理器不存在 37 并发性问题。 38 39 请注意,远程处理器对每CPU区域的访问是特殊情况,可能会影响通过 ``this_cpu_*`` 的本 40 地RMW操作的性能和正确性(远程写操作)。 41 42 this_cpu操作的主要用途是优化计数器操作。 43 44 定义了以下具有隐含抢占保护的this_cpu()操作。可以使用这些操作而不用担心抢占和中断:: 45 46 this_cpu_read(pcp) 47 this_cpu_write(pcp, val) 48 this_cpu_add(pcp, val) 49 this_cpu_and(pcp, val) 50 this_cpu_or(pcp, val) 51 this_cpu_add_return(pcp, val) 52 this_cpu_xchg(pcp, nval) 53 this_cpu_cmpxchg(pcp, oval, nval) 54 this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 55 this_cpu_sub(pcp, val) 56 this_cpu_inc(pcp) 57 this_cpu_dec(pcp) 58 this_cpu_sub_return(pcp, val) 59 this_cpu_inc_return(pcp) 60 this_cpu_dec_return(pcp) 61 62 63 this_cpu操作的内部工作 64 ---------------------- 65 66 在x86上,fs:或gs:段寄存器包含每CPU区域的基址。这样就可以简单地使用段覆盖,将每CPU 67 相对地址重定位到处理器适当的每CPU区域。所以对每CPU基址的重定位是通过段寄存器前缀 68 在指令中编码完成的。 69 70 例如:: 71 72 DEFINE_PER_CPU(int, x); 73 int z; 74 75 z = this_cpu_read(x); 76 77 产生的单指令为:: 78 79 mov ax, gs:[x] 80 81 而不是像每CPU操作那样,先是一系列的地址计算,然后从该地址获取。在this_cpu_ops之前, 82 这样的序列还需要先禁用/启用抢占功能,以防止内核在计算过程中将线程移动到不同的处理 83 器上。 84 85 请思考下面this_cpu操作:: 86 87 this_cpu_inc(x) 88 89 这将产生如下单指令(无锁前缀!):: 90 91 inc gs:[x] 92 93 而不是在没有段寄存器的情况下所需要的以下操作:: 94 95 int *y; 96 int cpu; 97 98 cpu = get_cpu(); 99 y = per_cpu_ptr(&x, cpu); 100 (*y)++; 101 put_cpu(); 102 103 请注意,这些操作只能用于为特定处理器保留的每CPU数据。如果不在上下文代码中禁用抢占, 104 ``this_cpu_inc()`` 将仅保证每CPU的某一个计数器被正确地递增,但不能保证操作系统不 105 会在this_cpu指令执行的前后直接移动该进程。一般来说,这意味着每个处理器的单个计数 106 器的值是没有意义的。所有每CPU计数器的总和才是唯一有意义的值。 107 108 每CPU变量的使用是出于性能的考虑。如果多个处理器同时处理相同的代码路径,可以避免缓 109 存行跳转。每个处理器都有自己的每CPU变量,因此不会发生并发缓存行更新。为这种优化必 110 须付出的代价是,当需要计数器的值时要将每CPU计数器相加。 111 112 113 特殊的操作 114 ---------- 115 116 :: 117 118 y = this_cpu_ptr(&x) 119 120 使用每CPU变量的偏移量(&x!),并返回属于当前执行处理器的每CPU变量的地址。 121 ``this_cpu_ptr`` 避免了通用 ``get_cpu``/``put_cpu`` 序列所需的多个步骤。没有可用 122 的处理器编号。相反,本地每CPU区域的偏移量只是简单地添加到每CPU偏移量上。 123 124 请注意,这个操作通常是在抢占被禁用后再在代码段中使用。然后该指针用来访问临界区中 125 的本地每CPU数据。当重新启用抢占时,此指针通常不再有用,因为它可能不再指向当前处理 126 器的每CPU数据。 127 128 每CPU变量和偏移量 129 ----------------- 130 131 每CPU变量相对于每CPU区域的起始点是有偏移的。它们没有地址,尽管代码里看起来像有一 132 样。不能直接对偏移量解引用,必须用处理器每CPU区域基指针加上偏移量,以构成有效地址。 133 134 因此,在每CPU操作的上下文之外使用x或&x是无效的,这种行为通常会被当作一个空指针的 135 解引用来处理。 136 137 :: 138 139 DEFINE_PER_CPU(int, x); 140 141 在每CPU操作的上下文中,上面表达式说明x是一个每CPU变量。大多数this_cpu操作都需要一 142 个cpu变量。 143 144 :: 145 146 int __percpu *p = &x; 147 148 &x和p是每CPU变量的偏移量。 ``this_cpu_ptr()`` 使用每CPU变量的偏移量,这让它看起来 149 有点奇怪。 150 151 152 每CPU结构体字段的操作 153 --------------------- 154 155 假设我们有一个每CPU结构:: 156 157 struct s { 158 int n,m; 159 }; 160 161 DEFINE_PER_CPU(struct s, p); 162 163 164 这些字段的操作非常简单:: 165 166 this_cpu_inc(p.m) 167 168 z = this_cpu_cmpxchg(p.m, 0, 1); 169 170 171 如果我们有一个相对于结构体s的偏移量:: 172 173 struct s __percpu *ps = &p; 174 175 this_cpu_dec(ps->m); 176 177 z = this_cpu_inc_return(ps->n); 178 179 180 如果我们后面不使用 ``this_cpu ops`` 来操作字段,则指针的计算可能需要使用 181 ``this_cpu_ptr()``:: 182 183 struct s *pp; 184 185 pp = this_cpu_ptr(&p); 186 187 pp->m--; 188 189 z = pp->n++; 190 191 192 this_cpu ops的变体 193 ------------------ 194 195 this_cpu的操作是中断安全的。一些架构不支持这些每CPU的本地操作。在这种情况下,该操 196 作必须被禁用中断的代码所取代,然后做那些保证是原子的操作,再重新启用中断。当然这 197 样做是很昂贵的。如果有其他原因导致调度器不能改变我们正在执行的处理器,那么就没有 198 理由禁用中断了。为此,我们提供了以下__this_cpu操作。 199 200 这些操作不能保证并发中断或抢占。如果在中断上下文中不使用每CPU变量并且调度程序无法 201 抢占,那么它们是安全的。如果在操作进行时仍有中断发生,并且中断也修改了变量,则无 202 法保证RMW操作是安全的:: 203 204 __this_cpu_read(pcp) 205 __this_cpu_write(pcp, val) 206 __this_cpu_add(pcp, val) 207 __this_cpu_and(pcp, val) 208 __this_cpu_or(pcp, val) 209 __this_cpu_add_return(pcp, val) 210 __this_cpu_xchg(pcp, nval) 211 __this_cpu_cmpxchg(pcp, oval, nval) 212 __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 213 __this_cpu_sub(pcp, val) 214 __this_cpu_inc(pcp) 215 __this_cpu_dec(pcp) 216 __this_cpu_sub_return(pcp, val) 217 __this_cpu_inc_return(pcp) 218 __this_cpu_dec_return(pcp) 219 220 221 将增加x,并且不会回退到在无法通过地址重定位和同一指令中的读取-修改-写入操作实现原 222 子性的平台上禁用中断的代码。 223 224 225 &this_cpu_ptr(pp)->n 对比 this_cpu_ptr(&pp->n) 226 ---------------------------------------------- 227 228 第一个操作使用偏移量并形成一个地址,然后再加上n字段的偏移量。这可能会导致编译器产 229 生两条加法指令。 230 231 第二个操作先加上两个偏移量,然后进行重定位。恕我直言,第二种形式看起来更干净,而 232 且更容易与 ``()`` 结合。第二种形式也与 ``this_cpu_read()`` 和大家的使用方式一致。 233 234 235 远程访问每CPU数据 236 ----------------- 237 238 每CPU数据结构被设计为由一个CPU独占使用。如果您按预期使用变量,则 ``this_cpu_ops()`` 239 保证是 ``原子的`` ,因为没有其他CPU可以访问这些数据结构。 240 241 在某些特殊情况下,您可能需要远程访问每CPU数据结构。通常情况下,进行远程读访问是安 242 全的,这经常是为了统计计数器值。远程写访问可能会出现问题,因为this_cpu操作没有锁 243 语义。远程写可能会干扰this_cpu RMW操作。 244 245 除非绝对必要,否则强烈建议不要对每CPU数据结构进行远程写访问。请考虑使用IPI来唤醒 246 远程CPU,并对其每CPU区域进行更新。 247 248 要远程访问每CPU数据结构,通常使用 ``per_cpu_ptr()`` 函数:: 249 250 251 DEFINE_PER_CPU(struct data, datap); 252 253 struct data *p = per_cpu_ptr(&datap, cpu); 254 255 这清楚地表明,我们正准备远程访问每CPU区域。 256 257 您还可以执行以下操作以将datap偏移量转换为地址:: 258 259 struct data *p = this_cpu_ptr(&datap); 260 261 但是,将通过this_cpu_ptr计算的指针传递给其他cpu是不寻常的,应该避免。 262 263 远程访问通常只用于读取另一个cpu的每CPU数据状态。由于this_cpu操作宽松的同步要求, 264 写访问可能会导致奇特的问题。 265 266 下面的情况说明了写入操作的一些问题,由于两个每CPU变量共享一个缓存行,但宽松的同步 267 仅应用于更新缓存行的一个进程。 268 269 考虑以下示例:: 270 271 272 struct test { 273 atomic_t a; 274 int b; 275 }; 276 277 DEFINE_PER_CPU(struct test, onecacheline); 278 279 如果一个处理器远程更新字段 ``a`` ,而本地处理器将使用this_cpu ops来更新字段 ``b`` , 280 会发生什么情况,这一点值得注意。应避免在同一缓存行内同时访问数据。此外,可能还需 281 要进行代价高昂的同步。在这种情况下,通常建议使用IPI,而不是远程写入另一个处理器的 282 每CPU区域。 283 284 即使在远程写很少的情况下,请记住远程写将从最有可能访问它的处理器中逐出缓存行。如 285 果处理器唤醒时发现每CPU区域缺少本地缓存行,其性能和唤醒时间将受到影响。
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.