1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * include/asm-alpha/dma.h 4 * 5 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs 6 * use ISA-compatible dma. The only extension is support for high-page 7 * registers that allow to set the top 8 bits of a 32-bit DMA address. 8 * This register should be written last when setting up a DMA address 9 * as this will also enable DMA across 64 KB boundaries. 10 */ 11 12 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $ 13 * linux/include/asm/dma.h: Defines for using and allocating dma channels. 14 * Written by Hennus Bergman, 1992. 15 * High DMA channel support & info by Hannu Savolainen 16 * and John Boyd, Nov. 1992. 17 */ 18 19 #ifndef _ASM_DMA_H 20 #define _ASM_DMA_H 21 22 #include <linux/spinlock.h> 23 #include <asm/io.h> 24 25 #define dma_outb outb 26 #define dma_inb inb 27 28 /* 29 * NOTES about DMA transfers: 30 * 31 * controller 1: channels 0-3, byte operations, ports 00-1F 32 * controller 2: channels 4-7, word operations, ports C0-DF 33 * 34 * - ALL registers are 8 bits only, regardless of transfer size 35 * - channel 4 is not used - cascades 1 into 2. 36 * - channels 0-3 are byte - addresses/counts are for physical bytes 37 * - channels 5-7 are word - addresses/counts are for physical words 38 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries 39 * - transfer count loaded to registers is 1 less than actual count 40 * - controller 2 offsets are all even (2x offsets for controller 1) 41 * - page registers for 5-7 don't use data bit 0, represent 128K pages 42 * - page registers for 0-3 use bit 0, represent 64K pages 43 * 44 * DMA transfers are limited to the lower 16MB of _physical_ memory. 45 * Note that addresses loaded into registers must be _physical_ addresses, 46 * not logical addresses (which may differ if paging is active). 47 * 48 * Address mapping for channels 0-3: 49 * 50 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) 51 * | ... | | ... | | ... | 52 * | ... | | ... | | ... | 53 * | ... | | ... | | ... | 54 * P7 ... P0 A7 ... A0 A7 ... A0 55 * | Page | Addr MSB | Addr LSB | (DMA registers) 56 * 57 * Address mapping for channels 5-7: 58 * 59 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) 60 * | ... | \ \ ... \ \ \ ... \ \ 61 * | ... | \ \ ... \ \ \ ... \ (not used) 62 * | ... | \ \ ... \ \ \ ... \ 63 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 64 * | Page | Addr MSB | Addr LSB | (DMA registers) 65 * 66 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses 67 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at 68 * the hardware level, so odd-byte transfers aren't possible). 69 * 70 * Transfer count (_not # bytes_) is limited to 64K, represented as actual 71 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, 72 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 73 * 74 */ 75 76 #define MAX_DMA_CHANNELS 8 77 78 /* 79 ISA DMA limitations on Alpha platforms, 80 81 These may be due to SIO (PCI<->ISA bridge) chipset limitation, or 82 just a wiring limit. 83 */ 84 85 /* The maximum address for ISA DMA transfer on RUFFIAN, 86 due to an hardware SIO limitation, is 16MB. 87 */ 88 #define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 0x01000000UL 89 90 /* The maximum address for ISA DMA transfer on SABLE, and some ALCORs, 91 due to an hardware SIO chip limitation, is 2GB. 92 */ 93 #define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS 0x80000000UL 94 #define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS 0x80000000UL 95 96 /* 97 Maximum address for all the others is the complete 32-bit bus 98 address space. 99 */ 100 #define ALPHA_MAX_ISA_DMA_ADDRESS 0x100000000UL 101 102 #ifdef CONFIG_ALPHA_GENERIC 103 # define MAX_ISA_DMA_ADDRESS (alpha_mv.max_isa_dma_address) 104 #else 105 # if defined(CONFIG_ALPHA_RUFFIAN) 106 # define MAX_ISA_DMA_ADDRESS ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 107 # elif defined(CONFIG_ALPHA_SABLE) 108 # define MAX_ISA_DMA_ADDRESS ALPHA_SABLE_MAX_ISA_DMA_ADDRESS 109 # elif defined(CONFIG_ALPHA_ALCOR) 110 # define MAX_ISA_DMA_ADDRESS ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS 111 # else 112 # define MAX_ISA_DMA_ADDRESS ALPHA_MAX_ISA_DMA_ADDRESS 113 # endif 114 #endif 115 116 /* If we have the iommu, we don't have any address limitations on DMA. 117 Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone 118 like i386. */ 119 #define MAX_DMA_ADDRESS (alpha_mv.mv_pci_tbi ? \ 120 ~0UL : IDENT_ADDR + 0x01000000) 121 122 /* 8237 DMA controllers */ 123 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ 124 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ 125 126 /* DMA controller registers */ 127 #define DMA1_CMD_REG 0x08 /* command register (w) */ 128 #define DMA1_STAT_REG 0x08 /* status register (r) */ 129 #define DMA1_REQ_REG 0x09 /* request register (w) */ 130 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ 131 #define DMA1_MODE_REG 0x0B /* mode register (w) */ 132 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ 133 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ 134 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */ 135 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ 136 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ 137 #define DMA1_EXT_MODE_REG (0x400 | DMA1_MODE_REG) 138 139 #define DMA2_CMD_REG 0xD0 /* command register (w) */ 140 #define DMA2_STAT_REG 0xD0 /* status register (r) */ 141 #define DMA2_REQ_REG 0xD2 /* request register (w) */ 142 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ 143 #define DMA2_MODE_REG 0xD6 /* mode register (w) */ 144 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ 145 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ 146 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */ 147 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ 148 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ 149 #define DMA2_EXT_MODE_REG (0x400 | DMA2_MODE_REG) 150 151 #define DMA_ADDR_0 0x00 /* DMA address registers */ 152 #define DMA_ADDR_1 0x02 153 #define DMA_ADDR_2 0x04 154 #define DMA_ADDR_3 0x06 155 #define DMA_ADDR_4 0xC0 156 #define DMA_ADDR_5 0xC4 157 #define DMA_ADDR_6 0xC8 158 #define DMA_ADDR_7 0xCC 159 160 #define DMA_CNT_0 0x01 /* DMA count registers */ 161 #define DMA_CNT_1 0x03 162 #define DMA_CNT_2 0x05 163 #define DMA_CNT_3 0x07 164 #define DMA_CNT_4 0xC2 165 #define DMA_CNT_5 0xC6 166 #define DMA_CNT_6 0xCA 167 #define DMA_CNT_7 0xCE 168 169 #define DMA_PAGE_0 0x87 /* DMA page registers */ 170 #define DMA_PAGE_1 0x83 171 #define DMA_PAGE_2 0x81 172 #define DMA_PAGE_3 0x82 173 #define DMA_PAGE_5 0x8B 174 #define DMA_PAGE_6 0x89 175 #define DMA_PAGE_7 0x8A 176 177 #define DMA_HIPAGE_0 (0x400 | DMA_PAGE_0) 178 #define DMA_HIPAGE_1 (0x400 | DMA_PAGE_1) 179 #define DMA_HIPAGE_2 (0x400 | DMA_PAGE_2) 180 #define DMA_HIPAGE_3 (0x400 | DMA_PAGE_3) 181 #define DMA_HIPAGE_4 (0x400 | DMA_PAGE_4) 182 #define DMA_HIPAGE_5 (0x400 | DMA_PAGE_5) 183 #define DMA_HIPAGE_6 (0x400 | DMA_PAGE_6) 184 #define DMA_HIPAGE_7 (0x400 | DMA_PAGE_7) 185 186 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ 187 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ 188 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ 189 190 #define DMA_AUTOINIT 0x10 191 192 extern spinlock_t dma_spin_lock; 193 194 static __inline__ unsigned long claim_dma_lock(void) 195 { 196 unsigned long flags; 197 spin_lock_irqsave(&dma_spin_lock, flags); 198 return flags; 199 } 200 201 static __inline__ void release_dma_lock(unsigned long flags) 202 { 203 spin_unlock_irqrestore(&dma_spin_lock, flags); 204 } 205 206 /* enable/disable a specific DMA channel */ 207 static __inline__ void enable_dma(unsigned int dmanr) 208 { 209 if (dmanr<=3) 210 dma_outb(dmanr, DMA1_MASK_REG); 211 else 212 dma_outb(dmanr & 3, DMA2_MASK_REG); 213 } 214 215 static __inline__ void disable_dma(unsigned int dmanr) 216 { 217 if (dmanr<=3) 218 dma_outb(dmanr | 4, DMA1_MASK_REG); 219 else 220 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); 221 } 222 223 /* Clear the 'DMA Pointer Flip Flop'. 224 * Write 0 for LSB/MSB, 1 for MSB/LSB access. 225 * Use this once to initialize the FF to a known state. 226 * After that, keep track of it. :-) 227 * --- In order to do that, the DMA routines below should --- 228 * --- only be used while interrupts are disabled! --- 229 */ 230 static __inline__ void clear_dma_ff(unsigned int dmanr) 231 { 232 if (dmanr<=3) 233 dma_outb(0, DMA1_CLEAR_FF_REG); 234 else 235 dma_outb(0, DMA2_CLEAR_FF_REG); 236 } 237 238 /* set mode (above) for a specific DMA channel */ 239 static __inline__ void set_dma_mode(unsigned int dmanr, char mode) 240 { 241 if (dmanr<=3) 242 dma_outb(mode | dmanr, DMA1_MODE_REG); 243 else 244 dma_outb(mode | (dmanr&3), DMA2_MODE_REG); 245 } 246 247 /* set extended mode for a specific DMA channel */ 248 static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode) 249 { 250 if (dmanr<=3) 251 dma_outb(ext_mode | dmanr, DMA1_EXT_MODE_REG); 252 else 253 dma_outb(ext_mode | (dmanr&3), DMA2_EXT_MODE_REG); 254 } 255 256 /* Set only the page register bits of the transfer address. 257 * This is used for successive transfers when we know the contents of 258 * the lower 16 bits of the DMA current address register. 259 */ 260 static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr) 261 { 262 switch(dmanr) { 263 case 0: 264 dma_outb(pagenr, DMA_PAGE_0); 265 dma_outb((pagenr >> 8), DMA_HIPAGE_0); 266 break; 267 case 1: 268 dma_outb(pagenr, DMA_PAGE_1); 269 dma_outb((pagenr >> 8), DMA_HIPAGE_1); 270 break; 271 case 2: 272 dma_outb(pagenr, DMA_PAGE_2); 273 dma_outb((pagenr >> 8), DMA_HIPAGE_2); 274 break; 275 case 3: 276 dma_outb(pagenr, DMA_PAGE_3); 277 dma_outb((pagenr >> 8), DMA_HIPAGE_3); 278 break; 279 case 5: 280 dma_outb(pagenr & 0xfe, DMA_PAGE_5); 281 dma_outb((pagenr >> 8), DMA_HIPAGE_5); 282 break; 283 case 6: 284 dma_outb(pagenr & 0xfe, DMA_PAGE_6); 285 dma_outb((pagenr >> 8), DMA_HIPAGE_6); 286 break; 287 case 7: 288 dma_outb(pagenr & 0xfe, DMA_PAGE_7); 289 dma_outb((pagenr >> 8), DMA_HIPAGE_7); 290 break; 291 } 292 } 293 294 295 /* Set transfer address & page bits for specific DMA channel. 296 * Assumes dma flipflop is clear. 297 */ 298 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) 299 { 300 if (dmanr <= 3) { 301 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 302 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 303 } else { 304 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 305 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 306 } 307 set_dma_page(dmanr, a>>16); /* set hipage last to enable 32-bit mode */ 308 } 309 310 311 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for 312 * a specific DMA channel. 313 * You must ensure the parameters are valid. 314 * NOTE: from a manual: "the number of transfers is one more 315 * than the initial word count"! This is taken into account. 316 * Assumes dma flip-flop is clear. 317 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. 318 */ 319 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) 320 { 321 count--; 322 if (dmanr <= 3) { 323 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 324 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 325 } else { 326 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 327 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 328 } 329 } 330 331 332 /* Get DMA residue count. After a DMA transfer, this 333 * should return zero. Reading this while a DMA transfer is 334 * still in progress will return unpredictable results. 335 * If called before the channel has been used, it may return 1. 336 * Otherwise, it returns the number of _bytes_ left to transfer. 337 * 338 * Assumes DMA flip-flop is clear. 339 */ 340 static __inline__ int get_dma_residue(unsigned int dmanr) 341 { 342 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE 343 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; 344 345 /* using short to get 16-bit wrap around */ 346 unsigned short count; 347 348 count = 1 + dma_inb(io_port); 349 count += dma_inb(io_port) << 8; 350 351 return (dmanr<=3)? count : (count<<1); 352 } 353 354 355 /* These are in kernel/dma.c: */ 356 extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */ 357 extern void free_dma(unsigned int dmanr); /* release it again */ 358 #define KERNEL_HAVE_CHECK_DMA 359 extern int check_dma(unsigned int dmanr); 360 361 #endif /* _ASM_DMA_H */ 362
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.