1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * arch/alpha/lib/stxcpy.S 4 * Contributed by Richard Henderson (rth@tamu.edu) 5 * 6 * Copy a null-terminated string from SRC to DST. 7 * 8 * This is an internal routine used by strcpy, stpcpy, and strcat. 9 * As such, it uses special linkage conventions to make implementation 10 * of these public functions more efficient. 11 * 12 * On input: 13 * t9 = return address 14 * a0 = DST 15 * a1 = SRC 16 * 17 * On output: 18 * t12 = bitmask (with one bit set) indicating the last byte written 19 * a0 = unaligned address of the last *word* written 20 * 21 * Furthermore, v0, a3-a5, t11, and t12 are untouched. 22 */ 23 24 #include <asm/regdef.h> 25 26 .set noat 27 .set noreorder 28 29 .text 30 31 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that 32 doesn't like putting the entry point for a procedure somewhere in the 33 middle of the procedure descriptor. Work around this by putting the 34 aligned copy in its own procedure descriptor */ 35 36 .ent stxcpy_aligned 37 .align 3 38 stxcpy_aligned: 39 .frame sp, 0, t9 40 .prologue 0 41 42 /* On entry to this basic block: 43 t0 == the first destination word for masking back in 44 t1 == the first source word. */ 45 46 /* Create the 1st output word and detect 0's in the 1st input word. */ 47 lda t2, -1 # e1 : build a mask against false zero 48 mskqh t2, a1, t2 # e0 : detection in the src word 49 mskqh t1, a1, t3 # e0 : 50 ornot t1, t2, t2 # .. e1 : 51 mskql t0, a1, t0 # e0 : assemble the first output word 52 cmpbge zero, t2, t8 # .. e1 : bits set iff null found 53 or t0, t3, t1 # e0 : 54 bne t8, $a_eos # .. e1 : 55 56 /* On entry to this basic block: 57 t0 == the first destination word for masking back in 58 t1 == a source word not containing a null. */ 59 60 $a_loop: 61 stq_u t1, 0(a0) # e0 : 62 addq a0, 8, a0 # .. e1 : 63 ldq_u t1, 0(a1) # e0 : 64 addq a1, 8, a1 # .. e1 : 65 cmpbge zero, t1, t8 # e0 (stall) 66 beq t8, $a_loop # .. e1 (zdb) 67 68 /* Take care of the final (partial) word store. 69 On entry to this basic block we have: 70 t1 == the source word containing the null 71 t8 == the cmpbge mask that found it. */ 72 $a_eos: 73 negq t8, t6 # e0 : find low bit set 74 and t8, t6, t12 # e1 (stall) 75 76 /* For the sake of the cache, don't read a destination word 77 if we're not going to need it. */ 78 and t12, 0x80, t6 # e0 : 79 bne t6, 1f # .. e1 (zdb) 80 81 /* We're doing a partial word store and so need to combine 82 our source and original destination words. */ 83 ldq_u t0, 0(a0) # e0 : 84 subq t12, 1, t6 # .. e1 : 85 zapnot t1, t6, t1 # e0 : clear src bytes >= null 86 or t12, t6, t8 # .. e1 : 87 zap t0, t8, t0 # e0 : clear dst bytes <= null 88 or t0, t1, t1 # e1 : 89 90 1: stq_u t1, 0(a0) # e0 : 91 ret (t9) # .. e1 : 92 93 .end stxcpy_aligned 94 95 .align 3 96 .ent __stxcpy 97 .globl __stxcpy 98 __stxcpy: 99 .frame sp, 0, t9 100 .prologue 0 101 102 /* Are source and destination co-aligned? */ 103 xor a0, a1, t0 # e0 : 104 unop # : 105 and t0, 7, t0 # e0 : 106 bne t0, $unaligned # .. e1 : 107 108 /* We are co-aligned; take care of a partial first word. */ 109 ldq_u t1, 0(a1) # e0 : load first src word 110 and a0, 7, t0 # .. e1 : take care not to load a word ... 111 addq a1, 8, a1 # e0 : 112 beq t0, stxcpy_aligned # .. e1 : ... if we wont need it 113 ldq_u t0, 0(a0) # e0 : 114 br stxcpy_aligned # .. e1 : 115 116 117 /* The source and destination are not co-aligned. Align the destination 118 and cope. We have to be very careful about not reading too much and 119 causing a SEGV. */ 120 121 .align 3 122 $u_head: 123 /* We know just enough now to be able to assemble the first 124 full source word. We can still find a zero at the end of it 125 that prevents us from outputting the whole thing. 126 127 On entry to this basic block: 128 t0 == the first dest word, for masking back in, if needed else 0 129 t1 == the low bits of the first source word 130 t6 == bytemask that is -1 in dest word bytes */ 131 132 ldq_u t2, 8(a1) # e0 : 133 addq a1, 8, a1 # .. e1 : 134 135 extql t1, a1, t1 # e0 : 136 extqh t2, a1, t4 # e0 : 137 mskql t0, a0, t0 # e0 : 138 or t1, t4, t1 # .. e1 : 139 mskqh t1, a0, t1 # e0 : 140 or t0, t1, t1 # e1 : 141 142 or t1, t6, t6 # e0 : 143 cmpbge zero, t6, t8 # .. e1 : 144 lda t6, -1 # e0 : for masking just below 145 bne t8, $u_final # .. e1 : 146 147 mskql t6, a1, t6 # e0 : mask out the bits we have 148 or t6, t2, t2 # e1 : already extracted before 149 cmpbge zero, t2, t8 # e0 : testing eos 150 bne t8, $u_late_head_exit # .. e1 (zdb) 151 152 /* Finally, we've got all the stupid leading edge cases taken care 153 of and we can set up to enter the main loop. */ 154 155 stq_u t1, 0(a0) # e0 : store first output word 156 addq a0, 8, a0 # .. e1 : 157 extql t2, a1, t0 # e0 : position ho-bits of lo word 158 ldq_u t2, 8(a1) # .. e1 : read next high-order source word 159 addq a1, 8, a1 # e0 : 160 cmpbge zero, t2, t8 # .. e1 : 161 nop # e0 : 162 bne t8, $u_eos # .. e1 : 163 164 /* Unaligned copy main loop. In order to avoid reading too much, 165 the loop is structured to detect zeros in aligned source words. 166 This has, unfortunately, effectively pulled half of a loop 167 iteration out into the head and half into the tail, but it does 168 prevent nastiness from accumulating in the very thing we want 169 to run as fast as possible. 170 171 On entry to this basic block: 172 t0 == the shifted high-order bits from the previous source word 173 t2 == the unshifted current source word 174 175 We further know that t2 does not contain a null terminator. */ 176 177 .align 3 178 $u_loop: 179 extqh t2, a1, t1 # e0 : extract high bits for current word 180 addq a1, 8, a1 # .. e1 : 181 extql t2, a1, t3 # e0 : extract low bits for next time 182 addq a0, 8, a0 # .. e1 : 183 or t0, t1, t1 # e0 : current dst word now complete 184 ldq_u t2, 0(a1) # .. e1 : load high word for next time 185 stq_u t1, -8(a0) # e0 : save the current word 186 mov t3, t0 # .. e1 : 187 cmpbge zero, t2, t8 # e0 : test new word for eos 188 beq t8, $u_loop # .. e1 : 189 190 /* We've found a zero somewhere in the source word we just read. 191 If it resides in the lower half, we have one (probably partial) 192 word to write out, and if it resides in the upper half, we 193 have one full and one partial word left to write out. 194 195 On entry to this basic block: 196 t0 == the shifted high-order bits from the previous source word 197 t2 == the unshifted current source word. */ 198 $u_eos: 199 extqh t2, a1, t1 # e0 : 200 or t0, t1, t1 # e1 : first (partial) source word complete 201 202 cmpbge zero, t1, t8 # e0 : is the null in this first bit? 203 bne t8, $u_final # .. e1 (zdb) 204 205 $u_late_head_exit: 206 stq_u t1, 0(a0) # e0 : the null was in the high-order bits 207 addq a0, 8, a0 # .. e1 : 208 extql t2, a1, t1 # e0 : 209 cmpbge zero, t1, t8 # .. e1 : 210 211 /* Take care of a final (probably partial) result word. 212 On entry to this basic block: 213 t1 == assembled source word 214 t8 == cmpbge mask that found the null. */ 215 $u_final: 216 negq t8, t6 # e0 : isolate low bit set 217 and t6, t8, t12 # e1 : 218 219 and t12, 0x80, t6 # e0 : avoid dest word load if we can 220 bne t6, 1f # .. e1 (zdb) 221 222 ldq_u t0, 0(a0) # e0 : 223 subq t12, 1, t6 # .. e1 : 224 or t6, t12, t8 # e0 : 225 zapnot t1, t6, t1 # .. e1 : kill source bytes >= null 226 zap t0, t8, t0 # e0 : kill dest bytes <= null 227 or t0, t1, t1 # e1 : 228 229 1: stq_u t1, 0(a0) # e0 : 230 ret (t9) # .. e1 : 231 232 /* Unaligned copy entry point. */ 233 .align 3 234 $unaligned: 235 236 ldq_u t1, 0(a1) # e0 : load first source word 237 238 and a0, 7, t4 # .. e1 : find dest misalignment 239 and a1, 7, t5 # e0 : find src misalignment 240 241 /* Conditionally load the first destination word and a bytemask 242 with 0xff indicating that the destination byte is sacrosanct. */ 243 244 mov zero, t0 # .. e1 : 245 mov zero, t6 # e0 : 246 beq t4, 1f # .. e1 : 247 ldq_u t0, 0(a0) # e0 : 248 lda t6, -1 # .. e1 : 249 mskql t6, a0, t6 # e0 : 250 1: 251 subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr 252 253 /* If source misalignment is larger than dest misalignment, we need 254 extra startup checks to avoid SEGV. */ 255 256 cmplt t4, t5, t12 # e0 : 257 beq t12, $u_head # .. e1 (zdb) 258 259 lda t2, -1 # e1 : mask out leading garbage in source 260 mskqh t2, t5, t2 # e0 : 261 nop # e0 : 262 ornot t1, t2, t3 # .. e1 : 263 cmpbge zero, t3, t8 # e0 : is there a zero? 264 beq t8, $u_head # .. e1 (zdb) 265 266 /* At this point we've found a zero in the first partial word of 267 the source. We need to isolate the valid source data and mask 268 it into the original destination data. (Incidentally, we know 269 that we'll need at least one byte of that original dest word.) */ 270 271 ldq_u t0, 0(a0) # e0 : 272 273 negq t8, t6 # .. e1 : build bitmask of bytes <= zero 274 and t6, t8, t12 # e0 : 275 and a1, 7, t5 # .. e1 : 276 subq t12, 1, t6 # e0 : 277 or t6, t12, t8 # e1 : 278 srl t12, t5, t12 # e0 : adjust final null return value 279 280 zapnot t2, t8, t2 # .. e1 : prepare source word; mirror changes 281 and t1, t2, t1 # e1 : to source validity mask 282 extql t2, a1, t2 # .. e0 : 283 extql t1, a1, t1 # e0 : 284 285 andnot t0, t2, t0 # .. e1 : zero place for source to reside 286 or t0, t1, t1 # e1 : and put it there 287 stq_u t1, 0(a0) # .. e0 : 288 ret (t9) # e1 : 289 290 .end __stxcpy
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.