~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arc/kernel/kprobes.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  4  */
  5 
  6 #include <linux/types.h>
  7 #include <linux/kprobes.h>
  8 #include <linux/slab.h>
  9 #include <linux/module.h>
 10 #include <linux/kdebug.h>
 11 #include <linux/sched.h>
 12 #include <linux/uaccess.h>
 13 #include <asm/cacheflush.h>
 14 #include <asm/current.h>
 15 #include <asm/disasm.h>
 16 
 17 #define MIN_STACK_SIZE(addr)    min((unsigned long)MAX_STACK_SIZE, \
 18                 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
 19 
 20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 22 
 23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
 24 {
 25         /* Attempt to probe at unaligned address */
 26         if ((unsigned long)p->addr & 0x01)
 27                 return -EINVAL;
 28 
 29         /* Address should not be in exception handling code */
 30 
 31         p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
 32         p->opcode = *p->addr;
 33 
 34         return 0;
 35 }
 36 
 37 void __kprobes arch_arm_kprobe(struct kprobe *p)
 38 {
 39         *p->addr = UNIMP_S_INSTRUCTION;
 40 
 41         flush_icache_range((unsigned long)p->addr,
 42                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 43 }
 44 
 45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
 46 {
 47         *p->addr = p->opcode;
 48 
 49         flush_icache_range((unsigned long)p->addr,
 50                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 51 }
 52 
 53 void __kprobes arch_remove_kprobe(struct kprobe *p)
 54 {
 55         arch_disarm_kprobe(p);
 56 
 57         /* Can we remove the kprobe in the middle of kprobe handling? */
 58         if (p->ainsn.t1_addr) {
 59                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
 60 
 61                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
 62                                    (unsigned long)p->ainsn.t1_addr +
 63                                    sizeof(kprobe_opcode_t));
 64 
 65                 p->ainsn.t1_addr = NULL;
 66         }
 67 
 68         if (p->ainsn.t2_addr) {
 69                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
 70 
 71                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
 72                                    (unsigned long)p->ainsn.t2_addr +
 73                                    sizeof(kprobe_opcode_t));
 74 
 75                 p->ainsn.t2_addr = NULL;
 76         }
 77 }
 78 
 79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 80 {
 81         kcb->prev_kprobe.kp = kprobe_running();
 82         kcb->prev_kprobe.status = kcb->kprobe_status;
 83 }
 84 
 85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 86 {
 87         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 88         kcb->kprobe_status = kcb->prev_kprobe.status;
 89 }
 90 
 91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
 92 {
 93         __this_cpu_write(current_kprobe, p);
 94 }
 95 
 96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
 97                                        struct pt_regs *regs)
 98 {
 99         /* Remove the trap instructions inserted for single step and
100          * restore the original instructions
101          */
102         if (p->ainsn.t1_addr) {
103                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104 
105                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
106                                    (unsigned long)p->ainsn.t1_addr +
107                                    sizeof(kprobe_opcode_t));
108 
109                 p->ainsn.t1_addr = NULL;
110         }
111 
112         if (p->ainsn.t2_addr) {
113                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114 
115                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
116                                    (unsigned long)p->ainsn.t2_addr +
117                                    sizeof(kprobe_opcode_t));
118 
119                 p->ainsn.t2_addr = NULL;
120         }
121 
122         return;
123 }
124 
125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126 {
127         unsigned long next_pc;
128         unsigned long tgt_if_br = 0;
129         int is_branch;
130         unsigned long bta;
131 
132         /* Copy the opcode back to the kprobe location and execute the
133          * instruction. Because of this we will not be able to get into the
134          * same kprobe until this kprobe is done
135          */
136         *(p->addr) = p->opcode;
137 
138         flush_icache_range((unsigned long)p->addr,
139                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140 
141         /* Now we insert the trap at the next location after this instruction to
142          * single step. If it is a branch we insert the trap at possible branch
143          * targets
144          */
145 
146         bta = regs->bta;
147 
148         if (regs->status32 & 0x40) {
149                 /* We are in a delay slot with the branch taken */
150 
151                 next_pc = bta & ~0x01;
152 
153                 if (!p->ainsn.is_short) {
154                         if (bta & 0x01)
155                                 regs->blink += 2;
156                         else {
157                                 /* Branch not taken */
158                                 next_pc += 2;
159 
160                                 /* next pc is taken from bta after executing the
161                                  * delay slot instruction
162                                  */
163                                 regs->bta += 2;
164                         }
165                 }
166 
167                 is_branch = 0;
168         } else
169                 is_branch =
170                     disasm_next_pc((unsigned long)p->addr, regs,
171                         (struct callee_regs *) current->thread.callee_reg,
172                         &next_pc, &tgt_if_br);
173 
174         p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175         p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176         *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177 
178         flush_icache_range((unsigned long)p->ainsn.t1_addr,
179                            (unsigned long)p->ainsn.t1_addr +
180                            sizeof(kprobe_opcode_t));
181 
182         if (is_branch) {
183                 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184                 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185                 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186 
187                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
188                                    (unsigned long)p->ainsn.t2_addr +
189                                    sizeof(kprobe_opcode_t));
190         }
191 }
192 
193 static int
194 __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
195 {
196         struct kprobe *p;
197         struct kprobe_ctlblk *kcb;
198 
199         preempt_disable();
200 
201         kcb = get_kprobe_ctlblk();
202         p = get_kprobe((unsigned long *)addr);
203 
204         if (p) {
205                 /*
206                  * We have reentered the kprobe_handler, since another kprobe
207                  * was hit while within the handler, we save the original
208                  * kprobes and single step on the instruction of the new probe
209                  * without calling any user handlers to avoid recursive
210                  * kprobes.
211                  */
212                 if (kprobe_running()) {
213                         save_previous_kprobe(kcb);
214                         set_current_kprobe(p);
215                         kprobes_inc_nmissed_count(p);
216                         setup_singlestep(p, regs);
217                         kcb->kprobe_status = KPROBE_REENTER;
218                         return 1;
219                 }
220 
221                 set_current_kprobe(p);
222                 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
223 
224                 /* If we have no pre-handler or it returned 0, we continue with
225                  * normal processing. If we have a pre-handler and it returned
226                  * non-zero - which means user handler setup registers to exit
227                  * to another instruction, we must skip the single stepping.
228                  */
229                 if (!p->pre_handler || !p->pre_handler(p, regs)) {
230                         setup_singlestep(p, regs);
231                         kcb->kprobe_status = KPROBE_HIT_SS;
232                 } else {
233                         reset_current_kprobe();
234                         preempt_enable_no_resched();
235                 }
236 
237                 return 1;
238         }
239 
240         /* no_kprobe: */
241         preempt_enable_no_resched();
242         return 0;
243 }
244 
245 static int
246 __kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs)
247 {
248         struct kprobe *cur = kprobe_running();
249         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
250 
251         if (!cur)
252                 return 0;
253 
254         resume_execution(cur, addr, regs);
255 
256         /* Rearm the kprobe */
257         arch_arm_kprobe(cur);
258 
259         /*
260          * When we return from trap instruction we go to the next instruction
261          * We restored the actual instruction in resume_exectuiont and we to
262          * return to the same address and execute it
263          */
264         regs->ret = addr;
265 
266         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
267                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
268                 cur->post_handler(cur, regs, 0);
269         }
270 
271         if (kcb->kprobe_status == KPROBE_REENTER) {
272                 restore_previous_kprobe(kcb);
273                 goto out;
274         }
275 
276         reset_current_kprobe();
277 
278 out:
279         preempt_enable_no_resched();
280         return 1;
281 }
282 
283 /*
284  * Fault can be for the instruction being single stepped or for the
285  * pre/post handlers in the module.
286  * This is applicable for applications like user probes, where we have the
287  * probe in user space and the handlers in the kernel
288  */
289 
290 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
291 {
292         struct kprobe *cur = kprobe_running();
293         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294 
295         switch (kcb->kprobe_status) {
296         case KPROBE_HIT_SS:
297         case KPROBE_REENTER:
298                 /*
299                  * We are here because the instruction being single stepped
300                  * caused the fault. We reset the current kprobe and allow the
301                  * exception handler as if it is regular exception. In our
302                  * case it doesn't matter because the system will be halted
303                  */
304                 resume_execution(cur, (unsigned long)cur->addr, regs);
305 
306                 if (kcb->kprobe_status == KPROBE_REENTER)
307                         restore_previous_kprobe(kcb);
308                 else
309                         reset_current_kprobe();
310 
311                 preempt_enable_no_resched();
312                 break;
313 
314         case KPROBE_HIT_ACTIVE:
315         case KPROBE_HIT_SSDONE:
316                 /*
317                  * We are here because the instructions in the pre/post handler
318                  * caused the fault.
319                  */
320 
321                 /*
322                  * In case the user-specified fault handler returned zero,
323                  * try to fix up.
324                  */
325                 if (fixup_exception(regs))
326                         return 1;
327 
328                 /*
329                  * fixup_exception() could not handle it,
330                  * Let do_page_fault() fix it.
331                  */
332                 break;
333 
334         default:
335                 break;
336         }
337         return 0;
338 }
339 
340 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
341                                        unsigned long val, void *data)
342 {
343         struct die_args *args = data;
344         unsigned long addr = args->err;
345         int ret = NOTIFY_DONE;
346 
347         switch (val) {
348         case DIE_IERR:
349                 if (arc_kprobe_handler(addr, args->regs))
350                         return NOTIFY_STOP;
351                 break;
352 
353         case DIE_TRAP:
354                 if (arc_post_kprobe_handler(addr, args->regs))
355                         return NOTIFY_STOP;
356                 break;
357 
358         default:
359                 break;
360         }
361 
362         return ret;
363 }
364 
365 static void __used kretprobe_trampoline_holder(void)
366 {
367         __asm__ __volatile__(".global __kretprobe_trampoline\n"
368                              "__kretprobe_trampoline:\n"
369                              "nop\n");
370 }
371 
372 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
373                                       struct pt_regs *regs)
374 {
375 
376         ri->ret_addr = (kprobe_opcode_t *) regs->blink;
377         ri->fp = NULL;
378 
379         /* Replace the return addr with trampoline addr */
380         regs->blink = (unsigned long)&__kretprobe_trampoline;
381 }
382 
383 static int __kprobes trampoline_probe_handler(struct kprobe *p,
384                                               struct pt_regs *regs)
385 {
386         regs->ret = __kretprobe_trampoline_handler(regs, NULL);
387 
388         /* By returning a non zero value, we are telling the kprobe handler
389          * that we don't want the post_handler to run
390          */
391         return 1;
392 }
393 
394 static struct kprobe trampoline_p = {
395         .addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
396         .pre_handler = trampoline_probe_handler
397 };
398 
399 int __init arch_init_kprobes(void)
400 {
401         /* Registering the trampoline code for the kret probe */
402         return register_kprobe(&trampoline_p);
403 }
404 
405 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
406 {
407         if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline)
408                 return 1;
409 
410         return 0;
411 }
412 
413 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
414 {
415         notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
416 }
417 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php