~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arc/mm/tlb.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4
  4  *
  5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  6  *
  7  */
  8 
  9 #include <linux/module.h>
 10 #include <linux/bug.h>
 11 #include <linux/mm_types.h>
 12 
 13 #include <asm/arcregs.h>
 14 #include <asm/setup.h>
 15 #include <asm/mmu_context.h>
 16 #include <asm/mmu.h>
 17 
 18 /* A copy of the ASID from the PID reg is kept in asid_cache */
 19 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
 20 
 21 static struct cpuinfo_arc_mmu {
 22         unsigned int ver, pg_sz_k, s_pg_sz_m, pae, sets, ways;
 23 } mmuinfo;
 24 
 25 /*
 26  * Utility Routine to erase a J-TLB entry
 27  * Caller needs to setup Index Reg (manually or via getIndex)
 28  */
 29 static inline void __tlb_entry_erase(void)
 30 {
 31         write_aux_reg(ARC_REG_TLBPD1, 0);
 32 
 33         if (is_pae40_enabled())
 34                 write_aux_reg(ARC_REG_TLBPD1HI, 0);
 35 
 36         write_aux_reg(ARC_REG_TLBPD0, 0);
 37         write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 38 }
 39 
 40 static void utlb_invalidate(void)
 41 {
 42         write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
 43 }
 44 
 45 #ifdef CONFIG_ARC_MMU_V3
 46 
 47 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
 48 {
 49         unsigned int idx;
 50 
 51         write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
 52 
 53         write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
 54         idx = read_aux_reg(ARC_REG_TLBINDEX);
 55 
 56         return idx;
 57 }
 58 
 59 static void tlb_entry_erase(unsigned int vaddr_n_asid)
 60 {
 61         unsigned int idx;
 62 
 63         /* Locate the TLB entry for this vaddr + ASID */
 64         idx = tlb_entry_lkup(vaddr_n_asid);
 65 
 66         /* No error means entry found, zero it out */
 67         if (likely(!(idx & TLB_LKUP_ERR))) {
 68                 __tlb_entry_erase();
 69         } else {
 70                 /* Duplicate entry error */
 71                 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
 72                                            vaddr_n_asid);
 73         }
 74 }
 75 
 76 static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
 77 {
 78         unsigned int idx;
 79 
 80         /*
 81          * First verify if entry for this vaddr+ASID already exists
 82          * This also sets up PD0 (vaddr, ASID..) for final commit
 83          */
 84         idx = tlb_entry_lkup(pd0);
 85 
 86         /*
 87          * If Not already present get a free slot from MMU.
 88          * Otherwise, Probe would have located the entry and set INDEX Reg
 89          * with existing location. This will cause Write CMD to over-write
 90          * existing entry with new PD0 and PD1
 91          */
 92         if (likely(idx & TLB_LKUP_ERR))
 93                 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
 94 
 95         /* setup the other half of TLB entry (pfn, rwx..) */
 96         write_aux_reg(ARC_REG_TLBPD1, pd1);
 97 
 98         /*
 99          * Commit the Entry to MMU
100          * It doesn't sound safe to use the TLBWriteNI cmd here
101          * which doesn't flush uTLBs. I'd rather be safe than sorry.
102          */
103         write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
104 }
105 
106 #else   /* MMUv4 */
107 
108 static void tlb_entry_erase(unsigned int vaddr_n_asid)
109 {
110         write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
111         write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
112 }
113 
114 static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
115 {
116         write_aux_reg(ARC_REG_TLBPD0, pd0);
117 
118         if (!is_pae40_enabled()) {
119                 write_aux_reg(ARC_REG_TLBPD1, pd1);
120         } else {
121                 write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF);
122                 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
123         }
124 
125         write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
126 }
127 
128 #endif
129 
130 /*
131  * Un-conditionally (without lookup) erase the entire MMU contents
132  */
133 
134 noinline void local_flush_tlb_all(void)
135 {
136         struct cpuinfo_arc_mmu *mmu = &mmuinfo;
137         unsigned long flags;
138         unsigned int entry;
139         int num_tlb = mmu->sets * mmu->ways;
140 
141         local_irq_save(flags);
142 
143         /* Load PD0 and PD1 with template for a Blank Entry */
144         write_aux_reg(ARC_REG_TLBPD1, 0);
145 
146         if (is_pae40_enabled())
147                 write_aux_reg(ARC_REG_TLBPD1HI, 0);
148 
149         write_aux_reg(ARC_REG_TLBPD0, 0);
150 
151         for (entry = 0; entry < num_tlb; entry++) {
152                 /* write this entry to the TLB */
153                 write_aux_reg(ARC_REG_TLBINDEX, entry);
154                 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
155         }
156 
157         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
158                 const int stlb_idx = 0x800;
159 
160                 /* Blank sTLB entry */
161                 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
162 
163                 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
164                         write_aux_reg(ARC_REG_TLBINDEX, entry);
165                         write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
166                 }
167         }
168 
169         utlb_invalidate();
170 
171         local_irq_restore(flags);
172 }
173 
174 /*
175  * Flush the entire MM for userland. The fastest way is to move to Next ASID
176  */
177 noinline void local_flush_tlb_mm(struct mm_struct *mm)
178 {
179         /*
180          * Small optimisation courtesy IA64
181          * flush_mm called during fork,exit,munmap etc, multiple times as well.
182          * Only for fork( ) do we need to move parent to a new MMU ctxt,
183          * all other cases are NOPs, hence this check.
184          */
185         if (atomic_read(&mm->mm_users) == 0)
186                 return;
187 
188         /*
189          * - Move to a new ASID, but only if the mm is still wired in
190          *   (Android Binder ended up calling this for vma->mm != tsk->mm,
191          *    causing h/w - s/w ASID to get out of sync)
192          * - Also get_new_mmu_context() new implementation allocates a new
193          *   ASID only if it is not allocated already - so unallocate first
194          */
195         destroy_context(mm);
196         if (current->mm == mm)
197                 get_new_mmu_context(mm);
198 }
199 
200 /*
201  * Flush a Range of TLB entries for userland.
202  * @start is inclusive, while @end is exclusive
203  * Difference between this and Kernel Range Flush is
204  *  -Here the fastest way (if range is too large) is to move to next ASID
205  *      without doing any explicit Shootdown
206  *  -In case of kernel Flush, entry has to be shot down explicitly
207  */
208 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
209                            unsigned long end)
210 {
211         const unsigned int cpu = smp_processor_id();
212         unsigned long flags;
213 
214         /* If range @start to @end is more than 32 TLB entries deep,
215          * it's better to move to a new ASID rather than searching for
216          * individual entries and then shooting them down
217          *
218          * The calc above is rough, doesn't account for unaligned parts,
219          * since this is heuristics based anyways
220          */
221         if (unlikely((end - start) >= PAGE_SIZE * 32)) {
222                 local_flush_tlb_mm(vma->vm_mm);
223                 return;
224         }
225 
226         /*
227          * @start moved to page start: this alone suffices for checking
228          * loop end condition below, w/o need for aligning @end to end
229          * e.g. 2000 to 4001 will anyhow loop twice
230          */
231         start &= PAGE_MASK;
232 
233         local_irq_save(flags);
234 
235         if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
236                 while (start < end) {
237                         tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
238                         start += PAGE_SIZE;
239                 }
240         }
241 
242         local_irq_restore(flags);
243 }
244 
245 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
246  *  @start, @end interpreted as kvaddr
247  * Interestingly, shared TLB entries can also be flushed using just
248  * @start,@end alone (interpreted as user vaddr), although technically SASID
249  * is also needed. However our smart TLbProbe lookup takes care of that.
250  */
251 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
252 {
253         unsigned long flags;
254 
255         /* exactly same as above, except for TLB entry not taking ASID */
256 
257         if (unlikely((end - start) >= PAGE_SIZE * 32)) {
258                 local_flush_tlb_all();
259                 return;
260         }
261 
262         start &= PAGE_MASK;
263 
264         local_irq_save(flags);
265         while (start < end) {
266                 tlb_entry_erase(start);
267                 start += PAGE_SIZE;
268         }
269 
270         local_irq_restore(flags);
271 }
272 
273 /*
274  * Delete TLB entry in MMU for a given page (??? address)
275  * NOTE One TLB entry contains translation for single PAGE
276  */
277 
278 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
279 {
280         const unsigned int cpu = smp_processor_id();
281         unsigned long flags;
282 
283         /* Note that it is critical that interrupts are DISABLED between
284          * checking the ASID and using it flush the TLB entry
285          */
286         local_irq_save(flags);
287 
288         if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
289                 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
290         }
291 
292         local_irq_restore(flags);
293 }
294 
295 #ifdef CONFIG_SMP
296 
297 struct tlb_args {
298         struct vm_area_struct *ta_vma;
299         unsigned long ta_start;
300         unsigned long ta_end;
301 };
302 
303 static inline void ipi_flush_tlb_page(void *arg)
304 {
305         struct tlb_args *ta = arg;
306 
307         local_flush_tlb_page(ta->ta_vma, ta->ta_start);
308 }
309 
310 static inline void ipi_flush_tlb_range(void *arg)
311 {
312         struct tlb_args *ta = arg;
313 
314         local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
315 }
316 
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 static inline void ipi_flush_pmd_tlb_range(void *arg)
319 {
320         struct tlb_args *ta = arg;
321 
322         local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
323 }
324 #endif
325 
326 static inline void ipi_flush_tlb_kernel_range(void *arg)
327 {
328         struct tlb_args *ta = (struct tlb_args *)arg;
329 
330         local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
331 }
332 
333 void flush_tlb_all(void)
334 {
335         on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
336 }
337 
338 void flush_tlb_mm(struct mm_struct *mm)
339 {
340         on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
341                          mm, 1);
342 }
343 
344 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
345 {
346         struct tlb_args ta = {
347                 .ta_vma = vma,
348                 .ta_start = uaddr
349         };
350 
351         on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
352 }
353 
354 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
355                      unsigned long end)
356 {
357         struct tlb_args ta = {
358                 .ta_vma = vma,
359                 .ta_start = start,
360                 .ta_end = end
361         };
362 
363         on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
364 }
365 
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
368                          unsigned long end)
369 {
370         struct tlb_args ta = {
371                 .ta_vma = vma,
372                 .ta_start = start,
373                 .ta_end = end
374         };
375 
376         on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
377 }
378 #endif
379 
380 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
381 {
382         struct tlb_args ta = {
383                 .ta_start = start,
384                 .ta_end = end
385         };
386 
387         on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
388 }
389 #endif
390 
391 /*
392  * Routine to create a TLB entry
393  */
394 static void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
395 {
396         unsigned long flags;
397         unsigned int asid_or_sasid, rwx;
398         unsigned long pd0;
399         phys_addr_t pd1;
400 
401         /*
402          * create_tlb() assumes that current->mm == vma->mm, since
403          * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
404          * -completes the lazy write to SASID reg (again valid for curr tsk)
405          *
406          * Removing the assumption involves
407          * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
408          * -More importantly it makes this handler inconsistent with fast-path
409          *  TLB Refill handler which always deals with "current"
410          *
411          * Let's see the use cases when current->mm != vma->mm and we land here
412          *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
413          *     Here VM wants to pre-install a TLB entry for user stack while
414          *     current->mm still points to pre-execve mm (hence the condition).
415          *     However the stack vaddr is soon relocated (randomization) and
416          *     move_page_tables() tries to undo that TLB entry.
417          *     Thus not creating TLB entry is not any worse.
418          *
419          *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
420          *     breakpoint in debugged task. Not creating a TLB now is not
421          *     performance critical.
422          *
423          * Both the cases above are not good enough for code churn.
424          */
425         if (current->active_mm != vma->vm_mm)
426                 return;
427 
428         local_irq_save(flags);
429 
430         vaddr &= PAGE_MASK;
431 
432         /* update this PTE credentials */
433         pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
434 
435         /* Create HW TLB(PD0,PD1) from PTE  */
436 
437         /* ASID for this task */
438         asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
439 
440         pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
441 
442         /*
443          * ARC MMU provides fully orthogonal access bits for K/U mode,
444          * however Linux only saves 1 set to save PTE real-estate
445          * Here we convert 3 PTE bits into 6 MMU bits:
446          * -Kernel only entries have Kr Kw Kx 0 0 0
447          * -User entries have mirrored K and U bits
448          */
449         rwx = pte_val(*ptep) & PTE_BITS_RWX;
450 
451         if (pte_val(*ptep) & _PAGE_GLOBAL)
452                 rwx <<= 3;              /* r w x => Kr Kw Kx 0 0 0 */
453         else
454                 rwx |= (rwx << 3);      /* r w x => Kr Kw Kx Ur Uw Ux */
455 
456         pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
457 
458         tlb_entry_insert(pd0, pd1);
459 
460         local_irq_restore(flags);
461 }
462 
463 /*
464  * Called at the end of pagefault, for a userspace mapped page
465  *  -pre-install the corresponding TLB entry into MMU
466  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
467  *      flush_dcache_page(), copy_user_page()
468  *
469  * Note that flush (when done) involves both WBACK - so physical page is
470  * in sync as well as INV - so any non-congruent aliases don't remain
471  */
472 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
473                 unsigned long vaddr_unaligned, pte_t *ptep, unsigned int nr)
474 {
475         unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
476         phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS;
477         struct page *page = pfn_to_page(pte_pfn(*ptep));
478 
479         create_tlb(vma, vaddr, ptep);
480 
481         if (page == ZERO_PAGE(0))
482                 return;
483 
484         /*
485          * For executable pages, since icache doesn't snoop dcache, any
486          * dirty K-mapping of a code page needs to be wback+inv so that
487          * icache fetch by userspace sees code correctly.
488          */
489         if (vma->vm_flags & VM_EXEC) {
490                 struct folio *folio = page_folio(page);
491                 int dirty = !test_and_set_bit(PG_dc_clean, &folio->flags);
492                 if (dirty) {
493                         unsigned long offset = offset_in_folio(folio, paddr);
494                         nr = folio_nr_pages(folio);
495                         paddr -= offset;
496                         vaddr -= offset;
497                         /* wback + inv dcache lines (K-mapping) */
498                         __flush_dcache_pages(paddr, paddr, nr);
499 
500                         /* invalidate any existing icache lines (U-mapping) */
501                         if (vma->vm_flags & VM_EXEC)
502                                 __inv_icache_pages(paddr, vaddr, nr);
503                 }
504         }
505 }
506 
507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
508 
509 /*
510  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
511  * support.
512  *
513  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
514  * new bit "SZ" in TLB page descriptor to distinguish between them.
515  * Super Page size is configurable in hardware (4K to 16M), but fixed once
516  * RTL builds.
517  *
518  * The exact THP size a Linux configuration will support is a function of:
519  *  - MMU page size (typical 8K, RTL fixed)
520  *  - software page walker address split between PGD:PTE:PFN (typical
521  *    11:8:13, but can be changed with 1 line)
522  * So for above default, THP size supported is 8K * (2^8) = 2M
523  *
524  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
525  * reduces to 1 level (as PTE is folded into PGD and canonically referred
526  * to as PMD).
527  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
528  */
529 
530 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
531                                  pmd_t *pmd)
532 {
533         pte_t pte = __pte(pmd_val(*pmd));
534         update_mmu_cache_range(NULL, vma, addr, &pte, HPAGE_PMD_NR);
535 }
536 
537 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
538                                unsigned long end)
539 {
540         unsigned int cpu;
541         unsigned long flags;
542 
543         local_irq_save(flags);
544 
545         cpu = smp_processor_id();
546 
547         if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
548                 unsigned int asid = hw_pid(vma->vm_mm, cpu);
549 
550                 /* No need to loop here: this will always be for 1 Huge Page */
551                 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
552         }
553 
554         local_irq_restore(flags);
555 }
556 
557 #endif
558 
559 /* Read the Cache Build Configuration Registers, Decode them and save into
560  * the cpuinfo structure for later use.
561  * No Validation is done here, simply read/convert the BCRs
562  */
563 int arc_mmu_mumbojumbo(int c, char *buf, int len)
564 {
565         struct cpuinfo_arc_mmu *mmu = &mmuinfo;
566         unsigned int bcr, u_dtlb, u_itlb, sasid;
567         struct bcr_mmu_3 *mmu3;
568         struct bcr_mmu_4 *mmu4;
569         char super_pg[64] = "";
570         int n = 0;
571 
572         bcr = read_aux_reg(ARC_REG_MMU_BCR);
573         mmu->ver = (bcr >> 24);
574 
575         if (is_isa_arcompact() && mmu->ver == 3) {
576                 mmu3 = (struct bcr_mmu_3 *)&bcr;
577                 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
578                 mmu->sets = 1 << mmu3->sets;
579                 mmu->ways = 1 << mmu3->ways;
580                 u_dtlb = mmu3->u_dtlb;
581                 u_itlb = mmu3->u_itlb;
582                 sasid = mmu3->sasid;
583         } else {
584                 mmu4 = (struct bcr_mmu_4 *)&bcr;
585                 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
586                 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
587                 mmu->sets = 64 << mmu4->n_entry;
588                 mmu->ways = mmu4->n_ways * 2;
589                 u_dtlb = mmu4->u_dtlb * 4;
590                 u_itlb = mmu4->u_itlb * 4;
591                 sasid = mmu4->sasid;
592                 mmu->pae = mmu4->pae;
593         }
594 
595         if (mmu->s_pg_sz_m)
596                 scnprintf(super_pg, 64, "/%dM%s",
597                           mmu->s_pg_sz_m,
598                           IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) ? " (THP enabled)":"");
599 
600         n += scnprintf(buf + n, len - n,
601                       "MMU [v%x]\t: %dk%s, swalk %d lvl, JTLB %dx%d, uDTLB %d, uITLB %d%s%s%s\n",
602                        mmu->ver, mmu->pg_sz_k, super_pg, CONFIG_PGTABLE_LEVELS,
603                        mmu->sets, mmu->ways,
604                        u_dtlb, u_itlb,
605                        IS_AVAIL1(sasid, ", SASID"),
606                        IS_AVAIL2(mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
607 
608         return n;
609 }
610 
611 int pae40_exist_but_not_enab(void)
612 {
613         return mmuinfo.pae && !is_pae40_enabled();
614 }
615 
616 void arc_mmu_init(void)
617 {
618         struct cpuinfo_arc_mmu *mmu = &mmuinfo;
619         int compat = 0;
620 
621         /*
622          * Can't be done in processor.h due to header include dependencies
623          */
624         BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
625 
626         /*
627          * stack top size sanity check,
628          * Can't be done in processor.h due to header include dependencies
629          */
630         BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
631 
632         /*
633          * Ensure that MMU features assumed by kernel exist in hardware.
634          *  - For older ARC700 cpus, only v3 supported
635          *  - For HS cpus, v4 was baseline and v5 is backwards compatible
636          *    (will run older software).
637          */
638         if (is_isa_arcompact() && mmu->ver == 3)
639                 compat = 1;
640         else if (is_isa_arcv2() && mmu->ver >= 4)
641                 compat = 1;
642 
643         if (!compat)
644                 panic("MMU ver %d doesn't match kernel built for\n", mmu->ver);
645 
646         if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
647                 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
648 
649         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
650             mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
651                 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
652                       (unsigned long)TO_MB(HPAGE_PMD_SIZE));
653 
654         if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
655                 panic("Hardware doesn't support PAE40\n");
656 
657         /* Enable the MMU with ASID 0 */
658         mmu_setup_asid(NULL, 0);
659 
660         /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */
661         mmu_setup_pgd(NULL, swapper_pg_dir);
662 
663         if (pae40_exist_but_not_enab())
664                 write_aux_reg(ARC_REG_TLBPD1HI, 0);
665 }
666 
667 /*
668  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
669  * The mapping is Column-first.
670  *              ---------------------   -----------
671  *              |way0|way1|way2|way3|   |way0|way1|
672  *              ---------------------   -----------
673  * [set0]       |  0 |  1 |  2 |  3 |   |  0 |  1 |
674  * [set1]       |  4 |  5 |  6 |  7 |   |  2 |  3 |
675  *              ~                   ~   ~         ~
676  * [set127]     | 508| 509| 510| 511|   | 254| 255|
677  *              ---------------------   -----------
678  * For normal operations we don't(must not) care how above works since
679  * MMU cmd getIndex(vaddr) abstracts that out.
680  * However for walking WAYS of a SET, we need to know this
681  */
682 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
683 
684 /* Handling of Duplicate PD (TLB entry) in MMU.
685  * -Could be due to buggy customer tapeouts or obscure kernel bugs
686  * -MMU complaints not at the time of duplicate PD installation, but at the
687  *      time of lookup matching multiple ways.
688  * -Ideally these should never happen - but if they do - workaround by deleting
689  *      the duplicate one.
690  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
691  */
692 volatile int dup_pd_silent; /* Be silent abt it or complain (default) */
693 
694 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
695                           struct pt_regs *regs)
696 {
697         struct cpuinfo_arc_mmu *mmu = &mmuinfo;
698         unsigned long flags;
699         int set, n_ways = mmu->ways;
700 
701         n_ways = min(n_ways, 4);
702         BUG_ON(mmu->ways > 4);
703 
704         local_irq_save(flags);
705 
706         /* loop thru all sets of TLB */
707         for (set = 0; set < mmu->sets; set++) {
708 
709                 int is_valid, way;
710                 unsigned int pd0[4];
711 
712                 /* read out all the ways of current set */
713                 for (way = 0, is_valid = 0; way < n_ways; way++) {
714                         write_aux_reg(ARC_REG_TLBINDEX,
715                                           SET_WAY_TO_IDX(mmu, set, way));
716                         write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
717                         pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
718                         is_valid |= pd0[way] & _PAGE_PRESENT;
719                         pd0[way] &= PAGE_MASK;
720                 }
721 
722                 /* If all the WAYS in SET are empty, skip to next SET */
723                 if (!is_valid)
724                         continue;
725 
726                 /* Scan the set for duplicate ways: needs a nested loop */
727                 for (way = 0; way < n_ways - 1; way++) {
728 
729                         int n;
730 
731                         if (!pd0[way])
732                                 continue;
733 
734                         for (n = way + 1; n < n_ways; n++) {
735                                 if (pd0[way] != pd0[n])
736                                         continue;
737 
738                                 if (!dup_pd_silent)
739                                         pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
740                                                 pd0[way], set, way, n);
741 
742                                 /*
743                                  * clear entry @way and not @n.
744                                  * This is critical to our optimised loop
745                                  */
746                                 pd0[way] = 0;
747                                 write_aux_reg(ARC_REG_TLBINDEX,
748                                                 SET_WAY_TO_IDX(mmu, set, way));
749                                 __tlb_entry_erase();
750                         }
751                 }
752         }
753 
754         local_irq_restore(flags);
755 }
756 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php