~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/crypto/crct10dif-ce-core.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 //
  2 // Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
  3 //
  4 // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
  5 // Copyright (C) 2019 Google LLC <ebiggers@google.com>
  6 //
  7 // This program is free software; you can redistribute it and/or modify
  8 // it under the terms of the GNU General Public License version 2 as
  9 // published by the Free Software Foundation.
 10 //
 11 
 12 // Derived from the x86 version:
 13 //
 14 // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
 15 //
 16 // Copyright (c) 2013, Intel Corporation
 17 //
 18 // Authors:
 19 //     Erdinc Ozturk <erdinc.ozturk@intel.com>
 20 //     Vinodh Gopal <vinodh.gopal@intel.com>
 21 //     James Guilford <james.guilford@intel.com>
 22 //     Tim Chen <tim.c.chen@linux.intel.com>
 23 //
 24 // This software is available to you under a choice of one of two
 25 // licenses.  You may choose to be licensed under the terms of the GNU
 26 // General Public License (GPL) Version 2, available from the file
 27 // COPYING in the main directory of this source tree, or the
 28 // OpenIB.org BSD license below:
 29 //
 30 // Redistribution and use in source and binary forms, with or without
 31 // modification, are permitted provided that the following conditions are
 32 // met:
 33 //
 34 // * Redistributions of source code must retain the above copyright
 35 //   notice, this list of conditions and the following disclaimer.
 36 //
 37 // * Redistributions in binary form must reproduce the above copyright
 38 //   notice, this list of conditions and the following disclaimer in the
 39 //   documentation and/or other materials provided with the
 40 //   distribution.
 41 //
 42 // * Neither the name of the Intel Corporation nor the names of its
 43 //   contributors may be used to endorse or promote products derived from
 44 //   this software without specific prior written permission.
 45 //
 46 //
 47 // THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
 48 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 49 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 50 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
 51 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 52 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 53 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 54 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 55 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 56 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 57 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 58 //
 59 //       Reference paper titled "Fast CRC Computation for Generic
 60 //      Polynomials Using PCLMULQDQ Instruction"
 61 //       URL: http://www.intel.com/content/dam/www/public/us/en/documents
 62 //  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
 63 //
 64 
 65 #include <linux/linkage.h>
 66 #include <asm/assembler.h>
 67 
 68 #ifdef CONFIG_CPU_ENDIAN_BE8
 69 #define CPU_LE(code...)
 70 #else
 71 #define CPU_LE(code...)         code
 72 #endif
 73 
 74         .text
 75         .arch           armv8-a
 76         .fpu            crypto-neon-fp-armv8
 77 
 78         init_crc        .req    r0
 79         buf             .req    r1
 80         len             .req    r2
 81 
 82         fold_consts_ptr .req    ip
 83 
 84         q0l             .req    d0
 85         q0h             .req    d1
 86         q1l             .req    d2
 87         q1h             .req    d3
 88         q2l             .req    d4
 89         q2h             .req    d5
 90         q3l             .req    d6
 91         q3h             .req    d7
 92         q4l             .req    d8
 93         q4h             .req    d9
 94         q5l             .req    d10
 95         q5h             .req    d11
 96         q6l             .req    d12
 97         q6h             .req    d13
 98         q7l             .req    d14
 99         q7h             .req    d15
100         q8l             .req    d16
101         q8h             .req    d17
102         q9l             .req    d18
103         q9h             .req    d19
104         q10l            .req    d20
105         q10h            .req    d21
106         q11l            .req    d22
107         q11h            .req    d23
108         q12l            .req    d24
109         q12h            .req    d25
110 
111         FOLD_CONSTS     .req    q10
112         FOLD_CONST_L    .req    q10l
113         FOLD_CONST_H    .req    q10h
114 
115         // Fold reg1, reg2 into the next 32 data bytes, storing the result back
116         // into reg1, reg2.
117         .macro          fold_32_bytes, reg1, reg2
118         vld1.64         {q11-q12}, [buf]!
119 
120         vmull.p64       q8, \reg1\()h, FOLD_CONST_H
121         vmull.p64       \reg1, \reg1\()l, FOLD_CONST_L
122         vmull.p64       q9, \reg2\()h, FOLD_CONST_H
123         vmull.p64       \reg2, \reg2\()l, FOLD_CONST_L
124 
125 CPU_LE( vrev64.8        q11, q11        )
126 CPU_LE( vrev64.8        q12, q12        )
127         vswp            q11l, q11h
128         vswp            q12l, q12h
129 
130         veor.8          \reg1, \reg1, q8
131         veor.8          \reg2, \reg2, q9
132         veor.8          \reg1, \reg1, q11
133         veor.8          \reg2, \reg2, q12
134         .endm
135 
136         // Fold src_reg into dst_reg, optionally loading the next fold constants
137         .macro          fold_16_bytes, src_reg, dst_reg, load_next_consts
138         vmull.p64       q8, \src_reg\()l, FOLD_CONST_L
139         vmull.p64       \src_reg, \src_reg\()h, FOLD_CONST_H
140         .ifnb           \load_next_consts
141         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
142         .endif
143         veor.8          \dst_reg, \dst_reg, q8
144         veor.8          \dst_reg, \dst_reg, \src_reg
145         .endm
146 
147         .macro          __adrl, out, sym
148         movw            \out, #:lower16:\sym
149         movt            \out, #:upper16:\sym
150         .endm
151 
152 //
153 // u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
154 //
155 // Assumes len >= 16.
156 //
157 ENTRY(crc_t10dif_pmull)
158 
159         // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
160         cmp             len, #256
161         blt             .Lless_than_256_bytes
162 
163         __adrl          fold_consts_ptr, .Lfold_across_128_bytes_consts
164 
165         // Load the first 128 data bytes.  Byte swapping is necessary to make
166         // the bit order match the polynomial coefficient order.
167         vld1.64         {q0-q1}, [buf]!
168         vld1.64         {q2-q3}, [buf]!
169         vld1.64         {q4-q5}, [buf]!
170         vld1.64         {q6-q7}, [buf]!
171 CPU_LE( vrev64.8        q0, q0  )
172 CPU_LE( vrev64.8        q1, q1  )
173 CPU_LE( vrev64.8        q2, q2  )
174 CPU_LE( vrev64.8        q3, q3  )
175 CPU_LE( vrev64.8        q4, q4  )
176 CPU_LE( vrev64.8        q5, q5  )
177 CPU_LE( vrev64.8        q6, q6  )
178 CPU_LE( vrev64.8        q7, q7  )
179         vswp            q0l, q0h
180         vswp            q1l, q1h
181         vswp            q2l, q2h
182         vswp            q3l, q3h
183         vswp            q4l, q4h
184         vswp            q5l, q5h
185         vswp            q6l, q6h
186         vswp            q7l, q7h
187 
188         // XOR the first 16 data *bits* with the initial CRC value.
189         vmov.i8         q8h, #0
190         vmov.u16        q8h[3], init_crc
191         veor            q0h, q0h, q8h
192 
193         // Load the constants for folding across 128 bytes.
194         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
195 
196         // Subtract 128 for the 128 data bytes just consumed.  Subtract another
197         // 128 to simplify the termination condition of the following loop.
198         sub             len, len, #256
199 
200         // While >= 128 data bytes remain (not counting q0-q7), fold the 128
201         // bytes q0-q7 into them, storing the result back into q0-q7.
202 .Lfold_128_bytes_loop:
203         fold_32_bytes   q0, q1
204         fold_32_bytes   q2, q3
205         fold_32_bytes   q4, q5
206         fold_32_bytes   q6, q7
207         subs            len, len, #128
208         bge             .Lfold_128_bytes_loop
209 
210         // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
211 
212         // Fold across 64 bytes.
213         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
214         fold_16_bytes   q0, q4
215         fold_16_bytes   q1, q5
216         fold_16_bytes   q2, q6
217         fold_16_bytes   q3, q7, 1
218         // Fold across 32 bytes.
219         fold_16_bytes   q4, q6
220         fold_16_bytes   q5, q7, 1
221         // Fold across 16 bytes.
222         fold_16_bytes   q6, q7
223 
224         // Add 128 to get the correct number of data bytes remaining in 0...127
225         // (not counting q7), following the previous extra subtraction by 128.
226         // Then subtract 16 to simplify the termination condition of the
227         // following loop.
228         adds            len, len, #(128-16)
229 
230         // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
231         // into them, storing the result back into q7.
232         blt             .Lfold_16_bytes_loop_done
233 .Lfold_16_bytes_loop:
234         vmull.p64       q8, q7l, FOLD_CONST_L
235         vmull.p64       q7, q7h, FOLD_CONST_H
236         veor.8          q7, q7, q8
237         vld1.64         {q0}, [buf]!
238 CPU_LE( vrev64.8        q0, q0  )
239         vswp            q0l, q0h
240         veor.8          q7, q7, q0
241         subs            len, len, #16
242         bge             .Lfold_16_bytes_loop
243 
244 .Lfold_16_bytes_loop_done:
245         // Add 16 to get the correct number of data bytes remaining in 0...15
246         // (not counting q7), following the previous extra subtraction by 16.
247         adds            len, len, #16
248         beq             .Lreduce_final_16_bytes
249 
250 .Lhandle_partial_segment:
251         // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
252         // 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
253         // do this without needing a fold constant for each possible 'len',
254         // redivide the bytes into a first chunk of 'len' bytes and a second
255         // chunk of 16 bytes, then fold the first chunk into the second.
256 
257         // q0 = last 16 original data bytes
258         add             buf, buf, len
259         sub             buf, buf, #16
260         vld1.64         {q0}, [buf]
261 CPU_LE( vrev64.8        q0, q0  )
262         vswp            q0l, q0h
263 
264         // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
265         __adrl          r3, .Lbyteshift_table + 16
266         sub             r3, r3, len
267         vld1.8          {q2}, [r3]
268         vtbl.8          q1l, {q7l-q7h}, q2l
269         vtbl.8          q1h, {q7l-q7h}, q2h
270 
271         // q3 = first chunk: q7 right-shifted by '16-len' bytes.
272         vmov.i8         q3, #0x80
273         veor.8          q2, q2, q3
274         vtbl.8          q3l, {q7l-q7h}, q2l
275         vtbl.8          q3h, {q7l-q7h}, q2h
276 
277         // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
278         vshr.s8         q2, q2, #7
279 
280         // q2 = second chunk: 'len' bytes from q0 (low-order bytes),
281         // then '16-len' bytes from q1 (high-order bytes).
282         vbsl.8          q2, q1, q0
283 
284         // Fold the first chunk into the second chunk, storing the result in q7.
285         vmull.p64       q0, q3l, FOLD_CONST_L
286         vmull.p64       q7, q3h, FOLD_CONST_H
287         veor.8          q7, q7, q0
288         veor.8          q7, q7, q2
289 
290 .Lreduce_final_16_bytes:
291         // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
292 
293         // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
294         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
295 
296         // Fold the high 64 bits into the low 64 bits, while also multiplying by
297         // x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
298         // whose low 48 bits are 0.
299         vmull.p64       q0, q7h, FOLD_CONST_H   // high bits * x^48 * (x^80 mod G(x))
300         veor.8          q0h, q0h, q7l           // + low bits * x^64
301 
302         // Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
303         // value congruent to x^64 * M(x) and whose low 48 bits are 0.
304         vmov.i8         q1, #0
305         vmov            s4, s3                  // extract high 32 bits
306         vmov            s3, s5                  // zero high 32 bits
307         vmull.p64       q1, q1l, FOLD_CONST_L   // high 32 bits * x^48 * (x^48 mod G(x))
308         veor.8          q0, q0, q1              // + low bits
309 
310         // Load G(x) and floor(x^48 / G(x)).
311         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]
312 
313         // Use Barrett reduction to compute the final CRC value.
314         vmull.p64       q1, q0h, FOLD_CONST_H   // high 32 bits * floor(x^48 / G(x))
315         vshr.u64        q1l, q1l, #32           // /= x^32
316         vmull.p64       q1, q1l, FOLD_CONST_L   // *= G(x)
317         vshr.u64        q0l, q0l, #48
318         veor.8          q0l, q0l, q1l           // + low 16 nonzero bits
319         // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
320 
321         vmov.u16        r0, q0l[0]
322         bx              lr
323 
324 .Lless_than_256_bytes:
325         // Checksumming a buffer of length 16...255 bytes
326 
327         __adrl          fold_consts_ptr, .Lfold_across_16_bytes_consts
328 
329         // Load the first 16 data bytes.
330         vld1.64         {q7}, [buf]!
331 CPU_LE( vrev64.8        q7, q7  )
332         vswp            q7l, q7h
333 
334         // XOR the first 16 data *bits* with the initial CRC value.
335         vmov.i8         q0h, #0
336         vmov.u16        q0h[3], init_crc
337         veor.8          q7h, q7h, q0h
338 
339         // Load the fold-across-16-bytes constants.
340         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
341 
342         cmp             len, #16
343         beq             .Lreduce_final_16_bytes         // len == 16
344         subs            len, len, #32
345         addlt           len, len, #16
346         blt             .Lhandle_partial_segment        // 17 <= len <= 31
347         b               .Lfold_16_bytes_loop            // 32 <= len <= 255
348 ENDPROC(crc_t10dif_pmull)
349 
350         .section        ".rodata", "a"
351         .align          4
352 
353 // Fold constants precomputed from the polynomial 0x18bb7
354 // G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
355 .Lfold_across_128_bytes_consts:
356         .quad           0x0000000000006123      // x^(8*128)    mod G(x)
357         .quad           0x0000000000002295      // x^(8*128+64) mod G(x)
358 // .Lfold_across_64_bytes_consts:
359         .quad           0x0000000000001069      // x^(4*128)    mod G(x)
360         .quad           0x000000000000dd31      // x^(4*128+64) mod G(x)
361 // .Lfold_across_32_bytes_consts:
362         .quad           0x000000000000857d      // x^(2*128)    mod G(x)
363         .quad           0x0000000000007acc      // x^(2*128+64) mod G(x)
364 .Lfold_across_16_bytes_consts:
365         .quad           0x000000000000a010      // x^(1*128)    mod G(x)
366         .quad           0x0000000000001faa      // x^(1*128+64) mod G(x)
367 // .Lfinal_fold_consts:
368         .quad           0x1368000000000000      // x^48 * (x^48 mod G(x))
369         .quad           0x2d56000000000000      // x^48 * (x^80 mod G(x))
370 // .Lbarrett_reduction_consts:
371         .quad           0x0000000000018bb7      // G(x)
372         .quad           0x00000001f65a57f8      // floor(x^48 / G(x))
373 
374 // For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
375 // len] is the index vector to shift left by 'len' bytes, and is also {0x80,
376 // ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
377 .Lbyteshift_table:
378         .byte            0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
379         .byte           0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
380         .byte            0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
381         .byte            0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php